JPS6158917A - Intake cooler of engine with supercharger - Google Patents

Intake cooler of engine with supercharger

Info

Publication number
JPS6158917A
JPS6158917A JP59178421A JP17842184A JPS6158917A JP S6158917 A JPS6158917 A JP S6158917A JP 59178421 A JP59178421 A JP 59178421A JP 17842184 A JP17842184 A JP 17842184A JP S6158917 A JPS6158917 A JP S6158917A
Authority
JP
Japan
Prior art keywords
intake
intake air
engine
flow state
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59178421A
Other languages
Japanese (ja)
Inventor
Toshihide Nishikawa
俊秀 西川
Masamichi Iida
飯田 政道
Kunikimi Minamitani
邦公 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59178421A priority Critical patent/JPS6158917A/en
Publication of JPS6158917A publication Critical patent/JPS6158917A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve acceleration responsive property by providing a bypass path for bypassing a intake cooler of an engine with a supercharger to pass the intake through the bypass path only for a predetermined time in acceleration. CONSTITUTION:Since pressurized air from a supercharger 15 has high temperature it is sucked into a cylinder 5 after said air is cooled by a intake cooler 14. Since it takes time for filling air in the intake cooler at accelerating an engine, change-over valves 18, 20 are changed over to pass air through a bypass path 13. These valves 18, 20 are driven by actuators 17, 19. A control unit 22 detects 33 the accelerated condition to immediately drive the actuators 17, 19 and pass air through the bypass path 13. However, after a predetermined delay, the valves 18, 20 are changed over to pass again air through the intake cooler 14. During this delay the intake cooler is filled with air so that sufficient air in the acceleration is ready for being supplied.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は1.吸気通路に過給機を備え、該過給機下流側
の吸気通路に、互いに並列に吸気冷却器を備えた冷却用
通路と該吸気冷却器をバイパスするバイパス通路とが設
けられた過給機付エンジンの吸気冷却装置に関し、さら
に詳しくは、エンジン加速時の加速応答性を高め、得る
ようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention consists of 1. A supercharger equipped with a supercharger in an intake passage, and a cooling passage equipped with an intake air cooler and a bypass passage that bypasses the intake air cooler in parallel with each other in the intake passage on the downstream side of the supercharger. The present invention relates to an intake air cooling device for an engine, and more specifically, to one that improves and obtains acceleration response during engine acceleration.

(従来技術) 過給機付きのエンジンにあっては、吸気冷却器(インタ
クーラ)を設けるようにしたものが多くなっており、こ
のものにあっては、一般に、低負荷時における過冷却を
防止する等のため、過給機下流側の吸気通路に、互いに
並列に吸気冷却器を備えた冷却用通路と該吸気冷却器を
バイパスするバイパス通路とが設けられている(特開昭
57−195820号公報参照)、すなわち、吸気温度
があまり上昇しない低負荷時には、バイパス通路を通し
てエンジンへ吸気を供給する一方、過給圧が上昇して吸
気温度が高くなる高負荷時には、冷却用通路を通して吸
気温度を低下させた後エンジンへ吸気を供給するように
している。
(Prior art) Many engines with superchargers are equipped with an intake air cooler (intercooler), which generally prevents overcooling during low loads. For this reason, the intake passage on the downstream side of the supercharger is provided with a cooling passage equipped with an intake air cooler and a bypass passage that bypasses the intake air cooler in parallel with each other (Japanese Patent Laid-Open No. 57-195820 In other words, during low loads when the intake air temperature does not rise much, intake air is supplied to the engine through the bypass passage, while during high loads when the boost pressure increases and the intake air temperature becomes high, the intake air temperature is supplied to the engine through the cooling passage. After lowering the intake air, it is supplied to the engine.

このような過給機付エンジンの吸気冷却装置にあっては
、エンジン加速時にも冷却用通路を通して吸気が供給さ
れることになるが、このエンジン加速時の応答性すなわ
ち、加速応答性が悪くなるという問題を生じる。この点
を詳述すると、低負荷運転状態でバイパス通路を通して
吸気を供給している状態から、アクセルを大きく踏み込
んで加速しようとした際すなわち高負荷とした際、吸気
の流れは、バイパス通路から冷却用通路へ切り換わるが
、吸気冷却器はその容量がかなり大きいため、吸気はこ
の大きな容量の吸気冷却器内に充満した後エンジンへと
供給されることになり、この吸気冷却器内での吸気充満
に要する時間分だけ過給圧上昇が遅れて加速応答性が悪
くなっていた。
In such an intake air cooling system for a supercharged engine, intake air is supplied through the cooling passage even when the engine accelerates, but the response during engine acceleration, that is, the acceleration response becomes poor. The problem arises. To explain this point in detail, when the intake air is supplied through the bypass passage in a low-load operation state, and when you try to accelerate by depressing the accelerator greatly, that is, when the load is high, the intake air flow is cooled from the bypass passage. However, since the capacity of the intake air cooler is quite large, the intake air fills this large capacity intake air cooler before being supplied to the engine. The increase in boost pressure was delayed by the time required for charging, resulting in poor acceleration response.

とりわけ、過給機が排気エネルギーによって駆動される
ターボチャージャの場合は、過給機自体にも少なからず
タイムラグを有するため、この過給機のタイムラグと合
せて、より一層加速応答性の悪いものとなる。
In particular, if the supercharger is a turbocharger that is driven by exhaust energy, the supercharger itself has a considerable time lag, so when combined with the time lag of the supercharger, the acceleration response becomes even worse. Become.

(発明の目的) 本発明は以上のような事情を勘案してなされたもので、
吸気冷却器を備えたものにおいて、エンジン加速時にお
ける加速応答性を高めることのできるようにした過給機
付エンジンの吸気冷却装置を提供することを目的とする
(Object of the invention) The present invention has been made in consideration of the above circumstances, and
An object of the present invention is to provide an intake air cooling device for a supercharged engine that is equipped with an intake air cooler and can improve acceleration response during engine acceleration.

(発明の構成) 前述の目的を達成するため1本発明にあっては、バイパ
ス通路を通しての吸気供給から冷却用通路を通しての吸
気供給への切換えに時間遅れをもたせるようにしである
(Structure of the Invention) In order to achieve the above-mentioned object, one aspect of the present invention is to provide a time delay in switching from the intake air supply through the bypass passage to the intake air supply through the cooling passage.

具体的には、吸気通路に、過給機が配設されると共に、
該過給機の下流側において、互いに並列に吸気冷却器を
備えた冷却用通路と該吸気冷却器をバイパスするバイパ
ス通路とが設けられた過給機付エンジンの吸気冷却装置
を前提として。
Specifically, a supercharger is disposed in the intake passage, and
The present invention is based on an intake air cooling system for a supercharged engine in which a cooling passage including an intake air cooler and a bypass passage bypassing the intake air cooler are provided in parallel with each other on the downstream side of the supercharger.

エンジンの負荷を検出する負荷検出手段と、前記吸気冷
却器の上流側および下流側の冷却用通路を閉じて前記バ
イパス通路を通してエンジンへ吸気を供給させる第1吸
気流れ状態と、前記冷却用通路を通して吸気を供給させ
る第2吸気流れ状態とを切換えるための切換弁装置と。
load detection means for detecting a load on the engine; a first intake flow state for closing the upstream and downstream cooling passages of the intake air cooler to supply intake air to the engine through the bypass passage; and a switching valve device for switching between a second intake flow state and a second intake flow state for supplying intake air.

前記負荷検出手段からの出力を受け、前記切換弁装置を
制御して、低負荷時には前記第1吸気流れ状態にすると
共に、高負荷時には前記第2吸気流れ状態とする切換制
御手段と、 を備え、前記切換制御手段は、前記第1吸気流れ状態か
ら前記第2吸気流れ状態への切換に時間的遅れをもたせ
るための遅延手段を備えたちのされている。
Switching control means receives an output from the load detection means and controls the switching valve device to bring the first intake flow state into the first intake flow state when the load is low and to put the second intake air flow state into the second intake flow state when the load is high. The switching control means includes a delay means for causing a time delay in switching from the first intake flow state to the second intake flow state.

このような構成とする・ことにより、少なくともエンジ
ンの加速当初は、上記遅延手段により、バイパス通路を
通しての吸気供給が所定時間持続される結果、過給圧が
すみやかに上昇して加速応答性の優れたものとなる。
With this configuration, at least when the engine is initially accelerated, the delay means continues the intake air supply through the bypass passage for a predetermined period of time, and as a result, the supercharging pressure increases quickly, resulting in excellent acceleration response. It becomes something.

(実施例) 以下本発明の実施例を添付した図面に基づいて説明する
(Example) Examples of the present invention will be described below based on the attached drawings.

第1図において、lはエンジン本体で、これは、シリン
ダブロック2とシリンダへラド3とシリンダブロックz
内に摺動自在に嵌挿されたピストン4とにより燃焼室5
が画成され、このピストン5の往復動により、図示を略
すクランク軸が回転される往復動型のものとされている
。上記燃焼室5には、それぞれシリンダへラド3に形成
した吸気ボート6および排気ポート7が開口され、吸気
ボート6は吸気弁8により、また排気ポート7は排気弁
9により、上記クランク軸の回転に同期して周知のタイ
ミングで開閉されるようになっている。
In Fig. 1, l is the engine body, which consists of the cylinder block 2, the cylinder head 3, and the cylinder block z.
A combustion chamber 5 is formed by a piston 4 which is slidably inserted into the combustion chamber 5.
The piston 5 is of a reciprocating type, and the reciprocating movement of the piston 5 rotates a crankshaft (not shown). The combustion chamber 5 is opened with an intake boat 6 and an exhaust port 7 formed in the cylinder head 3, respectively. It is designed to open and close at well-known timing in synchronization with

吸気ボート6には、エアクリーナ10より伸びる吸気通
路11が接続され、該吸気通路11の途中は、互いに並
列な冷却用通路12とバイパス通路13とされ、冷却用
通路12には吸気冷却器14が配設されている。このよ
うに、互いに並列な冷却用通路1zとバイパス通路13
とを有する吸気通路11のうち、該内通路12と13と
の上流側分岐部Xより上流側部分を上流側共通通路とし
て符号11aで示し、また該内通路12と13との下流
側分岐部Yより下流側部分を下流側共通通路として符号
11bで示しである。
An intake passage 11 extending from an air cleaner 10 is connected to the intake boat 6. The intake passage 11 has a cooling passage 12 and a bypass passage 13 parallel to each other, and an intake air cooler 14 is connected to the cooling passage 12. It is arranged. In this way, the cooling passage 1z and the bypass passage 13 are parallel to each other.
Of the intake passage 11, the part upstream from the upstream branch X between the inner passages 12 and 13 is designated by reference numeral 11a as an upstream common passage, and the downstream branch between the inner passages 12 and 13 is indicated by reference numeral 11a. The portion downstream of Y is designated by the reference numeral 11b as a downstream common passage.

前記上流側共通通路11aには、過給機(実施例ではタ
ーボチャージャ)15のコンプレッサホイール15aが
配設され、下流側共通通路11bには、スロットルバル
ブ16が配設されている。
A compressor wheel 15a of a supercharger (turbocharger in the embodiment) 15 is disposed in the upstream common passage 11a, and a throttle valve 16 is disposed in the downstream common passage 11b.

また、上流側分岐部Xには、アクチュエータ17により
駆動される切換弁18が配設され、この切換弁18は、
冷却用通路12の上流側を閉じる第1図実線位置におい
ては、吸気をバイパス通路13へ向ζすて流す作用を行
い、またバイパス通路13の上流側を閉じる第1図一点
鎖線で示す位置においては、吸気を冷却用通路12へ向
けて流す作用を行うものとなっている。そして、冷却用
通路12の下流端部には、アクチュエータ19により駆
動される開閉弁20が配設されている。このような切換
弁18と開閉弁20とは、本発明における切換弁装置を
構成するもので、吸気冷却器14上流側および下流側の
冷却用通路12を閉じて吸気がバイパス通路13を通っ
て供給される第1吸気流れ状態(第1図実線位置)と、
吸気冷却器14上流側および下流側の冷却用通路12を
共に開くと共にバイパス通路13を閉じて、該冷却用通
路12を通って吸気が供給される第2吸気流れ状態(第
1図一点鎖線位置)と、をとり得るようにされている。
Further, a switching valve 18 driven by an actuator 17 is disposed at the upstream branch part X, and this switching valve 18
At the position shown by the solid line in FIG. 1 where the upstream side of the cooling passage 12 is closed, the intake air is directed to the bypass passage 13 and at the position shown by the dashed line in FIG. 1 where the upstream side of the bypass passage 13 is closed. has the function of causing intake air to flow toward the cooling passage 12. An on-off valve 20 driven by an actuator 19 is disposed at the downstream end of the cooling passage 12. The switching valve 18 and the on-off valve 20 constitute the switching valve device of the present invention, and close the cooling passages 12 on the upstream and downstream sides of the intake air cooler 14 so that the intake air passes through the bypass passage 13. The supplied first intake flow state (solid line position in Figure 1),
A second intake flow state in which the cooling passages 12 on the upstream and downstream sides of the intake air cooler 14 are both opened and the bypass passage 13 is closed, and intake air is supplied through the cooling passages 12 (position shown by the dashed-dotted line in FIG. 1). ) and can be taken.

一方、前記排気ボート7に接続された排気通路21の途
中には、前記過給機15のタービンホイール15bが配
設され、排気エネルギによってタービンホイール15b
が回転されると、回転軸15cを介してコンプレッサホ
イール15aが回転され、これにより加給が行われるよ
うになっている。
On the other hand, a turbine wheel 15b of the supercharger 15 is disposed in the middle of the exhaust passage 21 connected to the exhaust boat 7, and the exhaust energy is used to generate the turbine wheel 15b.
When the compressor wheel 15a is rotated, the compressor wheel 15a is rotated via the rotating shaft 15c, thereby performing charging.

第1図中22は制御回路で、これは、前記切換弁18お
よび開閉弁20の作動を制御する切換制御手段を構成す
るものである。この制御回路22には、スロットルバル
ブ16下流側の吸気圧すなわちエンジン負荷を検出する
吸気負圧センサ23からの信号が入力される一方、制御
回路22からは、前記両アクチュエータ17および19
へ出力されるようになっている。
Reference numeral 22 in FIG. 1 denotes a control circuit, which constitutes switching control means for controlling the operation of the switching valve 18 and the on-off valve 20. This control circuit 22 receives a signal from an intake negative pressure sensor 23 that detects the intake pressure on the downstream side of the throttle valve 16, that is, the engine load.
It is now output to .

上記制御回路22は、第2図に示すように、吸気負圧セ
ンサ23からの信号Aが入力される第1比較回路24の
他、m1基準値設定回路25、積分回路26、第2比較
回路27、第2基準値設定回路28、前記両アクチュエ
ータ17.19へ出力する駆動回路29、リセット回路
30を備えており、各回路24〜28からは信号Bない
しFが出力されるようになっている(第3図(a)〜第
3図(’d )をも参照)。
As shown in FIG. 2, the control circuit 22 includes a first comparison circuit 24 to which the signal A from the intake negative pressure sensor 23 is input, an m1 reference value setting circuit 25, an integration circuit 26, and a second comparison circuit. 27, a second reference value setting circuit 28, a drive circuit 29 for outputting to both actuators 17 and 19, and a reset circuit 30 are provided, and signals B to F are outputted from each circuit 24 to 28. (See also Figures 3(a) to 3('d)).

これ等の各回路24〜29について説明するが、駆動回
路29は、第3図(d)に示すように。
Each of these circuits 24 to 29 will be explained, and the drive circuit 29 is as shown in FIG. 3(d).

第2比較回路27からの信号F(立ち上り信号)を受け
ないときは前記第1吸気流れ状態となるように両アクチ
ュエータ17.19を駆動し、また第2比較回路z7か
らの信号Fを受けたときに、前記第2吸気流れ状態とな
るように両アクチュエータ17.19を駆動するものと
なっている。また、第1比較回路24と第1基準値設定
回路25とは、第1吸気流れ状態にするか第2吸気流れ
状態にするかの切換を判別するためのもの、すなわち、
基準負荷よりも低負荷であるか高負荷であるかを判別す
るものとなっている。さらに、積分回路26と第2比較
回路27と第2基準値設定回路28とは、低負荷から高
負荷への移行時に、第1吸気流れ状態から第2吸気流れ
状態への切換える際の遅延時間を設定するためのもので
、リセット回路30はこの積分回路z6を初期状態に復
帰させるためのものとなっている。
When it does not receive the signal F (rising signal) from the second comparison circuit 27, it drives both actuators 17 and 19 so as to be in the first intake flow state, and also receives the signal F from the second comparison circuit z7. At times, both actuators 17 and 19 are driven so as to enter the second intake flow state. Further, the first comparison circuit 24 and the first reference value setting circuit 25 are for determining whether to switch to the first intake flow state or the second intake flow state, that is,
It is used to determine whether the load is lower or higher than the reference load. Furthermore, the integration circuit 26, the second comparison circuit 27, and the second reference value setting circuit 28 are configured to control the delay time when switching from the first intake flow state to the second intake flow state at the time of transition from low load to high load. The reset circuit 30 is used to return the integrating circuit z6 to its initial state.

上述のことを前提として、第1比較回路24に吸気圧セ
ンサ23からの吸気圧に応じた信号Aが入力されると、
この吸気圧が第1基準値設定回路25で設定された基準
吸気圧(信号B)よりも大きいか否かが比較される(第
3図(a)参照)。
Assuming the above, when the signal A corresponding to the intake pressure from the intake pressure sensor 23 is input to the first comparison circuit 24,
It is compared whether this intake pressure is larger than the reference intake pressure (signal B) set by the first reference value setting circuit 25 (see FIG. 3(a)).

吸気圧がこの基準吸気圧よりも大きいときは、この大き
い分について信号Cとして出力され(第3図(b)#照
)、積分回路26によってこの信号Cが順次積分されて
いく。この積分回路26によって積分された信号Cは、
信号りとして第2比較回路27に入力され、この積分さ
れた信号りと第2基準値設定回路28からの基準信号E
とが該第2比較回路27によって比較される(第3図(
C)参照)、そして、この第2比較回路27では、積分
回路26からの信号りが基準信号Eよりも大きくなった
時点で、すなわち、積分開始より時間Δtだけ遅れて、
信号Fを前述のように駆動回路29へ出力する。なお、
リセット回路30は、比較回路24からの出力(信号C
)が無くなったとき(低負荷となったとき)、積分回路
26をリセットする。
When the intake pressure is larger than this reference intake pressure, this larger amount is outputted as a signal C (see # in FIG. 3(b)), and this signal C is successively integrated by the integrating circuit 26. The signal C integrated by this integrating circuit 26 is
The integrated signal is input to the second comparison circuit 27 as a signal, and the reference signal E from the second reference value setting circuit 28 is combined with the integrated signal.
are compared by the second comparison circuit 27 (see FIG. 3(
C)), and in this second comparison circuit 27, when the signal from the integration circuit 26 becomes larger than the reference signal E, that is, after a delay of time Δt from the start of integration,
The signal F is outputted to the drive circuit 29 as described above. In addition,
The reset circuit 30 receives the output from the comparison circuit 24 (signal C
) disappears (when the load becomes low), the integrating circuit 26 is reset.

制御回路22についての上述した説明から既に明らかな
ように、吸気圧が基準信号Bよりも小さい低負荷時には
、第2比較回路27から駆動回路29へ信号Fが出力さ
れないので、第1吸気流れ状態とされて、吸気は、冷却
用通路12(吸気冷却器14)を通ることなくすなわち
過冷却を防止されつつ、エンジン本体lへ供給される。
As is already clear from the above description of the control circuit 22, when the intake pressure is lower than the reference signal B and the load is low, the signal F is not output from the second comparator circuit 27 to the drive circuit 29, so that the first intake flow state is Therefore, the intake air is supplied to the engine body 1 without passing through the cooling passage 12 (intake air cooler 14), that is, while being prevented from overcooling.

勿論、この低負荷時には、吸気冷却器による抵抗作用を
受けることがないので、吸気抵抗減少の上でも好ましい
ものとなっている。
Of course, at this low load, there is no resistance effect from the intake air cooler, which is preferable in terms of reducing intake resistance.

また、吸気圧が基準信号Bより大きい高負荷時には、第
2比較回路27から駆動回路29へ信号Fが出力される
ため、前述したように第2吸気流れ状態とされる。これ
により、吸気は、吸気冷却器14により冷却されること
となって、吸気温度の上昇が防止される。そして、この
低負荷から高負荷へ切換わったとしても、前述した遅延
時間ΔEの分だけ第1吸気流れ状態からfiS2吸気流
れ状態への切換えが遅延されるため。過給圧は吸気冷却
器14内を充満させるのに必要なタイムミスを判うこと
なくすみやかに上昇して、加速応答性の優れたものとな
る。
Furthermore, when the intake pressure is higher than the reference signal B and the load is high, the second comparison circuit 27 outputs the signal F to the drive circuit 29, so that the second intake flow state is established as described above. As a result, the intake air is cooled by the intake air cooler 14, and an increase in intake air temperature is prevented. Even if the low load is switched to the high load, the switching from the first intake flow state to the fiS2 intake flow state is delayed by the aforementioned delay time ΔE. The supercharging pressure is quickly increased without the time lapse required to fill the intake air cooler 14, resulting in excellent acceleration response.

以上実施例では、過給機としてターボチャージャを用い
た場合を説明したが、過給機としては、エンジン本体l
により機械的に駆動されるスーパチャージャあるいはコ
ンプレックス等適宜のものが採択し得る。また、開閉弁
20は、加速時において、バイパス通路13を通った吸
気が吸気冷却器14へ向けて逆流するのを防止するため
のものであるので、この開閉弁20に代えて、逆止弁を
用いることもできる、また、エンジン負荷は、スロット
ルバルブ16の開度によって検出するようにしてもよい
In the above embodiments, the case where a turbocharger was used as a supercharger was explained, but as a supercharger, the engine main body l
An appropriate device such as a supercharger or a complex mechanically driven by the power source may be adopted. Furthermore, since the on-off valve 20 is for preventing intake air that has passed through the bypass passage 13 from flowing back toward the intake air cooler 14 during acceleration, a check valve may be used instead of the on-off valve 20. Alternatively, the engine load may be detected by the opening degree of the throttle valve 16.

(発明の効果) 本発明は以上述べたことから明らかなように、低負荷時
の吸気の過冷却および高負荷時の吸気の高温化を防止し
つつ、エンジン加速時の加速応答性を向上させることが
できる。
(Effects of the Invention) As is clear from the above description, the present invention improves acceleration response during engine acceleration while preventing overcooling of the intake air during low loads and increasing the temperature of the intake air during high loads. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体系統図。 第2図は制御回路の詳細を示す回路図。 第3図(a)〜第3図(d)はg2図に示す制御回路の
制御内容を示す図。 1:エンジン本体 11:吸気通路 11a:上流側共通通路 11b:下流側共通通路 12:冷却用通路 13:バイパス通路 14:吸気冷却器 15:過給機 16:゛スロットルバルブ 17: 19:アクチュエータ 18:切換弁 20:開閉弁 22二制御回路 23:吸気圧センサ ’yl’J 2図 第3図
FIG. 1 is an overall system diagram showing one embodiment of the present invention. FIG. 2 is a circuit diagram showing details of the control circuit. FIGS. 3(a) to 3(d) are diagrams showing the control contents of the control circuit shown in FIG. g2. 1: Engine body 11: Intake passage 11a: Upstream common passage 11b: Downstream common passage 12: Cooling passage 13: Bypass passage 14: Intake air cooler 15: Supercharger 16: Throttle valve 17: 19: Actuator 18 :Switching valve 20:Opening/closing valve 222Control circuit 23:Intake pressure sensor 'yl'J Figure 2Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)吸気通路に、過給機が配設されると共に、該過給
機の下流側において、互いに並列に吸気冷却器を備えた
冷却用通路と該吸気冷却器をバイパスするバイパス通路
とが設けられた過給機付エンジンの吸気冷却装置であっ
て、 エンジンの負荷を検出する負荷検出手段と、前記吸気冷
却器の上流側および下流側の冷却用通路を閉じて前記バ
イパス通路を通してエンジンへ吸気を供給させる第1吸
気流れ状態と、前記冷却用通路を通して吸気を供給させ
る第2吸気流れ状態とを切換えるための切換弁装置と、 前記負荷検出手段からの出力を受け、前記切換弁装置を
制御して、低負荷時には前記第1吸気流れ状態にすると
共に、高負荷時には前記第2吸気流れ状態とする切換制
御手段と、 を備え、前記切換制御手段は、前記第1吸気流れ状態か
ら前記第2吸気流れ状態への切換に時間的遅れをもたせ
るための遅延手段を備えている、ことを特徴とする過給
機付エンジンの吸気冷却装置。
(1) A supercharger is disposed in the intake passage, and on the downstream side of the supercharger, a cooling passage equipped with an intake air cooler and a bypass passage that bypasses the intake air cooler are arranged in parallel with each other. The intake air cooling device for a supercharged engine is provided with a load detection means for detecting engine load, and cooling passages on the upstream and downstream sides of the intake air cooler are closed and the cooling passage is passed through the bypass passage to the engine. a switching valve device for switching between a first intake flow state in which intake air is supplied and a second intake flow state in which intake air is supplied through the cooling passage; switching control means for controlling the first intake air flow state when the load is low and switching the intake air flow state from the first intake flow state to the second intake air flow state when the load is high; An intake air cooling device for a supercharged engine, comprising a delay means for causing a time delay in switching to the second intake air flow state.
JP59178421A 1984-08-29 1984-08-29 Intake cooler of engine with supercharger Pending JPS6158917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59178421A JPS6158917A (en) 1984-08-29 1984-08-29 Intake cooler of engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178421A JPS6158917A (en) 1984-08-29 1984-08-29 Intake cooler of engine with supercharger

Publications (1)

Publication Number Publication Date
JPS6158917A true JPS6158917A (en) 1986-03-26

Family

ID=16048203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178421A Pending JPS6158917A (en) 1984-08-29 1984-08-29 Intake cooler of engine with supercharger

Country Status (1)

Country Link
JP (1) JPS6158917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257950B2 (en) * 2005-09-14 2007-08-21 International Engine Intellectual Property Company, Llc Diesel engine charge air cooler bypass passage and method
JP2015074986A (en) * 2013-10-04 2015-04-20 スズキ株式会社 Supercharging system of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7257950B2 (en) * 2005-09-14 2007-08-21 International Engine Intellectual Property Company, Llc Diesel engine charge air cooler bypass passage and method
JP2015074986A (en) * 2013-10-04 2015-04-20 スズキ株式会社 Supercharging system of internal combustion engine

Similar Documents

Publication Publication Date Title
US6227180B1 (en) Control of supercharged internal combustion engine
CN107178417B (en) Exhaust-gas turbocharged internal combustion engine with partial deactivation
US4774812A (en) Turbocharged engine
US10378433B2 (en) Supercharged internal combustion engine with exhaust-gas turbocharging arrangement, and method for operating an internal combustion engine of said type
US9896991B2 (en) Exhaust-gas-turbocharged internal combustion engine having at least two turbines and switchable outlet openings, and method for operating an internal combustion engine of said type
US20110146634A1 (en) Supercharger control device for an internal combustion engine
JP6816833B2 (en) Internal combustion engine and its control method
JPH0472974B2 (en)
JP2006515909A (en) Method for operating an internal combustion engine
JPS6158917A (en) Intake cooler of engine with supercharger
JP3652808B2 (en) Exhaust gas recirculation system for multi-cylinder engine with supercharger
JPS6158918A (en) Intake cooler for engine with supercharger
JPH02112618A (en) Supercharge pressure control device for twin turbo engine
JP2003120430A (en) Egr device
JP2008151006A (en) Control device of turbocharger
JPH03117649A (en) Suction device for internal combustion engine
JPS61277817A (en) Engine equipped with exhaust turbosupercharger
JPH05141256A (en) Control device for turbocharger
JP2535368B2 (en) Engine supercharger
JPH0654093B2 (en) Exhaust turbocharged engine
JPH03260323A (en) Intercooler controller of turbo diesel engine
JPH0529768B2 (en)
JPH03213621A (en) Controller of engine with supercharger
JPH04194318A (en) Suction device for engine
JPS6189929A (en) Intake device of supercharged engine