JPS6158458A - Electric machine provided with permanent magnet - Google Patents

Electric machine provided with permanent magnet

Info

Publication number
JPS6158458A
JPS6158458A JP59178325A JP17832584A JPS6158458A JP S6158458 A JPS6158458 A JP S6158458A JP 59178325 A JP59178325 A JP 59178325A JP 17832584 A JP17832584 A JP 17832584A JP S6158458 A JPS6158458 A JP S6158458A
Authority
JP
Japan
Prior art keywords
permanent magnet
pitch
armature
groove
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59178325A
Other languages
Japanese (ja)
Inventor
Fumio Tajima
文男 田島
Hiroshi Katayama
博 片山
Kunio Miyashita
邦夫 宮下
Teizo Tamura
田村 禎三
Kenichi Hironaka
健一 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59178325A priority Critical patent/JPS6158458A/en
Priority to KR1019850005284A priority patent/KR920000717B1/en
Priority to DE8585109343T priority patent/DE3580624D1/en
Priority to US06/758,699 priority patent/US4672253A/en
Priority to EP85109343A priority patent/EP0169569B1/en
Publication of JPS6158458A publication Critical patent/JPS6158458A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Abstract

PURPOSE:To enable the both pulsating torque and cogging torque to be reduced, by selecting various factors so that the ratio of cogging period to skew pitch of a permanent magnet section or an armature section may be fixed in the desired range. CONSTITUTION:On an electric machine wherein the greatest common divisor between the magnetic pole quantity P of a permanent magnet field magnet section 1 and the quantity m of salient poles 51-53 for windings is not P and wherein auxiliary grooves 8c1-8e3 are provided on the surface of the salient poles 51-53 for the windings, the ratio of the pitch of winding grooves 8a1-8b3 between the magnetic salient poles to the pitch of the auxiliary grooves 8c1-8e3 is shown roughly by integral numbers in the whole circumference. And if the least common multiple between the total number NR of the values and the magnetic pole quantity P of the permanent magnet field magnet section 1 is shown by L, the pitch of 1/L in the whole circumference is regarded as cogging period, and so when the skew pitch is set by 1/L in the whole circumference, various factors are selected so that the value 1/L may come to 0.5/L-1.5/L.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は永久磁石を固定側あるいは移動側のいずれか一
方に具備し次電気機械に関するものである。更に詳しく
は、突極の両側にあり巻線を施こす主溝の外に補助溝を
有する電気機械に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electric machine equipped with a permanent magnet on either the fixed side or the movable side. More particularly, it relates to an electric machine having auxiliary grooves in addition to the main grooves on both sides of the salient poles in which windings are carried out.

本発明の電気機械の概念には、電動機や発電機を含むも
のであり、更に移動側が固定側に対して回転するものや
直線方向に移動するものをも含む。
The concept of the electric machine of the present invention includes electric motors and generators, and also includes those in which the movable side rotates relative to the fixed side and those that move in a linear direction.

〔発明の背景〕[Background of the invention]

突極磁極を備えた電気機械、例えばブラシレスと〜′ 分が一定でないととによって生じる脈動トルクとが存在
する。
There are pulsating torques caused by electrical machines with salient poles, for example brushless and with non-constant .

前者のコギングトルクを低減するために、突極磁極表面
に補助+4を等間隔に配し、コギングトルクの次数を高
めることが実開昭50−32502号公報に記載されて
いる。
In order to reduce the former cogging torque, Japanese Utility Model Application No. 50-32502 discloses that auxiliary +4s are arranged at equal intervals on the surface of the salient magnetic pole to increase the order of the cogging torque.

後者の脈動トルクを低減するには、突極あるいは永久磁
石を1スロット角分だけスキューし、巻線用溝の影響を
全周に渡って均一化すればよいことが知られている。こ
の脈動トルクはスキュー角にほぼ比例して変動するので
、スキュー角をできるだけ小さくすることが望まれる。
In order to reduce the latter pulsating torque, it is known that the salient poles or permanent magnets can be skewed by one slot angle to equalize the influence of the winding groove over the entire circumference. Since this pulsating torque changes approximately in proportion to the skew angle, it is desirable to make the skew angle as small as possible.

この観点から改良を加えたものとして特開昭56−15
3961号公報記載のものがある。
Unexamined Japanese Patent Publication No. 56-15 has been improved from this point of view.
There is one described in No. 3961.

これは、突極磁極の表面に巻線用の主溝と磁気的に当価
な補助溝を等間隔に設け、前記スキュー角を前記溝間隔
に合わせたものである。
In this method, main grooves for winding and magnetically equivalent auxiliary grooves are provided at equal intervals on the surface of a salient magnetic pole, and the skew angle is adjusted to match the groove spacing.

一方、我々発明者は、磁極数Pと巻線用突極数mの最大
公約数がPと異なり、かつ突極表面に補助溝を有する電
気機械のスキュー角について種々検討した結果、この種
電気機械においては、スキュー角を必ずしも溝間隔に合
わせる必要はなく、むしろ、スキュー角は溝間隔よシも
小さなものの方が性能的に有利であることがわかった。
On the other hand, we inventors have conducted various studies on the skew angle of an electric machine in which the greatest common divisor of the number of magnetic poles P and the number m of salient poles for winding is different from P, and which has auxiliary grooves on the surface of the salient poles. It has been found that in machines, it is not necessary to match the skew angle to the groove spacing; in fact, it is more advantageous in terms of performance if the skew angle is smaller than the groove spacing.

〔発明の目的〕[Purpose of the invention]

本発明は、補助溝を備えた電気機械において、スキュー
角を適正に選定することによって、コギングトルクと脈
動トルクの両者を減少することを目的とするものである
The present invention aims to reduce both cogging torque and pulsating torque in electrical machines with auxiliary grooves by appropriately selecting the skew angle.

〔発明の概要〕[Summary of the invention]

本発明は、永久磁石磁極Pと巻線用突極mの最大公約数
が、永久磁石磁極Pと異なる回転電機であって、かつ、
巻線用突極の表面に補助溝を設けた電気機械において、
スキュー角を次のように特定したものである。コギング
トルク低減のための最小のスキュー角が巻線用突極間の
溝と補助溝と゛のピッチの比を全周にわたって大略整数
化し、Mt 、Mz 、M3・・・Mlとしたとき、そ
の総和りとしたとき、全周の1/Lのピッチがコギング
周期となる。そこでスキュー角のピッチを巻線用溝、補
助溝のピッチより小さく、すなわち永久磁石磁極部もし
くは電機子部のスキューピッチを全周の1/Sとしたと
き、0.5/L<8<1.5/Lに選定したこと全特徴
とする。この選定によってコギングトルク、脈動トルク
の十分率さな磁石モータを提供するものである。
The present invention provides a rotating electrical machine in which the greatest common divisor of the permanent magnet magnetic pole P and the winding salient pole m is different from the permanent magnet magnetic pole P, and
In electrical machines with auxiliary grooves on the surface of the winding salient poles,
The skew angle is specified as follows. The minimum skew angle for reducing cogging torque is the sum of the ratios of the pitches of the grooves between the winding salient poles and the auxiliary grooves over the entire circumference and Mt, Mz, M3...Ml. Then, the pitch of 1/L of the entire circumference becomes the cogging period. Therefore, when the pitch of the skew angle is smaller than the pitch of the winding groove and the auxiliary groove, that is, the skew pitch of the permanent magnet pole part or armature part is 1/S of the total circumference, 0.5/L<8<1 The selection of .5/L is a full feature. This selection provides a magnet motor with sufficient cogging torque and pulsating torque.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の原理を図によシ説明する。 Hereinafter, the principle of the present invention will be explained with reference to the drawings.

第2図は本発明の対象の一つである電動機の断面構造で
ある。図において、移動側すなわち回転子となる永久磁
石界磁部lは4極に着磁されたリング状永久磁石2とヨ
ーク部3とで構成される。
FIG. 2 shows a cross-sectional structure of an electric motor, which is one of the objects of the present invention. In the figure, the moving side, that is, the permanent magnet field section 1 serving as the rotor is composed of a ring-shaped permanent magnet 2 magnetized into four poles and a yoke section 3.

回転側すなわち電機子4は巻線用突!51,52゜53
と補助突極61,62.53とで構成し、巻線用突極5
1,52.53にはそれぞれ電機子巻線71,72.7
3が巻回されている。ここでは、いわゆる永久磁石2の
極数と巻線用突極の数はそれぞれ4と3でその最大公約
数が永久磁石の極数と)異なる構成のものを対象とする
。本電動機は、ブラシレスモータの場合、電機子巻線7
1,72゜73への通電を回転子1の位置に応じて順次
切シ替えて連続的な回転力を得る。
The rotating side, that is, the armature 4 is for winding! 51,52゜53
and auxiliary salient poles 61, 62.53, and the winding salient pole 5
1, 52.53 have armature windings 71, 72.7, respectively.
3 is wound. Here, the object is a structure in which the number of poles of the so-called permanent magnet 2 and the number of salient poles for winding are 4 and 3, respectively, and the greatest common divisor thereof is different from the number of poles of the permanent magnet. If this electric motor is a brushless motor, the armature winding 7
1,72° 73 is sequentially switched depending on the position of the rotor 1 to obtain continuous rotational force.

8al * 8bt l 8a2 * ab2j 8a
318b3は突極磁極間に位置する巻線用の溝であり、
また、永久磁石磁極2と対向する巻線用突極51゜52
.53の外表面にはそれぞれ巻線用溝とほぼ同じ磁気パ
ーミアンスを有する補助溝8C1゜8(11,8et 
l 8Cz l 8d2 # 8eZ *8c3.8d
3.8e3が設けられ、これらは巻線用の溝を含めてほ
ぼ等間隔に配置する。
8al * 8bt l 8a2 * ab2j 8a
318b3 is a winding groove located between salient magnetic poles;
In addition, salient poles 51° 52 for winding facing the permanent magnet magnetic pole 2
.. Auxiliary grooves 8C1°8 (11,8 et
l 8Cz l 8d2 # 8eZ *8c3.8d
3.8e3 are provided and these are arranged at approximately equal intervals including the grooves for the windings.

以下、この槌電動機のコギングトルク発生の原3!l!
を第3図に示す。第3図は第2図を周方向に展開して示
した。
Below are the reasons for the cogging torque generation of this mallet motor! l!
is shown in Figure 3. FIG. 3 shows FIG. 2 expanded in the circumferential direction.

一般にコギングトルクは、永久磁石磁極2の移動に伴な
って空隙部9内の磁気エネルギーが変化することによっ
て引起こされる。この磁気エネルギーの変動の要因は、
巻線用の溝ならびに補助溝にある。
Generally, cogging torque is caused by a change in magnetic energy within the gap 9 as the permanent magnet pole 2 moves. The cause of this variation in magnetic energy is
Located in the winding groove and auxiliary groove.

第3図において(a)は永久磁石磁極、(b)は電機子
の周方向展開図、(C)は空隙磁束密度を示す。空隙磁
束密度は一般に台形状でおるが、ここでは基本渡分のみ
を示す。この図において便宜上、実際とは逆に電機子部
4の方が動くものとして考えを進める。
In FIG. 3, (a) shows the permanent magnet magnetic poles, (b) shows a developed view of the armature in the circumferential direction, and (c) shows the air gap magnetic flux density. Although the air gap magnetic flux density generally has a trapezoidal shape, only the basic distribution is shown here. In this figure, for convenience, we will proceed assuming that the armature section 4 moves, contrary to the actual situation.

図において、コギングトルクは一般に次式で表わされる
In the figure, cogging torque is generally expressed by the following equation.

ここで θ:永久磁石磁極に対する電機子部の移動角 E(の:空隙全体の磁気エネルギー 一方、空隙中の任意の角度ψでの微小体格d。Here, θ: Movement angle of the armature with respect to the permanent magnet poles E(: Magnetic energy of the entire air gap On the other hand, the microbody d at any angle ψ in the void.

当シの磁気エネルギーΔE(θ)は、 ”KIB ! (ψ、θ)・dψ  ・・・・・・・・
・(2)ここで μ0  :空気の透磁率 B、(ψ、θ):空隙の磁束密度 Kl  :定数 し[って空隙全体の磁気エネルギーE(θ)は、ここで
、P:永久磁石磁極数 一般に溝がない場合の空隙磁束密度B(ψ)は、高調波
成分に分解され、次式で表わされる。
The magnetic energy ΔE (θ) of this is “KIB! (ψ, θ)・dψ ・・・・・・・・・
・(2) Here, μ0: Magnetic permeability of air B, (ψ, θ): Magnetic flux density of air gap Kl: Constant In general, the air gap magnetic flux density B (ψ) in the case where there is no groove is decomposed into harmonic components and is expressed by the following equation.

ここで B、二B(ψ)の高調波のピーク値また、空隙
部にはエネルギー関数S(ψ)として次式を定義する。
Here, the peak value of the harmonic of B, 2B (ψ), and the following equation is defined as the energy function S (ψ) in the gap.

S(ψ)=82(ψ) = Σ S、(ψン a@1 =Σ(Km + S mm5112nψ)  ・(5)
ローl ここで S工(ψ):S(ψ)の高調渡分に、(ψ):
S、(ψ)の直流分 s、、   :Sm(ψ)の高調波のピーク値 ここで、巻線用の溝、補助溝の磁束密度に対する影響は
、溝部上の磁束密度が減少するかもしくは零にすると考
えられる。そこで、溝部の位置のみ単位とする以下の関
数を定義する(第3図(d)に示す)。
S (ψ) = 82 (ψ) = Σ S, (ψ a@1 = Σ (Km + S mm5112nψ) ・(5)
Roll l Here, S engineering (ψ): In the harmonic division of S (ψ), (ψ):
DC component of S, (ψ), s, : Peak value of harmonic of Sm (ψ) Here, the influence of the winding groove and auxiliary groove on the magnetic flux density is that the magnetic flux density on the groove part decreases or It is possible to set it to zero. Therefore, the following function is defined using only the position of the groove as a unit (shown in FIG. 3(d)).

・・・・・・(6) Ox(−+、−<X ここで W:溝幅 以上の関数を使うことによって溝の存在は以下のus(
θ)で表示できる。
......(6) Ox(-+,-<X where W: By using a function greater than or equal to the groove width, the existence of the groove can be expressed as the following us(
It can be displayed as θ).

u、(θ)=U(θ+αt)+u(θ+α2)・・・U
(θ+αn・)7  =Σ U(θ+α駒    ・・
・・・・・・・(7)+I饋1 ここで、C1lα2・・・αIl:溝位置溝位置溝数 従って溝を含めた磁束密度の分布は Bバ ψ、 θ )=’(x−ut(θ) )B (ψ
)   −C8)(8)式を(3)式に代入すると E(θ)=Kt J’ (1−ut (θ))”B” 
(9+) dψ・・・・・・・・・(9) ここで(9)式の第1項はθの関数にならないため(1
)式よシ明らかにコギングトルクに影響を与えない。し
たがってコギングトルクは ここでS(ψ)は溝の影響がない場合のエネルギー関係
を示し、その基本波、第3調波、第15調波分について
は第3図(c)、 (f)、 (g)に示す。
u, (θ) = U (θ + αt) + u (θ + α2)...U
(θ+αn・)7 = Σ U(θ+α piece...
・・・・・・・・・(7)+I饋1 Here, C1lα2...αIl: Groove position Groove position Groove number Therefore, the distribution of magnetic flux density including the grooves is B bar ψ, θ)='(x-ut (θ) )B (ψ
) -C8) Substituting equation (8) into equation (3) gives E(θ)=Kt J' (1-ut (θ))"B"
(9+) dψ・・・・・・(9) Here, since the first term of equation (9) is not a function of θ, (1
) formula obviously has no effect on cogging torque. Therefore, the cogging torque is S (ψ) where S (ψ) indicates the energy relationship when there is no influence of the groove, and the fundamental wave, 3rd harmonic, and 15th harmonic are shown in Fig. 3 (c), (f), Shown in (g).

上記の定義から、次式が導びかれる。From the above definition, the following equation is derived.

・・・・・・・・・(11) 上式JJ、コギングトルクは各調波成分に分解すること
ができる。このことはコギングトルクの各調波分は、同
じ調波のエネルギー関数の溝位置部の値の和の変動で与
えうれることを示す。
(11) In the above equation JJ, the cogging torque can be decomposed into each harmonic component. This shows that each harmonic component of the cogging torque can be given by a variation in the sum of the groove position values of the energy function of the same harmonic.

たとえば、エネルギー分布の基本波に起因するコギング
トルクについて考えると、第3図(e)で示すように各
溝位置での値はそれぞれ、S11+ S1□。
For example, considering the cogging torque caused by the fundamental wave of the energy distribution, the value at each groove position is S11+S1□, as shown in FIG. 3(e).

813・・・5laffとなり(図中矢印で示す)、そ
の総和に関しては、溝線数1:5で等間隔に配置されて
いる場合、θの関数にならないで一定である。従ってコ
ギングトルクは零で心る。同様にエネルギー関数の第2
調波〜第14調波に至るまで、その総和は零である。し
かし、第15次調波について= n a S atss
in 2.15 (θ+αl)ただし、α1=48°α
2=96°・・・・・・とな9、θの関数になってコギ
ングトルクを生じる。このことは第3図(g)よp明ら
かなように第15調波の溝位置部は全て同相となり、θ
の関数になる。
813...5laff (indicated by arrows in the figure), and the total sum is constant, not a function of θ, when the grooves are arranged at equal intervals with a ratio of 1:5. Therefore, the cogging torque should be set to zero. Similarly, the second energy function
From the harmonics to the 14th harmonic, the sum is zero. However, for the 15th harmonic = na S atss
in 2.15 (θ+αl) However, α1=48°α
2=96°...9, which becomes a function of θ and produces cogging torque. As is clear from Fig. 3(g), all groove positions of the 15th harmonic are in phase, and θ
becomes a function of

以上の結果よシコギングトルクの周波数は15X4=6
0で求められる。このコギングトルクのピッチ1/S=
1/60は、明らかに溝ピッチ1/15より小である。
As a result of the above, the frequency of shogging torque is 15X4=6
It can be found as 0. Pitch 1/S of this cogging torque =
1/60 is clearly smaller than the groove pitch of 1/15.

従ってスキューのピッチを1/60にすることによって
、従¥1/15よυも小に1スキユーピツチで同じ効果
を得ることができる。スキューピッチを小さく選定しう
ろことによって脈動トルクも低減しうる。
Therefore, by reducing the skew pitch to 1/60, the same effect can be obtained with one skew pitch smaller than 1/15. Pulsating torque can also be reduced by selecting a small skew pitch.

一般に永久磁石磁極数がPで、溝数の合計nαが同じピ
ッチで溝配貨の場合、コギングトルクを引き起こすエネ
ルギー関数の次数nは、第3図(g)ニジ、 Pπ   Krc na       n 従って n=□・K K;任意の整数 (ただし、nを整数にでき る値) よって1回転のコギング数nrc  はH7(=H*p
 ==(−K) ++p()内は整数 以上の式はnτCは溝数nαと永久磁石磁極数Pの最小
公倍数であることを示している。
In general, when the number of permanent magnet poles is P and the total number of grooves nα is the same pitch and groove distribution, the order n of the energy function that causes cogging torque is as shown in Fig. 3 (g), Pπ Krc na n Therefore, n= □・K K: Any integer (however, n can be an integer) Therefore, the cogging number nrc for one revolution is H7 (=H*p
==(-K) ++p() The expression in which the numbers in parentheses are integers or more indicates that nτC is the least common multiple of the number of grooves nα and the number of permanent magnet magnetic poles P.

従ってコギング周波数nTe  は、naより犬である
。最小限必要なスキューのピッチSはコギングトルクを
起すエネルギー関数の高調波次数nのピッチ1/Lにと
れば良い。従って、このスキュー角の選定によって従来
スキューピッチ1 / n aよpも小さく選定できる
ため脈動トルク成分が小さくできる。
Therefore, the cogging frequency nTe is higher than na. The minimum necessary skew pitch S may be set to the pitch 1/L of the harmonic order n of the energy function that causes cogging torque. Therefore, by selecting this skew angle, the conventional skew pitch 1/nayp can also be selected to be small, so that the pulsating torque component can be made small.

以上のことをまとめると永久磁石界磁もしくは電機子の
スキューピッチ1/Sは溝の総数にと永久磁石磁極数P
の最大公倍数りの値の逆数のピッチ1/Lとほぼ等しく
した場合に、最小のスキュー角で、コギングトルクが最
も低減し得る。一方スキュー角は、単に両者が一致した
場合のみでなく、一般に0.5 / L < 1 / 
8 (1,5/ Lにあれば、効果が生じる。第1図に
本発明の一実施例の要部構成を示す。溝本数na=15
、永久磁石磁極数4でスキュー角のピッチは、全周の1
760に選定でき、溝間隔1/15より小となっている
To summarize the above, the skew pitch 1/S of the permanent magnet field or armature is the total number of grooves and the number of permanent magnet poles P.
The cogging torque can be reduced the most at the minimum skew angle when the pitch is approximately equal to the pitch 1/L of the reciprocal of the value of the greatest common multiple of . On the other hand, the skew angle is not only when the two match, but generally 0.5/L < 1/
8 (If it is 1,5/L, the effect will be produced. Fig. 1 shows the main part configuration of an embodiment of the present invention. Number of grooves na = 15
, the number of permanent magnet magnetic poles is 4, and the pitch of the skew angle is 1 of the entire circumference.
760, and the groove spacing is smaller than 1/15.

本発明の他の実施例を第4図に示す。図において、i・
ili助溝部のピッチと溝数以外は、第1図と同じ構成
である。第4図を周方向に展開した原理説明図を第5図
に示す。ここで、巻線用溝8a1゜31)l  、8a
2 +  8bz 、8a3.8ba と、補助ン1’
48  c 1   r  act、   l  8c
z  l   na2  、  3c3  。
Another embodiment of the invention is shown in FIG. In the figure, i.
The configuration is the same as in FIG. 1 except for the pitch and number of grooves of the auxiliary grooves. FIG. 5 shows a principle explanatory diagram expanded from FIG. 4 in the circumferential direction. Here, the winding groove 8a1゜31)l, 8a
2 + 8bz, 8a3.8ba and auxiliary 1'
48 c 1 r act, l 8c
z l na2, 3c3.

8d、のピッチは第5図(d)の溝位置の関数とじて示
す。
The pitch of 8d is shown as a function of groove position in FIG. 5(d).

第4図記載の電動機構成は第1図のものとは異な9、溝
間隔は均等には設けられていないが、コギング発生の原
理は同一でおる。以下、エネルキー関数の各高調波次数
に対して溝位置部の和を算出すると、 基本渡分(第5図(C)) Σ8tsin2(θ+a、 ) = constl1l
l 但し、α1〜α1□は第5図(d)で示す溝位置である
Although the motor configuration shown in FIG. 4 is different from that shown in FIG. 1, and the grooves are not spaced evenly, the principle of cogging is the same. Below, when the sum of the groove positions is calculated for each harmonic order of the energy key function, the basic distribution (Figure 5 (C)) Σ8tsin2(θ+a, ) = constl1l
l However, α1 to α1□ are the groove positions shown in FIG. 5(d).

同様に第2〜第5高調波に対する値は零となる(第3次
については第5図(0で示すようにV4υの溝位置と1
80度異なる位置にあるため明らかに総和は一定)。
Similarly, the values for the 2nd to 5th harmonics are zero (for the 3rd harmonic, see Figure 5 (as shown by 0, the groove position of V4υ and 1
Since they are at 80 degrees different positions, the sum is obviously constant).

一方第6次高調波については 第6次調波(第5図(f)) Σ51sin16 (θ+am) =125tsin 2.6 (θ+α1 ) 4 CO
n S’ を従ってコギングトルクの周波数は高調波次
数6と極数4の積で24となり、全周1/24のピッチ
でスキューすれば良い。このことは、溝ピッチ60:3
0:120:30:・・・・・・・・・:30を概略整
数化して2:1:4:1:・・・・・・・・・=1とし
た場合、その値は24となり、この値と極数の最小公倍
数24がコギング周波数とな9、このピッチに応じてス
キューすれば良い。一般には、溝ピッチがα1 :α2
 :・・・・・・・・・:α、で現わされる場合、その
大略整数化を行なって、Mt r Mz + Ms・・
・・・・・・・M、としたとき、その総和Nm=ΣMn
  と永久磁石磁極Pの最小公倍数りの周期でスキュー
を行なうことが良い。
On the other hand, regarding the 6th harmonic, the 6th harmonic (Fig. 5(f)) Σ51 sin16 (θ+am) = 125tsin 2.6 (θ+α1) 4 CO
Therefore, the frequency of the cogging torque is 24, which is the product of the harmonic order 6 and the number of poles 4, and it is sufficient to skew at a pitch of 1/24 all around the circumference. This means that the groove pitch is 60:3.
If 0:120:30:・・・・・・・・・:30 is roughly converted into an integer and set to 2:1:4:1:・・・・・・・・・=1, the value will be 24. , the least common multiple of this value and the number of poles, 24, is the cogging frequency9, and it is sufficient to skew according to this pitch. Generally, the groove pitch is α1:α2
:・・・・・・・・・:When expressed as α, convert it into an approximate integer and get Mt r Mz + Ms...
......M, the total sum Nm=ΣMn
It is preferable to perform the skewing at a period equal to the least common multiple of the permanent magnet magnetic poles P.

以上、二つの例で示したが本発明の思想は以上の例のみ
に限定されるものではなく極数、溝数、溝間隔等が変わ
った場合あるいは補助突極の有無にかかわらず有効であ
る。特に本発明では、溝位置に不等間隔に配置した場合
にも同様な作用、効果が得られるものである。
Although the two examples above have been shown, the idea of the present invention is not limited to the above examples, but is effective even when the number of poles, the number of grooves, the groove spacing, etc. are changed, or whether or not there are auxiliary salient poles. . In particular, according to the present invention, similar actions and effects can be obtained even when the grooves are arranged at uneven intervals in the groove positions.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、スキュー角を最小
適正に選定することにより、コギングトルクと脈動トル
クの両者を減少することができ、非常に高性能な電気機
械を提供することができる。
As described above, according to the present invention, by selecting the minimum appropriate skew angle, both cogging torque and pulsating torque can be reduced, and an extremely high-performance electric machine can be provided. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す要部の展開断面図、第
2図は本発明対象のン°ラシレスモータの要部断面図、
第3図はコギングトルクの発生KW説明図、第4図は他
の実施例を示す要部断面図、第5図は第4図に示した例
の原理説明図を示すものである。 1・・・永久磁石界磁部、2・・・永久磁石、3・・・
ヨーク部、4・・・電機子、51,52.53・・・巻
線用突極、61.62.63・・・補助突極、71゜7
2.73− %、機子巻線、8a1+ 8az + 8
a’3 l8bt +sb2.sb、・・・巻線用溝、
8c4.8c2 。 躬 l 口
FIG. 1 is a developed cross-sectional view of the main parts showing an embodiment of the present invention, FIG. 2 is a cross-sectional view of the main parts of a brushless motor to which the present invention is applied,
FIG. 3 is a diagram illustrating the generation KW of cogging torque, FIG. 4 is a sectional view of a main part showing another embodiment, and FIG. 5 is a diagram illustrating the principle of the example shown in FIG. 4. 1... Permanent magnet field part, 2... Permanent magnet, 3...
Yoke part, 4... Armature, 51, 52.53... Salient pole for winding, 61.62.63... Auxiliary salient pole, 71°7
2.73-%, machine winding, 8a1+8az+8
a'3 l8bt +sb2. sb, ... winding groove,
8c4.8c2.謬 l 口

Claims (1)

【特許請求の範囲】 1、P個の磁極を持つ永久磁石界磁部と、突極の総ても
しくは一部にm個の電機子巻線を備えた突極磁極で構成
した電機子部とからなり、前記永久磁石磁極Pと電機子
巻線を備えた巻線用突極mの最大公約数がPと異なる構
成のものであつて、かつ、突極磁極表面に補助溝を有し
、上記永久磁石界磁部もしくは電機子部のいずれか一方
が他方に対して相対移動するものにおいて、前記、突極
磁極間の巻線用の溝と補助溝とのピッチの比を全周にわ
たつて大略整数化し、M_1、M_2、M_3・・・M
_n_a(na:溝の総数)とした時、その総和N_R
=Σ^n^a_R_=_1M_Rと永久磁石磁極Pの最
小公倍数をLとし、永久磁石界磁もしくは電機子のスキ
ューピッチを全周の1/Sとした時、0.5/L<1/
S<1.5/Lに選定したことを特徴とする永久磁石を
備えた電気機械。 2、前記特許請求の範囲第1項記載のものにおいてN_
RとPの最小公倍数をLとし、永久磁石界磁部もしくは
電機子部のスキューピッチを全周の1/Sとした時、1
/Sと1/Lの値を一致させたことを特徴とする永久磁
石を備えた電気機械。
[Claims] 1. A permanent magnet field part having P magnetic poles, and an armature part composed of salient magnetic poles having m armature windings on all or part of the salient poles. The permanent magnet pole P and the winding salient pole m having the armature winding have a structure in which the greatest common divisor is different from P, and the salient pole has an auxiliary groove on the surface, In one in which either the permanent magnet field part or the armature part moves relative to the other, the pitch ratio between the winding groove and the auxiliary groove between the salient magnetic poles is adjusted over the entire circumference. Roughly convert it into integers, M_1, M_2, M_3...M
When _n_a (na: total number of grooves), the total sum N_R
=Σ^n^a_R_=_1 When the least common multiple of M_R and permanent magnet pole P is L, and the skew pitch of the permanent magnet field or armature is 1/S of the entire circumference, 0.5/L<1/
An electric machine equipped with a permanent magnet, characterized in that S<1.5/L. 2. In the thing described in claim 1 above, N_
When the least common multiple of R and P is L, and the skew pitch of the permanent magnet field part or armature part is 1/S of the entire circumference, then 1
An electric machine equipped with a permanent magnet, characterized in that /S and 1/L have the same value.
JP59178325A 1984-07-25 1984-08-29 Electric machine provided with permanent magnet Pending JPS6158458A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59178325A JPS6158458A (en) 1984-08-29 1984-08-29 Electric machine provided with permanent magnet
KR1019850005284A KR920000717B1 (en) 1984-07-25 1985-07-24 Brushless motor
DE8585109343T DE3580624D1 (en) 1984-07-25 1985-07-25 ELECTRIC MACHINE WITH PERMANENT MAGNET.
US06/758,699 US4672253A (en) 1984-07-25 1985-07-25 Permanent magnet electrical machine with reduced cogging
EP85109343A EP0169569B1 (en) 1984-07-25 1985-07-25 Permanent magnet electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178325A JPS6158458A (en) 1984-08-29 1984-08-29 Electric machine provided with permanent magnet

Publications (1)

Publication Number Publication Date
JPS6158458A true JPS6158458A (en) 1986-03-25

Family

ID=16046508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178325A Pending JPS6158458A (en) 1984-07-25 1984-08-29 Electric machine provided with permanent magnet

Country Status (1)

Country Link
JP (1) JPS6158458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171151A (en) * 1987-01-07 1988-07-14 Tamagawa Seiki Co Ltd Brushless dc motor
US6784590B2 (en) * 2001-03-30 2004-08-31 Japan Servo Co., Ltd. Permanent magnet motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171151A (en) * 1987-01-07 1988-07-14 Tamagawa Seiki Co Ltd Brushless dc motor
US6784590B2 (en) * 2001-03-30 2004-08-31 Japan Servo Co., Ltd. Permanent magnet motor

Similar Documents

Publication Publication Date Title
JP4089527B2 (en) Permanent magnet rotating electric machine
US6211595B1 (en) Armature structure of toroidal winding type rotating electric machine
JPS6341307B2 (en)
JPH06261509A (en) Reluctance rotating machine
Gundogdu et al. Design of permanent magnet machines with different rotor type
JPH07336967A (en) Axial-direction air-gap synchronous motor
CN113890289B (en) Design method of multi-magnetomotive permanent magnet array and flux reversal motor
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
JPS6223536B2 (en)
CN111446830B (en) Double-stator tangential excitation magnetic field modulation motor
US20040140731A1 (en) Rotating electrical machine for vehicle
JPS6158458A (en) Electric machine provided with permanent magnet
JP3350971B2 (en) PM type vernier motor
JPH0681463B2 (en) Rotating electric machine
JP2598770Y2 (en) Rotating electric machine
Harris et al. Electric motors with heteropolar permanent magnets and homopolar windings: computational study of performance limits
Huang et al. Analysis and reduction of cogging torque in dual PM Vernier machine with irregular split teeth
JPH0345140A (en) Permanent magnet moving body
JP7114005B1 (en) Rotating electric machine
EP4329152A1 (en) Rotor
JPS6212358A (en) Motor
JPH034133Y2 (en)
Liu et al. Influence of design parameters on performance of PM AC motors with fractional-slot windings
JPH0398449A (en) Rotary electric machine
JPS6223535B2 (en)