JPS6158245B2 - - Google Patents

Info

Publication number
JPS6158245B2
JPS6158245B2 JP1108879A JP1108879A JPS6158245B2 JP S6158245 B2 JPS6158245 B2 JP S6158245B2 JP 1108879 A JP1108879 A JP 1108879A JP 1108879 A JP1108879 A JP 1108879A JP S6158245 B2 JPS6158245 B2 JP S6158245B2
Authority
JP
Japan
Prior art keywords
helical groove
shank
groove
chips
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1108879A
Other languages
Japanese (ja)
Other versions
JPS55106710A (en
Inventor
Toshiaki Hosoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1108879A priority Critical patent/JPS55106710A/en
Publication of JPS55106710A publication Critical patent/JPS55106710A/en
Publication of JPS6158245B2 publication Critical patent/JPS6158245B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はドリルのねじり剛性を高めて切削中の
振動を防止すると共に切屑の排出がなめらかに行
なわれるようにしたドリルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drill that has increased torsional rigidity to prevent vibration during cutting and to smoothly discharge chips.

従来のドリルは、ねじれ溝を刃先部からシヤン
クの基部まで一様に形成してあり、このためねじ
れ溝によるシヤンクの横断面積の減少でねじり剛
性が弱く、切削中とくに高送り切削のばあいのよ
うに負荷が大きくなると振動が発生しやすいとい
う欠点があつた。またねじれ溝の深さ、即ちドリ
ルの芯厚を変化させることも提案されているが、
その変化量はシヤンクの長さ100mm当り1mm程度
シヤンクの基部に近づくほど芯厚を厚くするもの
であり、この程度ではねじり剛性を高める効果は
ごくわずかである。とくに芯厚を厚くすることは
シヤンクの横断面における中心部の面積を増加さ
せるにすぎず、極二次モーメントの増加はわずか
であるから、ねじりモーメントに寄与するところ
は小さい。また、刃先部で形成された切屑はねじ
れ溝に沿つて上昇し、排出されるが、ねじれ溝を
徐々に浅く形成しているばあいには切屑が上昇中
に加工孔内面やねじれ溝内面に押されて大きな移
動抵抗が発生し、切屑の排出が阻害されるという
問題がある。
Conventional drills have a helical groove uniformly formed from the cutting edge to the base of the shank, and as a result, the cross-sectional area of the shank is reduced by the helical groove, resulting in weak torsional rigidity, especially during high-feed cutting. The disadvantage was that vibrations were likely to occur when the load became large. It has also been proposed to change the depth of the helical groove, that is, the core thickness of the drill.
The amount of change is approximately 1 mm per 100 mm of shank length, which increases the core thickness as it approaches the base of the shank, and at this level, the effect of increasing torsional rigidity is negligible. In particular, increasing the core thickness only increases the area of the center in the cross section of the shank, and since the increase in the polar moment of inertia is small, the contribution to the torsional moment is small. In addition, chips formed at the cutting edge rise along the helical groove and are discharged, but if the helical groove is formed gradually shallower, the chips will flow onto the inner surface of the machined hole or the inner surface of the helical groove while rising. There is a problem in that a large movement resistance is generated due to being pushed, and the evacuation of chips is obstructed.

本発明はこのような点に鑑み、ねじれ溝の形状
を改良することによつてねじり剛性を飛躍的に向
上させると共に切屑の排出がなめらかに行なわれ
るようにしたものである。
In view of these points, the present invention dramatically improves the torsional rigidity by improving the shape of the helical groove, and also enables smooth discharge of chips.

以下、本発明の実施例を図面によつて説明す
る。第1図および第2図において、1はシヤン
ク、2はシヤンクに形成されたねじれ溝、3,3
は一対の切刃を有するチツプである。ドリルの頭
部は円錐状で、その頂点となる中心点11を始端
として互いに点対称の切刃が形成されている。こ
の切刃は、底面視において回転方向に凸なる曲線
をなし、かつ外周部から中心部に近づくほど曲率
が大きくなるような渦巻き状の曲線にしている。
このような切刃形状を採用すると、切屑は外周部
に比べて中心部が薄くなり、切削抵抗も小さく、
また切屑も切刃に圧着されることがないためにス
ムースに排出される。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, 1 is a shank, 2 is a twisted groove formed in the shank, 3, 3
is a chip with a pair of cutting edges. The head of the drill is conical and has cutting edges that are symmetrical to each other with a starting point at a center point 11 serving as the apex. The cutting edge has a curve that is convex in the rotational direction when viewed from the bottom, and is a spiral curve whose curvature increases as it approaches the center from the outer periphery.
When such a cutting edge shape is adopted, the chips are thinner at the center than at the outer periphery, and the cutting resistance is also small.
In addition, chips are not pressed against the cutting blade, so they are smoothly discharged.

ねじれ溝2はシヤンクに沿つて螺旋状に形成さ
れているが、その横断面形状はシヤンクに沿つて
一定ではなく、側面図では第1図に稜線6で示す
ようにねじれ溝の開口部の幅が徐々に狭くなるよ
うに形成されている。従来の均一形状のねじれ溝
では、第1図仮想線7で示すようにねじれ溝の開
口部の幅は一定である。一方、本発明ではねじれ
溝の深さはシヤンクの基部に向つて徐々に深くな
つている。
The helical groove 2 is formed in a spiral along the shank, but its cross-sectional shape is not constant along the shank, and in the side view, the width of the opening of the helical groove is shown by the ridge line 6 in Fig. 1. is formed so that it gradually becomes narrower. In a conventional helical groove having a uniform shape, the width of the opening of the helical groove is constant, as shown by the imaginary line 7 in FIG. On the other hand, in the present invention, the depth of the helical groove becomes gradually deeper toward the base of the shank.

また第2図によつて説明すると、刃先部では回
転方向後方の壁50は刃先の曲線とほぼ一致して
いるが、シヤンクの基部に向うに従つてこの壁が
仮想線51,52,53,54で示すように徐々
に前方に変位し、回転方向前方の壁40が曲線4
に示すようにわずかに曲率は小さくなるが、全体
としてはねじれ溝の横断面積は減少する。即ち、
第3図に示すように、ねじれ溝2の横断面積は刃
先部からシヤンクの基部に向つて徐々に狭くな
る。
Further, referring to FIG. 2, the wall 50 at the rear in the direction of rotation at the cutting edge almost coincides with the curve of the cutting edge, but as you move toward the base of the shank, the wall 50 curves along imaginary lines 51, 52, 53, As shown at 54, the wall 40 at the front in the rotational direction is gradually displaced forward, and the wall 40 at the front in the rotational direction follows the curve 4.
Although the curvature becomes slightly smaller as shown in , the cross-sectional area of the twisted groove decreases as a whole. That is,
As shown in FIG. 3, the cross-sectional area of the helical groove 2 gradually narrows from the cutting edge toward the base of the shank.

シヤンク1の横断面積は、壁5と50との間の
ほぼ三角形の面積の部分だけ増大し、一方回転方
向前方の壁4は刃先部附近における壁40より後
退しているために面積の減少があるが減少量はご
くわずかであるために全体としては増大してい
る。しかもこの増大量はシヤンクの中心部より外
周部が大きく、このため極二次モーメントが大き
く増大し、ねじり剛性が飛躍的に向上している。
The cross-sectional area of the shank 1 increases by the approximately triangular area between the walls 5 and 50, while the wall 4 at the front in the direction of rotation is set back from the wall 40 near the cutting edge, so the area decreases. However, the amount of decrease is very small, so the overall increase is. Furthermore, this increase is greater at the outer circumference than at the center of the shank, resulting in a large increase in the polar moment of inertia and a dramatic improvement in torsional rigidity.

切削によつて形成された切屑は、切刃附近のね
じれ溝の曲率、即ち第2および第3図の曲線40
に沿つて曲げられた後ねじれ溝に沿つて上昇する
が、ねじれ溝は曲線4で示すように曲げられた切
屑の曲率より小さな曲率となつているため、ねじ
れ溝中を上昇する際の抵抗が非常に小さく、従つ
て非常にスムースに切屑を排出することができ
る。なお、ねじれ溝5の回転方向後方の壁5が刃
先部での壁50に対して前方に移動することによ
つてねじれ溝全体の面積は減少しているが、切屑
はRの曲率半径に彎曲しねじれ溝はそれより大き
いR′に形成されているために切屑の排出に支障
をきたすことはない。なお、生成された切屑は曲
率半径Rで曲げられるので、ねじれ溝をシヤンク
の基部まで曲率半径Rで形成し溝深さのみを深く
してもよく、このばあいでも切屑が加工孔内面に
押えつけられずに排出され、またこのばあいねじ
れ溝の曲率が一定であるために加工が容易である
という利点がある。しかし、上記実施例のように
溝深さを深くすると共に溝の曲率半径も大きくす
ると切屑のねじれ溝中の移動も容易になるために
切屑の排出もさらに容易になる。さらにこのよう
な溝形にすることによつて、回転方向後方の壁5
と被削材の孔内面とのなす角θは、従来の壁50
とのなす角αよりも大きくなるために、溝に沿つ
て上昇する切屑をシヤンク外面と孔内面との間に
巻込むおそれもなくなり、切屑の排出を確実に行
なわせるようになる。
The chips formed by cutting are caused by the curvature of the helical groove near the cutting edge, that is, the curve 40 in FIGS. 2 and 3.
After being bent along the curve, the chip rises along the helical groove, but since the curvature of the helical groove is smaller than the curvature of the bent chip, as shown by curve 4, the resistance when rising in the helical groove is It is very small and therefore chips can be discharged very smoothly. Note that the area of the entire helical groove is reduced by moving the rear wall 5 of the helical groove 5 forward in the rotational direction relative to the wall 50 at the cutting edge, but the chips are curved to a radius of curvature R. Since the helical groove is formed with a larger R′, there is no problem with chip evacuation. In addition, since the generated chips are bent with the radius of curvature R, it is also possible to form a twisted groove with the radius of curvature R to the base of the shank and only deepen the groove depth. There is an advantage in that the curvature of the helical groove is constant and that machining is easy. However, if the groove depth is increased and the radius of curvature of the groove is also increased as in the above embodiment, the movement of chips in the twisted groove becomes easier, and therefore the discharge of chips becomes easier. Furthermore, by forming such a groove shape, the rear wall 5 in the rotational direction
The angle θ formed by the inner surface of the hole of the work material is
Since the angle .alpha. is larger than the angle .alpha., there is no risk that chips rising along the groove will be caught between the outer surface of the shank and the inner surface of the hole, and the chips can be reliably discharged.

なお、切刃の形状は上記の渦巻き形状に限らず
種々のものが採用可能であり、また溝形状の変化
の程度は、図示の例に限らず刃先形状、被削材の
種類等の条件に応じて適宜選定すればよい。
Note that the shape of the cutting edge is not limited to the spiral shape described above, and various shapes can be adopted, and the degree of change in the groove shape is not limited to the example shown in the figure, but may vary depending on conditions such as the shape of the cutting edge and the type of workpiece material. It may be selected as appropriate.

以上説明したように、本発明はねじれ溝の形状
を改良することによつてねじり剛性を増大させ、
これによつて切削中の振動の発生を防止すると共
に切屑の排出をスムースに行なわれるようにした
ものであり、このため加工孔の仕上り精度、仕上
げ面粗度も非常にすぐれたものが得られる。
As explained above, the present invention increases torsional rigidity by improving the shape of the torsion groove,
This prevents vibrations during cutting and allows for smooth removal of chips, resulting in extremely high finishing accuracy and surface roughness of the machined hole. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す側面図、第2図
はその底面図、第3図は第1図の―線断面図
である。 1……シヤンク、2……ねじれ溝、3……切
刃、4,40……回転方向前方の壁、5,50…
…回転方向後方の壁。
FIG. 1 is a side view showing an embodiment of the present invention, FIG. 2 is a bottom view thereof, and FIG. 3 is a sectional view taken along the line -- in FIG. 1...Shank, 2...Twisted groove, 3...Cutting blade, 4, 40...Wall in front of rotation direction, 5, 50...
...The rear wall in the direction of rotation.

Claims (1)

【特許請求の範囲】[Claims] 1 ねじれ溝つきドリルにおいて、回転方向後方
側のねじれ溝の壁が刃先部からシヤンクの基部に
向つて徐々にねじれ溝の他方の壁に近づくように
形成し、かつねじれ溝の深さがシヤンク基部に向
つて増大するように形成したことを特徴とするド
リル。
1 In a drill with a helical groove, the wall of the helical groove on the rear side in the rotational direction is formed so as to gradually approach the other wall of the helical groove from the cutting edge toward the base of the shank, and the depth of the helical groove is equal to the depth of the shank base. A drill characterized by being formed so as to increase toward .
JP1108879A 1979-02-01 1979-02-01 Drill Granted JPS55106710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108879A JPS55106710A (en) 1979-02-01 1979-02-01 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108879A JPS55106710A (en) 1979-02-01 1979-02-01 Drill

Publications (2)

Publication Number Publication Date
JPS55106710A JPS55106710A (en) 1980-08-15
JPS6158245B2 true JPS6158245B2 (en) 1986-12-10

Family

ID=11768221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108879A Granted JPS55106710A (en) 1979-02-01 1979-02-01 Drill

Country Status (1)

Country Link
JP (1) JPS55106710A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0211106A3 (en) * 1985-08-03 1987-09-02 HAWERA Präzisionswerkzeuge GmbH Drill with a plurality of lips
SE502255C2 (en) * 1991-12-16 1995-09-25 Sandvik Ab Drill with chip channels, comprising a first and a second chip feeding zone, of different cross sections
US9199315B2 (en) 2000-06-02 2015-12-01 Kennametal Inc. Twist drill and method for producing a twist drill which method includes forming a flute of a twist drill
DE10027544A1 (en) * 2000-06-02 2001-12-13 Kennametal Inc Drill tip for a twist drill and method for producing a flute in the area of a drill tip for a twist drill

Also Published As

Publication number Publication date
JPS55106710A (en) 1980-08-15

Similar Documents

Publication Publication Date Title
EP0577011B1 (en) Throw away insert and face milling cutter
JP2002506394A (en) Indexable cutting inserts
JP2603993B2 (en) Drill
JPH05116019A (en) Throw-away tip
JPH0771767B2 (en) fries
JPH059818U (en) Throwaway tip
JPS625726B2 (en)
JP4102202B2 (en) Cutting insert
JPS6158244B2 (en)
JPS6158245B2 (en)
JPH0740117A (en) Drilling tool
JP2607746B2 (en) Indexable cutter
JP2678016B2 (en) Reamer with tip blade
JP2537134Y2 (en) Drilling tool
JP7089171B2 (en) End mill
JP2543718Y2 (en) Throw-away tips
JPS6141681B2 (en)
JPH0771770B2 (en) Rolling tool
JPS6236562Y2 (en)
JP2535644Y2 (en) Drill
JPS6012645Y2 (en) Throwaway tip
JP3236912B2 (en) Indexable tip
JP3175209B2 (en) Threading inserts and threading tools
JPH0155924B2 (en)
JPH0524218U (en) Drilling tool