JPS6158238B2 - - Google Patents

Info

Publication number
JPS6158238B2
JPS6158238B2 JP53021276A JP2127678A JPS6158238B2 JP S6158238 B2 JPS6158238 B2 JP S6158238B2 JP 53021276 A JP53021276 A JP 53021276A JP 2127678 A JP2127678 A JP 2127678A JP S6158238 B2 JPS6158238 B2 JP S6158238B2
Authority
JP
Japan
Prior art keywords
slag
soda
ions
elution
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53021276A
Other languages
Japanese (ja)
Other versions
JPS54112780A (en
Inventor
Masao Tomari
Yoshiaki Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Jiryoku Senko Co Ltd
Original Assignee
Nippon Jiryoku Senko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Jiryoku Senko Co Ltd filed Critical Nippon Jiryoku Senko Co Ltd
Priority to JP2127678A priority Critical patent/JPS54112780A/en
Publication of JPS54112780A publication Critical patent/JPS54112780A/en
Publication of JPS6158238B2 publication Critical patent/JPS6158238B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はクロムメツキスラツジの無公害化即
ちクロムイオンが溶出しない様な方法に関するも
のである。 クロムメツキスラツジはCr以外に、Cu,Pb.
Zn等を含有し再利用されることが少ない産業廃
棄物で処分に困つている。 すなわち、コンクリート固化、還元物質(例え
ばコークス等)を配合して焼成し、Cr2O3
Cr3C2に変える方法、あるいは白土や粘土を配合
して焼成する方法がある。 しかし、コンクリート固化を行なえば、環境庁
告示による溶出試験では規制値以下であつても、
完全にクロムイオンの溶出を止めることは非常に
困難だし、コンクリート固化物を高いPHの溶液
(PH≒11)で1ケ月あるいは3ケ月間というよう
に長い期間溶出試験を行なうと、Cr3+イオンは
Cr6+イオンに再酸化され溶出量も増加する。 コークス等の還元物質を配合して焼成すると
Cr2O3+C→Cr3C2に変り理論的に安定するはず
だが、完全に還元雰囲気での焼成、冷却は非常に
むずかしく、Cr2O3が混在するので、上述と同様
に環境庁告示の方法で溶出して規制値以下であつ
ても、PHの高い溶液で長期間溶出試験を行なうと
Cr3+はCr6+イオンへ再酸化され規制値をオーバ
ーするようになる。 又、白土や粘土を配合して溶解すると、配合量
によつては冷却の過程でガラス化し、ガラス組成
内にクロムイオンは入り、溶出しなくなる。 しかし、白土や粘土は高溶融物であるので熱エ
ネルギー的に考えるとあまり好ましくない。 又スラツジ単味を酸化雰囲気で溶解しても
MgCrO4,Cr2O3が主体でガラス化の度合は少な
く、かなりCrイオンを溶出するし、還元雰囲気
で溶解してもCr3C2は若干生成しているが
MgCrO4,Cr2O3を含有しガラス化の度合も少な
いのでかなりCrイオンを溶出し、PHの高い溶液
で長時間溶出すると増加し、再酸化現象があると
思われる。 なお、還元雰囲気で焼成あるいは溶解すると
Cr3C2に完全に変えれば比較的に安定となり溶出
しにくいはずだが、酸素に接しない様に、焼成、
冷却を行なうことは非常に困難である。 粘板岩あるいはマサ土とスラツジを酸化あるい
は還元雰囲気で溶解しても、ガラス化はするが
MgCrO4のほかCr2O3を含有しているので実干Cr
イオンを溶出する。 更に、スラツジにセメント(高炉セメント、普
通ポルトランドセメント)、高炉水滓、固化を早
めるために塩化カルシウム、石灰を配合し、固化
後溶出試験を行なうとCrイオンを若干溶出し、
PHが高い溶液で長期間溶出するとやはりCrイオ
ンの再酸化現象が見られ完全ではない。 この発明は上記問題を解決する為にNa2Oに富
み、適量のFeを含有する含ソーダスラグと珪酸
塩物質を用いてクロムイオンの溶出を行なう方法
に係るものである。 ここで含ソーダスラグとは、例えば鉄鋼製錬に
於ける脱硫用のソーダ灰処理スラグの事でありこ
れらは低溶融物(約970℃)であるが、含有メタ
ルを破砕、磁選して回収し、尾鉱は埋立廃毅され
ている。この含ソーダスラグを有効利用しようと
するのも本発明の目的の1つである。 すなわち、メツキスラツジ単味溶解ではかなり
高温度(約1380℃以上)となり、かつクロムイオ
ンの溶出は防止できないが、SiO2に富むマサ土
や粘板岩等の珪酸塩質の岩石、鉱物をメツキスラ
ツジに配合して溶解すると約1250℃で溶解し、冷
却するとガラス化が進みCrイオンの溶出はほと
んど防止できる。 しかし、含ソーダ灰処理スラグをマサ土等の珪
酸質物質とメツキスラツジに配合して溶解すると
含ソーダ灰処理スラグは前述の様にNa2Oに富
み、適量のFe分を含有しているので低温度(約
1100〜1150℃)で溶解し、かつ、ガラス化が更に
進み、クロムイオンを溶出しなくなり未利用資源
や産業廃棄物を有効利用でき、省エネルギーにつ
ながる。 実際に溶解処理して無公害化する場合は次のよ
うである。 メツキスラツジと還元物質を配合して、電気
炉等の炉で溶解し有価金属は還元してメタル化
し、例えばFe―Cr等とし、出湯前に含ソーダ
スラグとマサ土等の珪酸塩質の岩石、鉱物の配
合物を投入し顕熱を有効利用して溶解反応を行
なわせて出滓すると混合撹拌が良好に行える。
(以後、出湯前投入と記す)又、含ソーダスラ
グとマサ土等の珪酸質塩質の岩石、鉱物の配合
物を出滓時に溶滓流に接するように投入すると
顕熱を有効利用して溶解、拡散反応が良好に行
える。(以後、同時に投入と記す) メツキスラツジ、マサ土等の珪酸塩質の岩
石、鉱物、含ソーダスラグを炉内へ投入して、
溶解し有価金属は回収しないでスラグへ移行さ
せる。 ニツケルメツキスラツジに還元物質を配合し
て溶解しFe―Niを回収する場合、溶解し溶融
状態のスラグ顕熱を有効利用して溶解反応を行
なわせるため、メツキスラツジ、マサ土等の珪
酸質の岩石、鉱物、含ソーダスラグを配合して
投入して排滓すると排滓の時に混合拡散反応が
良好に行える。 以下に本願発明を完成るに至つた実験及びその
結果を示す。 この実験に使用したメツキスラツジ、マサ土、
粘板岩、含ソーダスラグの化学分折値を第1表に
示す。
This invention relates to a method for making chromium sludge non-polluting, that is, a method that prevents chromium ions from being eluted. In addition to Cr, Kurometsuki Suratsuji contains Cu, Pb.
Industrial waste contains Zn, etc. and is rarely reused, making it difficult to dispose of. In other words, concrete hardens, reducing substances (such as coke) are mixed and fired, and Cr 2 O 3 is
There is a method of changing it to Cr 3 C 2 , or a method of mixing white clay or clay and firing it. However, if concrete is solidified, even if the elution test according to the Environment Agency notification is below the regulated value,
It is very difficult to completely stop the elution of chromium ions, and if you conduct an elution test on solidified concrete for a long period of time, such as one or three months, in a high pH solution (PH≒11), Cr 3+ ions will be released. teeth
It is reoxidized to Cr 6+ ions and the amount of elution increases. When combined with reducing substances such as coke and fired,
Cr 2 O 3 +C → Cr 3 C 2 should theoretically become stable, but it is very difficult to sinter and cool it in a completely reducing atmosphere, and since Cr 2 O 3 is mixed, the Environment Agency notification is required as mentioned above. Even if the elution is below the regulation value, if a long-term elution test is performed with a high pH solution,
Cr 3+ is reoxidized to Cr 6+ ions and exceeds the regulation value. Furthermore, when clay or clay is blended and dissolved, depending on the blended amount, it becomes vitrified during the cooling process, and chromium ions enter the glass composition and are no longer eluted. However, since white clay and clay are highly molten substances, they are not very desirable from a thermal energy standpoint. Also, even if a single sludge is dissolved in an oxidizing atmosphere,
Mainly composed of MgCrO 4 and Cr 2 O 3 , the degree of vitrification is low, and a considerable amount of Cr ions are eluted, and even if dissolved in a reducing atmosphere, some Cr 3 C 2 is generated.
Since it contains MgCrO 4 and Cr 2 O 3 and has a low degree of vitrification, it elutes a considerable amount of Cr ions, which increase when eluted for a long time in a solution with a high pH, and it is thought that there is a reoxidation phenomenon. Note that if fired or melted in a reducing atmosphere,
If it were completely changed to Cr 3 C 2 , it would be relatively stable and difficult to elute.
Cooling is very difficult to achieve. Even if slate or masa soil and sludge are melted in an oxidizing or reducing atmosphere, they will vitrify, but
Contains Cr 2 O 3 in addition to MgCrO 4 , so dry Cr
Elute ions. Furthermore, cement (blast furnace cement, ordinary Portland cement), blast furnace water slag, calcium chloride, and lime were added to the sludge to accelerate solidification, and when an elution test was performed after solidification, some Cr ions were eluted.
When elution is carried out in a solution with a high pH for a long period of time, re-oxidation of Cr ions is observed, and the result is not complete. In order to solve the above problems, the present invention relates to a method for eluting chromium ions using soda-containing slag rich in Na 2 O and containing a suitable amount of Fe and a silicate material. Here, soda-containing slag refers to slag treated with soda ash for desulfurization in steel smelting, for example, and is a low melting material (approximately 970°C), but the metals contained are crushed and recovered by magnetic separation. The tailings are disposed of in landfill. One of the objects of the present invention is to effectively utilize this soda-containing slag. In other words, when Metsukisuratsuji is simply melted, the temperature is quite high (approximately 1380 ℃ or higher), and the elution of chromium ions cannot be prevented. When melted, it melts at approximately 1250°C, and when cooled, vitrification progresses and elution of Cr ions can be almost prevented. However, when soda ash treated slag is mixed with silicic acid materials such as masa earth and metsuki sludge and dissolved, the soda ash treated slag is rich in Na 2 O and contains an appropriate amount of Fe content, so it has a low Temperature (approx.
It melts at a temperature of 1,100 to 1,150℃), further progresses to vitrification, and no longer elutes chromium ions, making it possible to effectively utilize unused resources and industrial waste, leading to energy savings. The actual process of dissolution treatment to make it pollution-free is as follows. Metsukisuratsuji and reducing substances are mixed and melted in a furnace such as an electric furnace, and valuable metals are reduced and converted into metals, such as Fe-Cr. Mixing and agitation can be performed well by adding the above-mentioned mixture and making effective use of sensible heat to cause a dissolution reaction and extracting the sludge.
(Hereinafter referred to as pre-tapping) In addition, if a mixture of soda-containing slag and silicate salt rocks and minerals such as masa earth are put in contact with the slag flow during slag tapping, sensible heat will be effectively used to melt the mixture. , diffusion reaction can be carried out well. (Hereinafter, it will be referred to as "input at the same time.") Inject silicate rocks, minerals, and soda-containing slag such as Metsukisura Tsuji and Masa soil into the furnace.
Melted valuable metals are transferred to slag without being recovered. When recovering Fe-Ni by blending and dissolving a reducing substance in Nikkel Metsuki Suratsuji, in order to effectively utilize the sensible heat of the slag in the molten state to carry out the dissolution reaction, silicate materials such as Metsuki Suratsuji and Masa earth are used. If rocks, minerals, and soda-containing slag are blended and added to the slag, a good mixing-diffusion reaction can be carried out at the time of slag removal. The experiments that led to the completion of the present invention and their results are shown below. Metsukisuratsuji, Masa soil, used in this experiment.
Table 1 shows the chemical analysis values of slate and soda-containing slag.

【表】 この原料を0.3mm以下に粉砕して配合し、ゼー
ゲル錐を作り毎分15℃の昇温速度で、シリコニツ
ト電気炉を昇温し、溶倒温度を測定した結果を第
2表に示す。
[Table] This raw material was pulverized to 0.3 mm or less, blended, made into a Zegel cone, heated in a siliconite electric furnace at a heating rate of 15°C per minute, and measured the melting temperature. Table 2 shows the results. show.

【表】【table】

【表】 又、3mm以下に粗砕した同試料を黒鉛レツボ
(還元雰囲気)、電融マグネシアルツボ(酸化雰囲
気)に入れ、1350℃に保持したシリコニツト電気
炉で15分間保持して炉外で放冷し、環境庁告示の
方法による溶出試験PH約11の溶液による長期間の
溶出試験、スラグ粒度5〜10mmにつきオートクレ
ーブ試験(200℃、20Kg/cm2、3時間保持)を行
ない、5mm以下を崩壊物として崩壊率を求め、生
成鉱物はX線回折を行ない主生成鉱物を調べ、そ
の数例を第3表に示す。
[Table] In addition, the same sample crushed to 3 mm or less was placed in a graphite crucible (reducing atmosphere) and an electrofused magnesia crucible (oxidizing atmosphere), held in a siliconite electric furnace maintained at 1350°C for 15 minutes, and then released outside the furnace. After cooling, perform a long-term elution test using a solution with a pH of approximately 11 according to the method notified by the Environment Agency, and an autoclave test (200℃, 20Kg/cm 2 , held for 3 hours) for slag particle sizes of 5 to 10 mm. The disintegration rate was determined as a disintegrating product, and the produced minerals were subjected to X-ray diffraction to examine the main produced minerals, some examples of which are shown in Table 3.

【表】【table】

【表】 同上の試作スラグにつきJIS A 1101および
JIS A 1121によつて、表乾比重、吸水率、ロス
アンゼルスのスリヘリ減量試験を行ない、第4表
に示す。
[Table] JIS A 1101 and the above prototype slag
According to JIS A 1121, surface dry specific gravity, water absorption rate, and Los Angeles pickpocket weight loss test were conducted, and the results are shown in Table 4.

【表】 又、クロムメツキスラツジはセメント固化処理
を行なつてもPHが高い(約12)でのクロムイオン
の再酸化(Cr3+→Cr6+)の問題のおそれがあるの
で、高炉セメント、普通ポルトランドセメント、
高炉水滓(セメントの粒度程度まで粉砕)等を使
用して約10〜15mmφのペレツトとして湿空養生
(14日間)後、環境庁告治示方法、PH=11の溶液
100c.c.にペレツト10gの割合になる様に浸漬し、
30日、90日後に溶出溶液中のCrイオン濃度を測
定し第5表に示す。
[Table] In addition, even if chromium tsuki suraji is cement solidified, there is a risk of re-oxidation of chromium ions (Cr 3+ → Cr 6+ ) due to the high pH (approximately 12), so it cannot be used in blast furnaces. Cement, ordinary portland cement,
Using blast furnace water slag (pulverized to the same particle size as cement), etc., pellets with a diameter of approximately 10 to 15 mm were cured in a moist air (14 days), and a solution of PH = 11 was prepared according to the method prescribed by the Environment Agency.
Soak the pellets in a proportion of 10g in 100c.c.
After 30 and 90 days, the Cr ion concentration in the eluate solution was measured and shown in Table 5.

【表】 上記実験の結果から次の事が判明する。即ち第
3表からクロムメツキスラツジに対し、マサ土や
粘板岩を添加すればそれだけでもクロムイオンの
溶出は相当抑制する事は出来るが、PHの高い溶液
中に長時間浸漬した場合では未だ相当量のクロム
イオンの溶出があり十分とはいえない。 しかるにマサ土や粘板岩等の珪酸塩物質と共に
含ソーダスラグをも添加すればクロムイオンの溶
出が大幅に抑えられ、その添加量を10重量%とし
た例では環境庁告示方法並びにPH11の溶液に浸漬
のいずれの場合にもクロムイオン溶出は、NDあ
るいは0.01p.p.m.となる。これは含ソーダスラグ
を加える事により、配合物の溶倒温度が低下し
て、流動性が良くなる結果、全体が均一に混合さ
れたガス化が進み易い為であると思われ、その量
を更に増やし15重量%とした例ではT・Crは
N・Dとなるが、あまり増やし過ぎて21重量%あ
るいは70重量%となせば、溶倒温度は低くなるが
ソーダ分が過剰すぎて反応しないまゝのフリーの
状態で溶出するソーダ分があり、このフリーのソ
ーダ分と共にクロムイオンも溶出し上記第3表に
示される如くクロムイオンの溶出量が再び増加す
るので、含ソーダスラグの量は15重量%以下とす
る。なお本発明方法はクロムイオンの溶出を極力
抑制する事が大きな目的であり、それが0.01p.p.
m.以下となる場合を本発明方法とするという意
味から、上記第3表中環境庁告示方法並びにPH11
の溶液に浸漬のいずれの場合でも溶出イオン濃度
(T・Cr)が、0.01p.p.m.以下の例を本発明の実
施例とし、それ以外の例は比較例とする。即ち第
3表で上記第10頁に示す電融マグネシアルツボ溶
解の場合にあつては上から第6,7,10,112段
目に示す各例が本発明の実施例でそれ以外は比較
例であり、第11頁の黒鉛ルツボ溶解の場合にあつ
ても上から第6,7,10,12段目に示す各例が本
発明の実施例でそれ以外は比較例である。この様
にして、全配合物中の含ソーダスラグの量を10〜
15重量%となし、あとは処理対象物であるクロム
メツキスラツジを出来る限り多く処理する事及び
処理時の溶倒温度(第2表)をあまり高くしない
事の条件を満たす範囲でマサ土や粘板岩の添加量
は35〜40重量%にした。この範囲に於ける本発明
の配合物を上記第1表に示す学組成に基づいて計
算すると、SiO234.87〜39.35重量%、Al2O37.78
〜8.〜94重量%、Fe2O33.81〜5.11重量%、
CaO5.74〜7.41重量%、MgO1.28〜1.51重量%、
Cr2O318.59〜18.97重量%、Na2O+K2O2.53〜
4.17重量%となる。又第4表からは、本発明方法
にて処理をした処理済物が、その後各種骨材とし
て有効に利用出来る事が判る。 以上述べて来た如く本願発明方法によれば、ク
ロムメツキスラツジにSiO2系の未利用資源と低
溶融物の業廃棄物である含ソーダスラグを適量配
合し、溶解することで、クロムイオンを溶出しな
くなり、骨材等に有効利用が可能である。
[Table] From the results of the above experiment, the following is revealed. In other words, from Table 3, it is possible to considerably suppress the elution of chromium ions by adding masa soil or slate to Kurometsuki Slatsutsuji, but if chromium ions are immersed in a solution with a high pH for a long period of time, a considerable amount still remains. This is not sufficient as there is elution of chromium ions. However, if soda-containing slag is added together with silicate materials such as masa soil and slate, the elution of chromium ions can be greatly suppressed. In either case, the chromium ion elution will be ND or 0.01ppm. This is thought to be because adding soda-containing slag lowers the melting temperature of the mixture and improves its fluidity, making it easier to gasify the mixture evenly. For example, if the T/Cr is increased to 15% by weight, it becomes N/D, but if it is increased too much to 21% or 70% by weight, the melting temperature will be lower, but the soda content will be too excessive and no reaction will occur. There is a soda content that is eluted in the free state, and chromium ions are also eluted along with this free soda content, and the amount of chromium ions eluted increases again as shown in Table 3 above, so the amount of soda-containing slag is 15% by weight. % or less. The main purpose of the method of the present invention is to suppress the elution of chromium ions as much as possible;
Since the method of the present invention is applicable to cases where the following conditions are met, the method notified by the Environment Agency in Table 3 above and PH11
An example in which the eluted ion concentration (T·Cr) is 0.01 ppm or less in any case of immersion in a solution of is considered an example of the present invention, and other examples are considered as a comparative example. That is, in the case of electrofused magnesia crucible melting shown on page 10 above in Table 3, the examples shown in the 6th, 7th, 10th, and 112th rows from the top are examples of the present invention, and the others are comparative examples. In the case of graphite crucible melting on page 11, the examples shown in the 6th, 7th, 10th, and 12th columns from the top are examples of the present invention, and the others are comparative examples. In this way, the amount of soda-containing slag in the total formulation can be reduced from 10 to
The remaining amount is 15% by weight, and the rest is masa soil and other materials as long as the conditions of treating as much of the target material, Kurometsuki Slatsuji as possible, and not raising the melting temperature (Table 2) too high during treatment are met. The amount of slate added was 35-40% by weight. When the formulation of the present invention in this range is calculated based on the chemical composition shown in Table 1 above, SiO 2 34.87-39.35% by weight, Al 2 O 3 7.78
~8.~94 wt%, Fe2O3 3.81 ~5.11 wt%,
CaO5.74-7.41% by weight, MgO1.28-1.51% by weight,
Cr2O3 18.59~18.97% by weight, Na2O + K2O2.53 ~
It becomes 4.17% by weight. Furthermore, from Table 4, it can be seen that the treated material treated by the method of the present invention can be effectively used as various aggregates. As described above, according to the method of the present invention, an appropriate amount of unused SiO 2 -based resources and soda-containing slag, which is a low-melting industrial waste, is mixed with chromium sludge and dissolved, thereby producing chromium ions. It does not elute and can be effectively used as aggregate, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 マサ土及び又は粘板岩から成る珪酸塩物質が
35〜40重量%、含ソーダスラグが10〜15重量%、
残部がクロムメツキスラツジとなる如く、この3
者を混合し溶解反応を行なわしめることを特徴と
するクロムメツキスラツジの無公害化法。
1 Silicate materials consisting of masa earth and/or slate
35-40% by weight, 10-15% by weight of soda-containing slag,
These 3 are so that the rest is Kurometsuki Suratsuji.
A pollution-free method for chrommetsuki suratsuji, which is characterized by mixing chromium methane and carrying out a dissolution reaction.
JP2127678A 1978-02-24 1978-02-24 Depollution treatment of chrome plating sludge Granted JPS54112780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127678A JPS54112780A (en) 1978-02-24 1978-02-24 Depollution treatment of chrome plating sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127678A JPS54112780A (en) 1978-02-24 1978-02-24 Depollution treatment of chrome plating sludge

Publications (2)

Publication Number Publication Date
JPS54112780A JPS54112780A (en) 1979-09-03
JPS6158238B2 true JPS6158238B2 (en) 1986-12-10

Family

ID=12050593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127678A Granted JPS54112780A (en) 1978-02-24 1978-02-24 Depollution treatment of chrome plating sludge

Country Status (1)

Country Link
JP (1) JPS54112780A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150784A (en) * 1976-06-10 1977-12-14 Nippon Sheet Glass Co Ltd Treatment of chromiummcontaining wastes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150784A (en) * 1976-06-10 1977-12-14 Nippon Sheet Glass Co Ltd Treatment of chromiummcontaining wastes

Also Published As

Publication number Publication date
JPS54112780A (en) 1979-09-03

Similar Documents

Publication Publication Date Title
CN111889487A (en) Method for solidifying heavy metal by plasma fusion through multi-source solid waste synergistic treatment
ES2877505T3 (en) Improved slag from non-ferrous metal production
CN104556702A (en) Method for preparing high-alkalinity glass ceramic from metallurgical slag
CN112390526A (en) Method for harmlessly treating cyanided tailings in surface crystallization process of microcrystalline glass granules
US4652310A (en) Process for making a hardening agent for weak soil or sludge from steel making slag
Liu et al. The pretreatment of non-ferrous metallurgical waste slag and its research progress in the preparation of glass-ceramics
CN115679097A (en) Method for recycling iron-making gas ash by using converter slag and refined dedusting ash
JP2012522239A (en) Method for packaging radioactive waste in synthetic rock form
CN106224979B (en) A kind of method of dangerous waste incineration bottom ash recycling
KR870000773B1 (en) Method use steel manufacture-slag
US3547623A (en) Method of recovering iron oxide from fume containing zinc and/or lead and sulfur and iron oxide particles
CN113846234B (en) Rotary kiln volatilization treatment method for high-silicon zinc leaching residues
US4778523A (en) Process for using steelmaking slag
JPS6117483A (en) Manufacture of potassium silicate fertilizer
KR870001567B1 (en) Method for use steel manufacture slag
US3684539A (en) Method of adding oxygen containing metallic compounds to a molten metallurgical slag
JPS6158238B2 (en)
Borowski Using Vitrification for Sewage Sludge Combustion Ash Disposal.
Long et al. Effective disposal of hazardous waste from non-ferrous waste recycling through thermal treatment
CN111380358B (en) Method for treating aluminum electrolysis waste cell lining and melting furnace
CN112853010B (en) Method for green treatment of electric furnace steel slag
US2250213A (en) Synthetic ore for blast furnaces
CN114455861B (en) Modified AOD slag, preparation method and application thereof, and building material
JPH0471023B2 (en)
TWI675813B (en) Method of resourceful disposal for stabilizing materials with the property of expansion