JPS6158234A - Method for developing simulation - Google Patents

Method for developing simulation

Info

Publication number
JPS6158234A
JPS6158234A JP17831884A JP17831884A JPS6158234A JP S6158234 A JPS6158234 A JP S6158234A JP 17831884 A JP17831884 A JP 17831884A JP 17831884 A JP17831884 A JP 17831884A JP S6158234 A JPS6158234 A JP S6158234A
Authority
JP
Japan
Prior art keywords
development
vector
developing
resist
vectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17831884A
Other languages
Japanese (ja)
Inventor
Toshiharu Matsuzawa
松澤 敏晴
Yukio Umetani
梅谷 征雄
Hideo Sunami
英夫 角南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17831884A priority Critical patent/JPS6158234A/en
Publication of JPS6158234A publication Critical patent/JPS6158234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

PURPOSE:To enable to precisely form the surface of resist after developing by a method wherein the vector of developing is selectively increased on the necessary places only, or the developing vector on the unnecessary places is eliminated. CONSTITUTION:In the region surrounded by a boundary 1, a numerical operation is performed with a plurality of points, contained in the line 2 located on the initial surface of resist, as the starting point, and the locus 3 of the developing vector till the finishing time of developing is obtained. When the intervals between the tips of the adjoining developing vector is calculated, the intervals at two places are widened. At this point, the smallest integral number N4, which is not smaller than the quotient obtained by dividing the tip interval of the developing vector by the reference value, is calculated and the point at which the part between said two vectors will be divided into N4 sections is calculated. A numerical operation is performed with these points as new starting point, and the locus 4 of the new developing vector is calculated. By repeatingly performing the above-mentioned procedures on the entire initial surface of the resist, the number of developing vector can be suppressed to the minimum, thereby enabling to reduce the time necessary for numerical operation to the minimum.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体プロセスシミュレーションに係り、特
に精密な形状を効率良く算出するに好適なシュミレーシ
ョン方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to semiconductor process simulation, and particularly to a simulation method suitable for efficiently calculating a precise shape.

〔発明の背景〕[Background of the invention]

現像シュミレーション手法については、Jewettら
により各種の手法の得失が論じられている。
Regarding development simulation methods, Jewett et al. discuss the advantages and disadvantages of various methods.

(R,E、Jewett、 P、1.)Iagouel
、 A、R,Neureuther 。
(R, E, Jewett, P, 1.) Iagouel
, A.R., Neureuther.

andT、Van Duzer、 ”Line−Pro
file ResistDevelopment Si
mulation  Techniquas”、Pol
ymarEngineering and 5cien
ce、vol、17.No、6.pp381−384.
1977 )それによると、3次元現像計算に適した方
法としてray−tracingモデルがあげられてい
る。しかし、ray−tracingモデルによる現像
シュミレーションにおいて、隣接した現像ベクトルの先
端の間隔が開きすぎた場合(現像ベクトルの先端を結ぶ
折線がレジスト表面を表わすので、この場合はレジスト
形状を精密に表示することができない、)については考
慮されていない、現像により一般には、レジスト表面積
は増大するので、この問題は現像シュミレーションに本
質的である。
andT., Van Duzer, “Line-Pro
file Resist Development Si
mulation Techniquas”, Pol
ymarEngineering and 5cien
ce, vol, 17. No, 6. pp381-384.
(1977), the ray-tracing model is cited as a method suitable for three-dimensional development calculations. However, in development simulation using a ray-tracing model, if the distance between the tips of adjacent development vectors is too wide (the broken line connecting the tips of the development vectors represents the resist surface, in this case it is difficult to accurately display the resist shape). This problem is inherent in development simulation, since development generally increases the resist surface area.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ray−tracingモデルによる
現像シュミレーションにおいて、現像後のレジスト表面
を効率良く精密に求めるための方法を提供することにあ
る。
An object of the present invention is to provide a method for efficiently and precisely determining the resist surface after development in development simulation using a ray-tracing model.

〔発明の概要〕[Summary of the invention]

レジスト形状を精密に求めるためには、現像シュミレー
ションの開始時点において、きわめて多数の現像ベクト
ルを発生させても良いが、この方法は、計算時間の点で
不利である。そこで、初期の現像ベクトルの数を比較的
少数にとどめ所定の現像時間が経過するごとに隣接する
現像ベクトルの先端の距離を測定し、所定の基準よりそ
の距離が長い場合には初期のレジスト表面から適当な数
の現像ベクトルを発生させるようにする。あるいはその
距離が短い場合は不要な現像ベクトルを削除すれば、必
要最小限の現像ベクトル(したがって計算時間)で精密
なレジスト形状が得られる。
In order to precisely determine the resist shape, a large number of development vectors may be generated at the start of the development simulation, but this method is disadvantageous in terms of calculation time. Therefore, the number of initial development vectors is kept relatively small and the distance between the tips of adjacent development vectors is measured every time a predetermined development time elapses, and if the distance is longer than a predetermined standard, the initial resist surface An appropriate number of development vectors are generated from Alternatively, if the distance is short, by deleting unnecessary development vectors, a precise resist shape can be obtained with the minimum necessary development vectors (and hence calculation time).

〔発明の実施例〕 以下、本発明を実施例を用いて説明する。[Embodiments of the invention] The present invention will be explained below using examples.

実施例1 ray−tracingモデルによれば現像ベクトルを
表わす位置ベクトルrの軌跡は1次式によって記述され
る。
Example 1 According to the ray-tracing model, the locus of the position vector r representing the development vector is described by a linear equation.

ds   ds ここに、Sは軌跡に沿った長さ、nは次式で定義される
仮想的屈折率、右辺は仮想的屈折率の勾゛ 配である。
ds ds Here, S is the length along the trajectory, n is the virtual refractive index defined by the following equation, and the right side is the gradient of the virtual refractive index.

n =R+a a * / R・・・(2)ここに、R
はレジスト膜内°の位[rにおける現像速度、 Raa
mはその最大値である。只の分布は別途与えられており
、したがってnの分布も既知である。
n = R + a a * / R... (2) Here, R
is the development rate at the position [r] in the resist film, Raa
m is its maximum value. The distribution of n is given separately, so the distribution of n is also known.

第1図に示す如き、境界1で囲まれた領域において、レ
ジストの初期表面上の線分2に含まれる複数の点を出発
点として上記方程式に基づいて数値計算を行ない、時刻
0秒から現像終了時刻までの現像ベクトルの軌跡3を得
た。
As shown in Figure 1, in the area surrounded by boundary 1, numerical calculations are performed based on the above equation using multiple points included in line segment 2 on the initial surface of the resist as starting points, and development is started from time 0 seconds. Locus 3 of the development vector up to the end time was obtained.

隣接する現像ベクトルの先端の間隔り、を計算したとこ
ろ、2カ所において基準D1より間隔が広くなっており
、レジスト形状としても粗いものとなっていた。ここで
、基準り、としては、当該現像ベクトルの出発点間の距
離D l (すなわち、線°分2の上での出発点の間隔
)を用いた。
When the distance between the tips of adjacent development vectors was calculated, the distance was wider than the reference D1 at two locations, and the resist shape was also rough. Here, the distance D l between the starting points of the development vector (that is, the interval between the starting points on the line 2°) was used as the reference.

そこで、現像ベクトルの先端間隔り、を基準値り、で除
した商より小さくない最小の整数N、を求め、当該の2
本のベクトルの出発点の間をN4個の区間に分割する点
を定めた。これらの点を新たな出発点として、前述と同
じ数値計算を行ない新たな現像ベクトルの軌跡4を求め
た。
Therefore, find the minimum integer N that is not smaller than the quotient obtained by dividing the tip interval of the development vector by the reference value, and
We determined points that divide the starting points of the book vector into N4 sections. Using these points as new starting points, the same numerical calculations as described above were performed to obtain a new development vector locus 4.

この操作を行なうことにより、1回の現像計算だけでは
現像ベクトルの間隔が広くなっていた領域に、新たに現
像ベクトルが挿入されて、精密なレジスト形状を描くこ
とができた。
By performing this operation, new development vectors were inserted into areas where the interval between development vectors had become wide with just one development calculation, and a precise resist shape could be drawn.

以上の処理を、レジストの初期表面の全体についてくり
返すことにより境界1で囲まれた全領域における3次元
の精密、なレジスト像を現像初期から現像ベクトルの数
を全領域にわたり均等に増加させるより短い計算時間で
得ることができた。
By repeating the above process for the entire initial surface of the resist, a three-dimensional precise resist image is created in the entire area surrounded by boundary 1, and the number of development vectors is uniformly increased over the entire area from the initial stage of development. This could be obtained in a short calculation time.

なお、もし2回目の現像計算でもすべての現像ベクトル
の間隔が基準値り3以内におさまらない場合には1条件
を満すまで処理を繰り返せば良い。
Note that if the intervals between all the development vectors do not fall within 3 of the reference value even in the second development calculation, the process may be repeated until one condition is satisfied.

また1間隔の測定は現像終了時刻に限られるものではな
く、途中の任意の時刻、任意の回数で良い。
Further, the measurement at one interval is not limited to the development end time, but may be performed at any time or any number of times during the development.

D、の値は、状況に応じて適切な値を設定すれば良い。The value of D may be set to an appropriate value depending on the situation.

実施例2 第2図を用いて、実施例1の場合よりさらに計算時間を
短縮する方法について説明する。第2図は、レジスト表
面に垂直な面に対して計算領域の境界および現像ベクト
ルの軌跡を投影した図である0本例においては、現像終
了に至らない中間の時刻(ここまでの現像計算を第1段
階の現像計算と呼ぶ、)まで、実施例1と同様にして現
像計算を行なったのち、この時刻において現像ベクトル
3の先端間隔を測定し、その値が基準値り、より小さい
場合には、当該の2本の現像ベクトルを削除し、次の現
像計算(以下の段階を必要に応じて第2段階、第3段階
・・・と呼ぶ、)段階においては。
Embodiment 2 A method for further shortening the calculation time than in Embodiment 1 will be described using FIG. 2. Figure 2 is a diagram in which the boundary of the calculation area and the locus of the development vector are projected onto a plane perpendicular to the resist surface. After performing development calculations in the same manner as in Example 1 up to (referred to as the first stage development calculation), the tip distance of the development vector 3 is measured at this time, and if the value is smaller than the reference value, The two development vectors in question are deleted, and in the next development calculation stage (the following stages are referred to as the second stage, third stage, etc. as necessary).

消去された2本の現像ベクトルの中間の適当な位置から
新たに現像ベクトル5を発生させたIID&の値として
は、実施例1におけるDiの値の0.1倍から0.7倍
程度が適当である。
The appropriate value of IID& for generating a new development vector 5 from an appropriate position between the two erased development vectors is approximately 0.1 to 0.7 times the value of Di in Example 1. It is.

それ以外の現像ベクトルについては、第1段階の結果を
そのまま引き継いで現像計算を続けた。
For other development vectors, development calculations were continued using the results of the first stage as they were.

本方法によれば、不必要に精密に形状計算を行なうこと
がないので、精密さを犠牲にすることなく計算時間を短
縮できる。
According to this method, shape calculations are not performed with unnecessary precision, so calculation time can be shortened without sacrificing precision.

なお、本例では、2本の現像ベクトルを共に削除したが
、片方を削除して他方を残すことも可能である。
Note that in this example, both of the two development vectors are deleted, but it is also possible to delete one and leave the other.

実施例3 第3図を用いて、実施例2の場合よりさらに計算時間を
短縮する方法について説明する。
Embodiment 3 A method for further shortening the calculation time compared to the case of Embodiment 2 will be described with reference to FIG.

本例の方法と実施例2の方法との相違は次のとおりであ
る。すなわち、本方法においては、第1段階の現像計算
において、間隔の開きすぎた2本の現像ベクトルに関し
て、レジスト初期表面から現像ベクトルを挿入するので
はなく、当該の2本のベクトルの終点の中間にある適当
な位置から。
The differences between the method of this example and the method of Example 2 are as follows. That is, in this method, in the first stage development calculation, regarding two development vectors that are too far apart, instead of inserting the development vectors from the initial surface of the resist, the development vectors are inserted between the end points of the two vectors. from a suitable position.

現像の第2段階において新たに現像ベクトル7を発生さ
せる。
In the second stage of development, a new development vector 7 is generated.

この処理により、現像の第1段階で多数回の現像ベクト
ルの挿入を行なわずに済むので、計算時間を短縮するこ
とができる。
This process eliminates the need to insert development vectors many times in the first stage of development, thereby reducing calculation time.

本実施例では9間隔の広い部分に新たに発生する現像ベ
クトルを1本としたが、これは必要に応じて増加させる
ことが可能である。
In this embodiment, the number of newly generated development vectors is one in the wide part with nine intervals, but this number can be increased as necessary.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、精密なレジスト形状を求めるにあたっ
て、必要な箇所にのみについて選択的に現像ベクトルを
増やし、あるいは不要な箇所では現像ベクトルを削除す
るので、現像ベクトルの本数を最小限に抑えることがで
き、したがって数値計算に必要な時間を最小限にとどめ
るシュミレーションを行なうことができる。
According to the present invention, when obtaining a precise resist shape, the number of development vectors can be minimized by selectively increasing development vectors only in necessary locations or deleting development vectors in unnecessary locations. Therefore, it is possible to perform simulations that minimize the time required for numerical calculations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1@は、現像計算領域および現像ベクトルの見取り図
である。 第2図は、縦方向がレジストの深さ方向となるような方
向から見た場合の現像計算領域および現像ベクトルを示
す図である。 第3図は第2図と同じ表示法による図である。 1・・・計算領域の境界、2・・・レジストの初期表面
上の線分、3・・・第1回目の現像計算により得られた
現像ベクトルの軌跡、4・・・第2回目の現像計算によ
り得られた現像ベクトルの軌跡、5・・・第1段階の現
像計算の結果接近しすぎた2本の現像ベクトルの中間地
点から、第2段階の現像計算において新たに発生した現
像ベクトルの軌跡、6・・・第2段階の現像計算におい
て、第1段階の現像ベクトルをそのまま引継いで進行す
る現像ベクトルの軌跡。 7・・・第1段階の現像計算の結果間隔が開きすぎた2
本の現像ベクトルの中−間地点から、第2段階の現像計
算において新たに発生した現像ベクトルの21   図 第 2 図 第 3 ロ 。、60.、、2□1、 発明の名称 山 警 現像シiλレーション方法 補正をする者 !I噂との関係 特許出願人 名  称   (510J林式会>、1   日  立
 製 作 所補正の対象 明細書の[発明の詳細な説明
コの欄。 →ト子−分岬計七一 補正の内容 明細書第1頁第19行から第2頁第3行に記載の [(R,E、 Jewett、  P、 1. Hag
ouel、 A、 R。 Neureuther  and T、Van Duz
er  @Line−Profile Re5ist 
Development  SimulationTe
chniques”、Polymer Enginee
ring andScience、 vol、 1? 
、 &6 、 pp381−384 。 977J を [アール・イー・ジェウエット、ビー−アイーヘーグエ
ル、ニー・アール・ニエウライター 及ヒf<−’ファ
/・ドウツアー”レジスト現像形状シミニレ−シラン技
術”ポリマーエンジニアリングアンドサイエンス、VO
l、17.NcL6.  第381頁乃至第384頁、
1977年、 (R,E、 Jewel、 P。 1、 Hagouel、 A+R,Neureuthe
r  andT、 VanDuzer  ” Line
−Profile Re5ist Develomen
tSimulation Techniques ” 
、 PolymerEngineering and 
5cience、 vol、 17 、 NG、 6 
。 と訂正する。
The first @ is a sketch of the development calculation area and the development vector. FIG. 2 is a diagram showing a development calculation area and a development vector when viewed from a direction in which the vertical direction is the depth direction of the resist. FIG. 3 is a diagram using the same display method as FIG. 2. 1... Boundary of the calculation area, 2... Line segment on the initial surface of the resist, 3... Trajectory of the development vector obtained by the first development calculation, 4... Second development Locus of the development vector obtained by calculation, 5... From the midpoint of the two development vectors that were too close as a result of the first stage development calculation, the newly generated development vector in the second stage development calculation. Trajectory, 6: A trajectory of a development vector that progresses by taking over the first-stage development vector as it is in the second-stage development calculation. 7... The interval was too wide as a result of the first stage development calculation 2
21 of the newly generated development vector in the second stage development calculation from the midpoint of the book's development vector. , 60. ,,2□1, Name of the invention: A person who corrects the development method! Relationship with rumors Patent applicant name (510J Hayashi Shikikai>, 1 Hitachi, Ltd. Target of amendment Column of [Detailed explanation of the invention] in the specification. → Contents of Toko-Bunmisaki Kei 71 amendment [(R,E, Jewett, P., 1. Hag
ouel, A.R. Neureuther and T. Van Duz
er @Line-Profile Re5ist
Development SimulationTe
Polymer Engineer
ring and Science, vol. 1?
, &6, pp381-384. 977J [R. E. Jewett, B. I. Haguell, N. R. Nieuwreiter and H. F<-'F/Dautour, "Resist Development Shape Simulation Silane Technology," Polymer Engineering and Science, VO.
l, 17. NcL6. pages 381 to 384,
1977, (R,E, Jewel, P. 1, Hagouel, A+R, Neureuthe
r andT, VanDuzer” Line
-Profile Re5ist Developer
tSimulation Techniques”
, Polymer Engineering and
5science, vol, 17, NG, 6
. I am corrected.

Claims (1)

【特許請求の範囲】[Claims] 1、レジスト表面から複数の現像ベクトルを進行させる
ことによつて行なう現像シミュレーションの過程におい
て、算出された形状を監視しつつ現像計算を進行し、形
状の滑らかさの程度に応じて、1本以上の現像ベクトル
を発生あるいは削除することを特徴とする現像シュミレ
ーション方法。
1. In the process of development simulation, which is performed by advancing multiple development vectors from the resist surface, development calculations are performed while monitoring the calculated shape, and one or more development vectors are created depending on the degree of smoothness of the shape. A development simulation method characterized by generating or deleting a development vector.
JP17831884A 1984-08-29 1984-08-29 Method for developing simulation Pending JPS6158234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17831884A JPS6158234A (en) 1984-08-29 1984-08-29 Method for developing simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17831884A JPS6158234A (en) 1984-08-29 1984-08-29 Method for developing simulation

Publications (1)

Publication Number Publication Date
JPS6158234A true JPS6158234A (en) 1986-03-25

Family

ID=16046382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17831884A Pending JPS6158234A (en) 1984-08-29 1984-08-29 Method for developing simulation

Country Status (1)

Country Link
JP (1) JPS6158234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456899U (en) * 1987-10-05 1989-04-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456899U (en) * 1987-10-05 1989-04-10

Similar Documents

Publication Publication Date Title
US7593834B2 (en) Exclusion of regions method for multi-objective optimization
Markenscoff et al. The nonuniformly moving edge dislocation
Mazzola et al. Tempo curves revisited: Hierarchies of performance fields
JPS6158234A (en) Method for developing simulation
KR910002445B1 (en) Complex curved surface creation method
Blackmore et al. A general fractal distribution function for rough surface profiles
Sinclair et al. Loki: Software for computing cut loci
JP2003108187A (en) Method and program for similarity evaluation
US6484305B1 (en) Impurity quantity transfer device enabling reduction in pseudo diffusion error generated at integral interpolation of impurity quantities and impurity interpolation method thereof
Rzasnicki et al. Application of boundary integral method to elastic analysis of V-notched beams
Kocer An automated incremental finite element study of Hertzian cone crack growth
JPS6347888A (en) Dummy generating method for graphic contour
CN118096417B (en) Propagation network mode discovery method, system, computer and storage medium
JP3315399B1 (en) Method for generating difference grid, program therefor, and recording medium
Heinrich Bounds for the absolute regularity coefficient of a stationary renewal process
JPH096991A (en) Extraction method and device for side, surface and element of finite element division model
JPH06209101A (en) Device/process simulating method
CN107545012A (en) A kind of road end points angle determination method and device
JPH09147127A (en) Free-form curve generating method
Heuberger Anticanonical divisors on Fano fourfolds
SU588323A2 (en) Device for repairing walls
JPH0863619A (en) Device and method for automatically preparing part
JP3334989B2 (en) Figure creation apparatus and method
JPH06274308A (en) Uniform modeling generation processing method for bezier curve
Wang et al. A Fast Level Set Method with Particle Correction on Adaptive Cartesian Grid