JPS6158201B2 - - Google Patents

Info

Publication number
JPS6158201B2
JPS6158201B2 JP59059036A JP5903684A JPS6158201B2 JP S6158201 B2 JPS6158201 B2 JP S6158201B2 JP 59059036 A JP59059036 A JP 59059036A JP 5903684 A JP5903684 A JP 5903684A JP S6158201 B2 JPS6158201 B2 JP S6158201B2
Authority
JP
Japan
Prior art keywords
pressure
crystallization
liquid
pipe
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59059036A
Other languages
Japanese (ja)
Other versions
JPS60222106A (en
Inventor
Masato Moritoki
Kazuo Kitagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5903684A priority Critical patent/JPS60222106A/en
Publication of JPS60222106A publication Critical patent/JPS60222106A/en
Publication of JPS6158201B2 publication Critical patent/JPS6158201B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高圧晶析装置における液体路内の固化
防止法に関し、詳細には前記液体路内にシース型
線状ヒータを挿通して液体路内の液体を加温する
ことにより、昇圧による晶析固化を阻止して液体
路の閉塞を防止する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing solidification in a liquid path in a high-pressure crystallizer, and more specifically, a sheath type linear heater is inserted into the liquid path to heat the liquid in the liquid path. This invention relates to a method for preventing clogging of a liquid path by inhibiting crystallization and solidification due to increased pressure.

高圧晶析法とは、高圧容器内に複数成分からな
る液相又はスラリーからなる原料を導入し、液の
排出管路を閉鎖した状態で該原料に高圧力を加え
て特定成分の晶析を促進させる方法であり、この
操作によつて特定成分(以下捕集成分と言うこと
もある)の結晶と残留液(以下除去成分と言うこ
ともある)が混在した状態が得られる。そこで排
液管路の閉鎖を解除して前記固液共存状態にピス
トン圧力を加えながら液状の除去成分を系外に排
出し、残つた固相を圧搾しながら十分に固液を分
離して高純度の特定成分を得る方法である。即ち
圧力晶析手順を工程単位に分けると、原料導入、
加圧晶析、過・圧搾、固体取出しの各工程に大
別できるが、いずれも相当な高圧が関与するの
で、汎用されている温度晶析法の技術をそのまま
転用するという訳にはいかず、高圧晶析法の工業
的実施を実現する迄には各工程毎に色々に課題を
克服していかなければならない。
The high-pressure crystallization method involves introducing a raw material consisting of a liquid phase or slurry consisting of multiple components into a high-pressure container, and applying high pressure to the raw material with the liquid discharge pipe closed to crystallize specific components. By this operation, a state in which crystals of a specific component (hereinafter sometimes referred to as a captured component) and residual liquid (hereinafter sometimes referred to as a removed component) are mixed is obtained. Therefore, the drain pipe is unblocked, and the liquid removed components are discharged from the system while applying piston pressure to the above-mentioned solid-liquid coexistence state.The remaining solid phase is squeezed and the solid-liquid is sufficiently separated. It is a method of obtaining specific components of purity. In other words, if the pressure crystallization procedure is divided into process units, raw material introduction,
The process can be roughly divided into pressure crystallization, straining/squeezing, and solid extraction, but all of them involve considerable high pressure, so it is not possible to simply transfer the commonly used temperature crystallization technology. Various problems must be overcome in each step before the high-pressure crystallization method can be commercially implemented.

例えば前記加圧晶析工程では、高圧容器内の混
合スラリーに高圧力を加えて特定成分の晶析を促
進させるものであるが、このときに加えられる高
圧力は、高圧容器内のみならず該容器に連通した
原料供給管路及び排液管路にも同様に作用するの
で、これらの管路内で晶析固化が進行して管路閉
塞を生じることがある。即ち第1図は本発明が適
用される高圧晶析装置を例示する要部縦断面図で
あり、図中1は高圧容器、2はフイルタを含む内
部構造、3はピストン、4は給・排出側ブロツ
ク、5は原料供給管路、6は除去成分排出管路を
示し、この装置を用いた高圧晶析の手順の基本を
簡単に説明すると次の通りである。
For example, in the pressure crystallization step, high pressure is applied to the mixed slurry in the high-pressure container to promote crystallization of a specific component, but the high pressure applied at this time affects not only the inside of the high-pressure container but also the Since it acts similarly on the raw material supply pipe and the drain pipe that communicate with the container, crystallization and solidification may progress within these pipes, resulting in pipe blockage. That is, FIG. 1 is a vertical cross-sectional view of the main parts illustrating a high-pressure crystallizer to which the present invention is applied, in which 1 is a high-pressure container, 2 is an internal structure including a filter, 3 is a piston, and 4 is a supply/discharge system. In the side block, 5 is a raw material supply pipe, and 6 is a removed component discharge pipe.The basic procedure of high-pressure crystallization using this apparatus is briefly explained as follows.

排液弁V6を閉とし給液弁V5を開いて原料供
給管路5から高圧容器2内へ原料を供給する。
The drain valve V 6 is closed and the liquid supply valve V 5 is opened to supply the raw material from the raw material supply pipe 5 into the high pressure container 2 .

給液弁V5を閉じ、ピストン3を降下させて
容器1内のスラリーに高圧力を作用させ、特定
成分の晶析を促進させる。
The liquid supply valve V5 is closed and the piston 3 is lowered to apply high pressure to the slurry in the container 1 to promote crystallization of specific components.

晶析が終わると排液弁V6を開いて過・圧
搾工程に移る。この工程では容器1内に存在す
る液状物をフイルタを通して圧搾・排出させる
が、液状物はフイルタ2の背面側に設けた隙間
から、給・排出側ブロツク4の排液通路8を経
て排出管路6に至り、排液弁V6から排出され
る。
When the crystallization is finished, drain valve V 6 is opened and the process moves on to the filtering and squeezing process. In this process, the liquid present in the container 1 is squeezed and discharged through a filter, and the liquid is passed through the gap provided on the back side of the filter 2, through the drain passage 8 of the supply/discharge side block 4, and into the discharge pipe. 6 and is discharged from the drain valve V6 .

過・圧搾が終了した後には、高純度の物質
が得られる。例えば高圧容器1を開放してケー
キ状に固まつた捕集成分を大気圧下に取出すか
あるいは液状に融解して取出す。
After finishing the filtration and squeezing, a highly pure substance is obtained. For example, the high-pressure container 1 is opened and the cake-like collected component is taken out under atmospheric pressure, or it is melted into a liquid and taken out.

ところが上記の高圧晶析工程では、前述の如
く給液弁V5から高圧容器1に至るまでの原料供
給管路5内、及び高圧容器1内部から排液弁V6
に至るまでの除去成分排出管路6等にも高圧力が
作用するので、これらの管路内でも高圧晶析が進
行して管内流体が晶析固化して管路が閉塞され、
除去成分の排出或は次サイクルにおける原料供給
が不可能になることがある。又運転休止後の再開
に当つて配管が冬期など特に冷却し、同様な事情
に立ち至ることもある。従つてこの様な状況に至
らないように高圧晶析の連続操業を停止して閉塞
の生じた管路を加温し、晶析固化物を融解除去し
なければならないが、この操作は極めて煩雑であ
ると共に生産性を著しく低下させる。即ち前述の
給液から製品取出しに至る1サイクルの所要時間
は数分程度であつて、この操作を昼夜連続で行な
うものであり、一旦管路の閉塞が生じると数時間
操業を停止することになるので、生産性は大幅に
低下する。こうした問題を回避する為装置全体を
保温することも可能であるが、その為には相当の
熱エネルギーを要すると共に、保温材で被装しな
ければならないので継手部の圧洩れ検知が困難と
なる。
However, in the above-mentioned high-pressure crystallization step, as described above, the inside of the raw material supply pipe 5 from the liquid supply valve V 5 to the high-pressure container 1, and the drain valve V 6 from the inside of the high-pressure container 1
Since high pressure also acts on the removed component discharge pipes 6 and the like leading up to the process, high-pressure crystallization progresses in these pipes, and the fluid in the pipes crystallizes and solidifies, clogging the pipes.
It may become impossible to discharge the removed components or to supply raw materials in the next cycle. Furthermore, when restarting operations after a suspension, the pipes may cool down especially in winter, leading to a similar situation. Therefore, to prevent this situation from occurring, it is necessary to stop the continuous operation of high-pressure crystallization, warm the blocked pipe, and melt and remove the solidified crystallization, but this operation is extremely complicated. This also significantly reduces productivity. In other words, the time required for one cycle from supplying liquid to taking out the product is approximately a few minutes, and this operation is performed continuously day and night, and once a blockage occurs in the pipe line, the operation may be halted for several hours. As a result, productivity will drop significantly. To avoid these problems, it is possible to insulate the entire device, but this requires a considerable amount of thermal energy and must be covered with heat insulating material, making it difficult to detect pressure leaks at the joints. .

本発明はこの様な状況のもとで、高圧室内と圧
力的に連通された液体路内での晶析固化を確実に
防止することのできる新規な方法を提供するもの
であつて、その構成は、高圧晶析装置における高
圧の及ぶ液体路内に絶縁被覆されたシース型線状
ヒータを挿通し、これに通電して前記液体路内を
加温し晶析固化の発生を防止するところに要旨を
有するものである。
Under such circumstances, the present invention provides a new method that can reliably prevent crystallization and solidification within a liquid path that is pressure-communicated with a high-pressure chamber. In this method, a sheathed linear heater coated with insulation is inserted into a liquid path under high pressure in a high-pressure crystallizer, and electricity is applied to the sheathed linear heater to heat the inside of the liquid path and prevent the occurrence of crystallization and solidification. It has a gist.

以下実施例図面を参照しながら本発明の構成及
び作用効果を説明するが、図は代表例であつて本
発明を限定する性質のものではなく、前後記の趣
旨に適合し得る範囲でシース型線状ヒータ(以下
シース型ヒータという)の配設位置や配設手段等
を変更することも勿論可能であり、また高圧晶析
装置自体の構造は本発明の技術をいささかも制限
するものではないから、図示した以外のあらゆる
高圧晶析装置にも同様に適用し得ることは言うま
でもない。
The configuration and effects of the present invention will be explained below with reference to the drawings, but the drawings are representative examples and do not limit the present invention. It is of course possible to change the arrangement position and arrangement means of the linear heater (hereinafter referred to as a sheath type heater), and the structure of the high-pressure crystallizer itself does not limit the technology of the present invention in the slightest. Therefore, it goes without saying that the invention can be similarly applied to any high-pressure crystallizers other than those shown.

第2図は本発明を高圧晶析装置の除去成分排出
管路6側に適用した場合の要部断面説明図であ
り、排出管路6内及び排液通路8内にはそのほぼ
全長に亘つて絶縁被覆の施されたシース型ヒータ
Hが挿通されている。尚ヒータHの挿設に当たつ
ては例えば図示した様な3方向管継手9を用いた
その一方端からシース型ヒータHを排出管路6及
び排液通路8内へ挿入し、その先端は電源に直
接々続するか或は給・排出側ブロツク4を介して
電源に接続する。またシース型フヒータHの管継
手9への取付部はろう付けにより液密下に固定し
てリード線を電源に接続すると共に、該管継手9
の残りの分岐管は排出弁V6(第1図)に接続す
る。そして該シース型ヒータHには常時僅かな電
流を流し、排出管路6及び排液通路8を常に加温
しておく。こうしておけば排出管路6及び排液通
路8内における晶析固化が防止され、管路内の処
理物を液状に保つことができるので、管路の閉塞
は確実に防止される。同様に給液管路6内にもシ
ース型ヒータを挿入して加温しておけば、給液管
路6内における閉塞事故も防止することができ
る。更に晶析固化による閉塞事故が問題となる他
の部分として高圧圧力計が挙げられる。即ち高圧
晶析法は圧力を主な制御要素とする精製法に属す
るものであつて高圧圧力計は欠くことのできない
付属機器であるが、該圧力計の内部にも同様に高
圧力が作用する。そして該圧力計の内部で晶析固
化が起こると正確な圧力情報が得られなくなり、
操業管理上重大な問題となるが、本発明を利用す
ればこの様な問題も防止することができる。即ち
第3図は高圧圧力計内における晶析防止に適用し
た場合を例示する概略縦断面図であり、圧力計本
体10の先端部からシース型ヒータHを挿入し、
取付部材11により固定して圧力計内部を加温す
る様にしている。図中12は圧力検知の為のスト
レインゲージを示す。即ち本発明において液体路
とは、処理液の流路に限らず、処理物が流入し且
つ高圧力の及ぶあらゆる部位を総称する。
FIG. 2 is an explanatory cross-sectional view of the main part when the present invention is applied to the removed component discharge pipe 6 side of a high-pressure crystallizer, and there is a main part inside the discharge pipe 6 and the drain passage 8 over almost the entire length thereof. A sheath type heater H coated with an insulating coating is inserted through it. When inserting the heater H, for example, the sheath type heater H is inserted into the discharge pipe line 6 and the drain passage 8 from one end using a three-way joint 9 as shown in the figure, and its tip is It is connected directly to the power supply or via the supply/discharge side block 4. In addition, the attachment part of the sheath type heater H to the pipe joint 9 is fixed in a fluid-tight manner by brazing, and the lead wire is connected to the power supply, and the pipe joint 9 is connected to the lead wire.
The remaining branch pipe is connected to the discharge valve V 6 (FIG. 1). A small amount of current is always passed through the sheath type heater H to keep the discharge pipe line 6 and the drain passage 8 constantly warmed. By doing so, crystallization and solidification in the discharge pipe 6 and the drain passage 8 can be prevented, and the processed material in the pipe can be kept in a liquid state, so that blockage of the pipe can be reliably prevented. Similarly, by inserting a sheath type heater into the liquid supply pipe 6 and heating it, it is possible to prevent the accident of blockage in the liquid supply pipe 6. Furthermore, high-pressure pressure gauges are another part where blockage accidents due to crystallization and solidification are a problem. In other words, the high-pressure crystallization method belongs to a refining method that uses pressure as the main control element, and the high-pressure pressure gauge is an indispensable accessory, but high pressure also acts inside the pressure gauge. . When crystallization and solidification occur inside the pressure gauge, accurate pressure information cannot be obtained.
Although this poses a serious problem in terms of operational management, it is possible to prevent such a problem by using the present invention. That is, FIG. 3 is a schematic vertical cross-sectional view illustrating a case where it is applied to prevent crystallization in a high-pressure pressure gauge, in which a sheath type heater H is inserted from the tip of the pressure gauge body 10,
The pressure gauge is fixed by a mounting member 11 to heat the inside of the pressure gauge. In the figure, 12 indicates a strain gauge for pressure detection. That is, in the present invention, the term "liquid path" is not limited to the flow path of the processing liquid, but is a general term for all parts into which the processing material flows and where high pressure is applied.

この様に本発明は、晶析固化を防止したい部分
に直接シース型ヒータを挿入して加温する方法で
あるから、晶析固化防止の目的を確実に防止し得
ると共に、加熱温度を調整することによつて種々
の物質の高圧晶析に適用することができ、更には
線状のシース型ヒータを挿入するだけであるから
加温場所や高圧晶析装置の種類や規模等にも全く
制約を受けることなく適用することができる。更
に管路内等の直接加温方式であるから、高圧晶析
室内自体を昇温させる恐れも全くない。更に一般
的には装置外へ露出した管路であれば外部から容
易に加温し得るものの装置内部の流路の加温は困
難であるが、本発明であれば装置内部の管路でも
容易に加温し得るなど、現実に即した種々の利益
を享受することができる。
As described above, since the present invention is a method of directly inserting a sheath type heater into the area where crystallization and solidification is to be prevented and heating it, the purpose of preventing crystallization and solidification can be reliably prevented and the heating temperature can be adjusted. As a result, it can be applied to high-pressure crystallization of various substances, and since it only requires the insertion of a linear sheath type heater, there are no restrictions on the heating location or the type or size of the high-pressure crystallizer. It can be applied without receiving. Furthermore, since the method uses a method of directly heating the inside of the pipe, there is no fear of raising the temperature inside the high-pressure crystallization chamber itself. Furthermore, generally speaking, it is easy to heat the pipes exposed to the outside of the device from the outside, but it is difficult to heat the channels inside the device; however, with the present invention, it is easy to heat the pipes inside the device. It is possible to enjoy a variety of practical benefits, such as being able to heat the air to a higher temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高圧晶析装置を例示する要部縦断面
図、第2図は本発明を高圧晶析装置の除去成分排
出管路側へ適用した場合の要部縦断面説明図、第
3図は本発明を高圧圧力計に適用した場合の縦断
面説明図である。 1……高圧容器、2……フイルタ、3……ピス
トン、5……原料供給管路、6……除去成分排出
管路、H……シース型ヒータ。
FIG. 1 is a vertical cross-sectional view of the main part illustrating a high-pressure crystallizer, FIG. 2 is a longitudinal cross-sectional view of the main part when the present invention is applied to the removed component discharge pipe side of the high-pressure crystallizer, and FIG. FIG. 2 is an explanatory longitudinal cross-sectional view when the present invention is applied to a high-pressure pressure gauge. DESCRIPTION OF SYMBOLS 1... High pressure container, 2... Filter, 3... Piston, 5... Raw material supply pipe line, 6... Removal component discharge pipe line, H... Sheath type heater.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧晶析装置において高圧室内と圧力的に連
通された液体路内での固化を防止する方法であつ
て、前記液体路内に絶縁被覆されたシース型線状
ヒータを挿通し、これに通電して前記液体路内を
加熱することを特徴とする液体路内の固化防止
法。
1 A method for preventing solidification in a liquid path that is pressure-communicated with a high-pressure chamber in a high-pressure crystallizer, which involves inserting a sheathed linear heater coated with insulation into the liquid path and energizing it. A method for preventing solidification in a liquid path, characterized by heating the inside of the liquid path.
JP5903684A 1984-03-26 1984-03-26 Prevention of caking in liquid passage of high pressure crystallization device Granted JPS60222106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5903684A JPS60222106A (en) 1984-03-26 1984-03-26 Prevention of caking in liquid passage of high pressure crystallization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5903684A JPS60222106A (en) 1984-03-26 1984-03-26 Prevention of caking in liquid passage of high pressure crystallization device

Publications (2)

Publication Number Publication Date
JPS60222106A JPS60222106A (en) 1985-11-06
JPS6158201B2 true JPS6158201B2 (en) 1986-12-10

Family

ID=13101662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5903684A Granted JPS60222106A (en) 1984-03-26 1984-03-26 Prevention of caking in liquid passage of high pressure crystallization device

Country Status (1)

Country Link
JP (1) JPS60222106A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS472431U (en) * 1971-01-30 1972-08-28
JPS4824635U (en) * 1971-07-28 1973-03-23
JPS54157773A (en) * 1978-06-02 1979-12-12 Kobe Steel Ltd High pressure fractional crystallizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS472431U (en) * 1971-01-30 1972-08-28
JPS4824635U (en) * 1971-07-28 1973-03-23
JPS54157773A (en) * 1978-06-02 1979-12-12 Kobe Steel Ltd High pressure fractional crystallizer

Also Published As

Publication number Publication date
JPS60222106A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
DE69932760T2 (en) Method and apparatus for producing a silicon rod having a structure produced by directional solidification
JPS6158201B2 (en)
US4784766A (en) Pressure crystallization equipment
DE3815089A1 (en) Process and an apparatus for liquefying hot melt compounds
CA1184855A (en) Method for applying a secondary filter layer or precoat layer in a plate filter press and plate filter press for performing the method
EP0238844B1 (en) Method for starting up a steel strip casting machine
CA2030252A1 (en) Method of and apparatus for continuously discharging molten metal and slag
EP0290265A3 (en) Continuous casting of thin metal strip
JPH0128665B2 (en)
US5268132A (en) Process and device for drawing off and blocking off a melt
US5932005A (en) Crystallogenesis device and process
CN103168117B (en) With the ceramic crystal growing apparatus being coated with and prevent the method that melted material bursts in crystal growing apparatus
EP0234491A2 (en) Method of terminating the casting operation in a steel strip casting plant
CN216575459U (en) Crystallization cooling structure for brazing production
CN206720755U (en) Industrial sodium carbonate equipment for purifying
DE3226440A1 (en) Casting mould and process for casting silicon bars which can be used as material for solar cells
CN108465790A (en) It is used to prepare the continuous liquid supply device and application method of the long slab ingot of the big specification of magnesium alloy
EP0055310A1 (en) Method and apparatus for the continuous casting of silicon
CN205627259U (en) Hot melt adhesive heats filter equipment in advance
DE2424840C3 (en) Sealing in a device for the continuous casting of threads
JPS6112727B2 (en)
CA2235319A1 (en) Fat crystallisation method and apparatus therefor
JPS5945739B2 (en) Aluminum refining method
JPS60193503A (en) High-pressure crystallizer and method therefor
JP2814314B2 (en) Horizontal continuous casting start method and apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees