JPS6158150A - Electron bombardment type rotary anode - Google Patents

Electron bombardment type rotary anode

Info

Publication number
JPS6158150A
JPS6158150A JP59154663A JP15466384A JPS6158150A JP S6158150 A JPS6158150 A JP S6158150A JP 59154663 A JP59154663 A JP 59154663A JP 15466384 A JP15466384 A JP 15466384A JP S6158150 A JPS6158150 A JP S6158150A
Authority
JP
Japan
Prior art keywords
cooling water
cross
electron beam
shaped groove
rotary anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59154663A
Other languages
Japanese (ja)
Other versions
JPH0372179B2 (en
Inventor
Masaki Yamabe
山部 正樹
Yoshitaka Kitamura
北村 芳隆
Yasuo Furukawa
古川 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59154663A priority Critical patent/JPS6158150A/en
Publication of JPS6158150A publication Critical patent/JPS6158150A/en
Publication of JPH0372179B2 publication Critical patent/JPH0372179B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Abstract

PURPOSE:To improve the input power of an electron beam by making the cooling water path in a rotary anode whose electron beam bombardment surface is formed into a cross-sectional V-shaped groove branch from the bottom of the V-shaped groove along both the opposed oblique sides. CONSTITUTION:A rotary anode 32 used in an X-ray generation source unit is formed by holding shaft sections 32a and 32b, dish-type electrode plate 32c whose electron bombardment surface of a circumferential section is provided with a cross-sectional groove 32m, donut-type disk 32d, and disk 32h screwed on tip of the shaft section 32b, providing a cooling water sending hole 32e and two or more discharge holes 32f in the shaft section 32b, and also providing two or more discharge holes 32g in the shaft section 32b. In addition, the cooling water from the sending hole 32e passes through a water path 32i, branches into water paths 32j and 32k from the section where the bottom of the V-shaped groove 32m is opposed to it, and is discharged from the discharge holes 32f and 32g. As a result, thermal energy can effectively be absorbed and the long use of the rotary anode can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子衝撃型回転陽極、特にX線発生源装置に使
用される回転陽極に入射された電子のロスが少なく、電
子ビームの入力パワーを高めための改善に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an electron impact type rotating anode, in particular, the loss of electrons incident on the rotating anode used in an X-ray source device is small, and the input power of the electron beam is low. Concerning improvements to increase performance.

高密度集積回路のパターニング技術において、数人〜数
10人の波長の軟X ′f3Tin域によるパターン転
写は、回折および散乱の影響がきわめて小さいことによ
り解像能力が高く、微細且つ精密な転写手段として注目
されている。そして、X線発生源装置には電子衝撃型、
ガスプラズマ型等が利用されており、電子衝撃型はガス
プラズマ型に較べてX線発生効率が劣る反面、安定動作
するため見直されるようになった。
In patterning technology for high-density integrated circuits, pattern transfer using the soft X'f3Tin region with a wavelength of several to several tens of people has high resolution due to extremely small effects of diffraction and scattering, and is a fine and precise transfer method. It is attracting attention as The X-ray source device is an electron impact type,
Gas plasma types and the like have been used, and although the electron impact type has lower X-ray generation efficiency than the gas plasma type, it is now being reconsidered because it operates stably.

〔従来の技術〕[Conventional technology]

第2図はX′fa転写装置の構成例を説明するためその
主要部を示す側面図である。
FIG. 2 is a side view showing the main parts of the X'fa transfer device for explaining an example of its configuration.

第2図において、1はX線発生室、2はX&?!露光室
、3は回転陽極(ターゲット)、4はアライメントコイ
ル、5は電子銃、6はX線取り出し窓、7はX線取り出
し窓6を支持する枠体、8は左右方向へ移動可能なシャ
ッタ、9は所要のパターンが形成された転写マスク、1
0は上面にx+gAレジストが塗布されたウェーハ、1
1は電子ビーム、12.13はターゲットより発射され
たX線である。
In Figure 2, 1 is the X-ray generation chamber, 2 is X&? ! An exposure chamber, 3 a rotating anode (target), 4 an alignment coil, 5 an electron gun, 6 an X-ray extraction window, 7 a frame supporting the X-ray extraction window 6, and 8 a horizontally movable shutter. , 9 is a transfer mask on which a desired pattern is formed, 1
0 is a wafer with x+gA resist coated on the top surface, 1
1 is an electron beam, and 12.13 is an X-ray emitted from the target.

このように構成されたX線転写装置において、゛電子銃
5で発生された電子ビーム11はアライメントコイル4
に制御されて回転する陽極3の円筒面3aに照射しX線
12を発生させ、例えば厚さ数10μmのベリリュウム
にてなるX線取り出し窓6を透過したX線13はマスク
9に照射する。
In the X-ray transfer device configured as described above, the electron beam 11 generated by the electron gun 5 is transferred to the alignment coil 4.
The X-rays 12 are irradiated onto the cylindrical surface 3a of the rotating anode 3 under the control of the X-rays 12, and the X-rays 13 transmitted through the X-ray extraction window 6 made of beryllium with a thickness of several tens of micrometers, for example, are irradiated onto the mask 9.

その結果、X線13は、予め形成されたマスク9の微細
パターンをウェーハ10のレジストに転写させることに
なる。回転陽極3を具えた装置は固定陽極を具えた旧来
装置より、電子ビームの入力パワーが大きいという利点
を有する。
As a result, the X-rays 13 transfer the fine pattern of the mask 9 formed in advance to the resist of the wafer 10. The device with a rotating anode 3 has the advantage that the input power of the electron beam is greater than the conventional device with a fixed anode.

第3図は回転陽極3の断面図(イ)とそのA−A断面図
(U)、第4図は断面7字形溝が電子ビーム衝撃面に形
成された回転陽極13の断面図(イ)とそのB−B断面
図(D)である。
FIG. 3 is a cross-sectional view of the rotating anode 3 (A) and its A-A cross-sectional view (U), and FIG. 4 is a cross-sectional view of the rotating anode 13 in which a 7-shaped groove is formed on the electron beam impact surface (A). and its BB sectional view (D).

第3図において、電子ビーム衝撃面が斜面に形成された
回転陽極3は、フランジ付き軸部3aと皿形電極板3b
とドーナツ形円板30等でなり、軸部3aには冷却水送
入孔3dと複数個(図は6個)の冷却水排出孔3eが設
けである。
In FIG. 3, the rotating anode 3 whose electron beam impact surface is formed as a slope includes a flanged shaft portion 3a and a dish-shaped electrode plate 3b.
The shaft portion 3a is provided with a cooling water inlet hole 3d and a plurality of (six in the figure) cooling water discharge holes 3e.

また、軸部3aのフランジ3fと電極板3b、および軸
部3aのフランジ3「と円板3cとはそれぞれ、冷却水
送入孔3dが連絡する円板形状の水路3g、冷却水排出
孔3eが連絡するドーナツ形状の水路3hを構成するよ
うになっている。
Further, the flange 3f of the shaft portion 3a and the electrode plate 3b, and the flange 3'' of the shaft portion 3a and the disk 3c are a disk-shaped waterway 3g and a cooling water discharge hole 3e, which are connected to the cooling water inlet hole 3d, respectively. A donut-shaped waterway 3h is configured to communicate with each other.

従って、送入孔3dから流入された冷却水は第3図(イ
)に矢印で示す如く、円板形状の水路3gと3hを通り
排出孔3eから排出されるが、電極板3bの電子衝撃面
31の内側に沿って流れる際に、電子ビームの衝撃によ
り加熱された電子衝撃面31を冷却することになる。
Therefore, the cooling water flowing in from the inlet hole 3d passes through the disc-shaped water channels 3g and 3h and is discharged from the discharge hole 3e as shown by the arrow in FIG. When flowing along the inside of the surface 31, the electron impact surface 31, which has been heated by the impact of the electron beam, is cooled down.

第4図において、回転陽極3よりも後方散乱(入射方向
に対し90°以上の角度でおこる散乱)による入射電子
のロスが少なく、入射電子ビームのパワーを大きくでき
ることを特徴とする回転陽極31は、フランジ付き軸部
31a と外周部(電子衝撃面)に断面V字形の溝31
j の形成された皿形電極板31bとドーナツ形円板3
1c等でなり、軸部31aには冷却水送入孔31dと複
数個(図は6個)の冷却水排出孔31eが綬けである。
In FIG. 4, the rotating anode 31 is characterized by less loss of incident electrons due to backscattering (scattering occurring at an angle of 90° or more with respect to the incident direction) than the rotating anode 3, and the power of the incident electron beam can be increased. , a groove 31 with a V-shaped cross section on the flanged shaft portion 31a and the outer peripheral portion (electron impact surface).
The dish-shaped electrode plate 31b and the donut-shaped disk 3 formed with
1c, etc., and the shaft portion 31a is provided with a cooling water inlet hole 31d and a plurality of (six in the figure) cooling water discharge holes 31e.

そして、軸部31aのフランジ31f と電4’ft 
41i 31 b 。
Then, the flange 31f of the shaft portion 31a and the electric 4'ft
41i 31b.

および軸部31aのフランジ31fと円板31cとはそ
れぞれ、冷却水送入孔31dが連絡する水路31g。
The flange 31f of the shaft portion 31a and the disc 31c are each connected to a water channel 31g by a cooling water inlet hole 31d.

冷却水排出孔31eが連絡する水路31hを構成するよ
うになっている。
The cooling water discharge hole 31e constitutes a water channel 31h.

従って、送入孔31dから流入された冷却水は、円板形
状の水路31gと31hを通り排出孔31eから排出さ
れるが、電極部31bの゛溝31j の内側に沿って流
れる際に、電子ビームの衝撃により加熱された電子衝撃
面31iを冷却することになる。
Therefore, the cooling water flowing in from the inlet hole 31d passes through the disk-shaped water channels 31g and 31h and is discharged from the discharge hole 31e, but when flowing along the inside of the groove 31j of the electrode part 31b, it loses electrons. The electron impact surface 31i heated by the beam impact is cooled down.

そこで、回転陽極31の前記冷却水は溝31j の7字
形に沿って、即ちV字形の一方から他方に向かって流れ
る。
Therefore, the cooling water of the rotating anode 31 flows along the 7-shaped groove 31j, that is, from one side of the V-shape to the other.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、回転陽極31の断面7字形溝31j に沿って
流れる冷却水は、前述した如(7字形の一方から他方に
向かって流れるため、前記7字形の一方に近い電子衝撃
面31iの一方の斜面は良い状態で冷却される。その反
面、前記V字形の他方に近い電子衝撃面31iの他方の
斜面は、前記一方の斜面で温められた冷却水が流れるた
め、・前記一方の斜面と同等には冷却されない。
However, since the cooling water flowing along the groove 31j having a cross section of the figure 7 in the rotary anode 31 flows from one side of the figure 7 toward the other, the cooling water flows along one slope of the electron impact surface 31i near one side of the figure 7. On the other hand, the other slope of the electron impact surface 31i near the other side of the V-shape is cooled in the same manner as the one slope because the cooling water heated by the one slope flows. is not cooled.

と共に、水路は対向斜面は2f& 31 jの7字形に
沿って折曲げられるため、該折曲げ部で渦流が生じたり
、前記他方の斜面に対向する水路内に何着した気泡が除
去されデWいという欠点があった。
At the same time, since the opposite slope of the waterway is bent along the figure 7 shape of 2f & 31j, a vortex is generated at the bent part, and air bubbles that have landed in the waterway facing the other slope are removed and dew is caused. There was a drawback.

その結果、電子ビーム衝撃面が断面V字形溝に形成され
た回転陽極を具えた従来のX線転写装置において、電子
ビームの入力パワーをさらに高め高性能化させることが
困難であった。
As a result, it has been difficult to further increase the input power of the electron beam and improve its performance in the conventional X-ray transfer apparatus equipped with a rotating anode in which the electron beam impact surface is formed in a V-shaped groove in cross section.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前述した回転陽極31内を流れる冷却水の上記
欠点に鑑みてなされたものであり、上記問題点の除去を
目的とした本発明は、電子ビーム衝撃面が断面7字形溝
に形成された回転陽極内の冷却水路が前記V字形溝の底
部から対向斜辺の双方へ沿って分流するように構成して
なることを特徴とする電子衝撃型回転陽極である。
The present invention has been made in view of the above-mentioned disadvantages of the cooling water flowing inside the rotating anode 31, and the present invention, which aims to eliminate the above-mentioned problems, has an electron beam impact surface formed in a 7-shaped groove in cross section. The electron impact type rotating anode is characterized in that a cooling water channel in the rotating anode is configured to branch from the bottom of the V-shaped groove to both opposing hypotenuses.

〔作用〕[Effect]

上記の手段によれば、断面V字形をした電子衝撃面はそ
の対向斜辺の双方が均等に冷却され、且つ冷却水の流れ
が従来よりもスムーズになって、電子衝撃部に対向する
水路内壁に気泡が付着するを無くすことができた。
According to the above means, both of the opposing oblique sides of the electron impact surface having a V-shaped cross section are uniformly cooled, and the cooling water flows more smoothly than before, so that the electron impact surface has a V-shaped cross section. I was able to eliminate the adhesion of air bubbles.

そのため、本発明になる回転1場極を具えたX線転写装
置では、電子ビームの入力パワーが向上してχ線発生効
率を高め、高性能化させることになった。
Therefore, in the X-ray transfer apparatus equipped with a rotating single-field pole according to the present invention, the input power of the electron beam is improved, the chi-ray generation efficiency is increased, and the performance is improved.

〔実施例〕〔Example〕

以下に図面を用いて、本発明の実施例に係わる電子Ii
撃型凹転陽極を説明する。
The electronic Ii according to the embodiments of the present invention will be explained below using the drawings.
The hammer-type concave anode will be explained.

第1図は本発明の一実施例になる回転陽極の断面図(イ
)とそのC−C断面図(U)およびD−D断面図(ハ)
である。
Figure 1 is a cross-sectional view (A) of a rotating anode according to an embodiment of the present invention, its CC cross-sectional view (U), and its D-D cross-sectional view (C).
It is.

第1図において、回転陽極32は軸部32a、32bと
外周部(電子衝撃面)に断面■字形の溝32mの形成さ
れた皿形電極板32cとドーナツ形円板32dと軸部3
2bの先端に螺着された円板32h等でなり、。
In FIG. 1, the rotating anode 32 includes shaft portions 32a and 32b, a dish-shaped electrode plate 32c having a groove 32m shaped like a square in cross section on its outer peripheral portion (electron impact surface), a donut-shaped disk 32d, and a shaft portion 3.
It consists of a disc 32h etc. screwed onto the tip of 2b.

軸部32aには冷却水送入孔32eと複数個(図は6個
)の冷却水排出孔32fが、軸部32bには複数個(図
は6個)の冷却水排出孔32gがそれぞれ設けられてい
る。
The shaft portion 32a is provided with a cooling water inlet hole 32e and a plurality of (six in the figure) cooling water discharge holes 32f, and the shaft portion 32b is provided with a plurality of (six in the figure) cooling water discharge holes 32g. It is being

そして、軸部32aのフランジ32qと円板32hとは
適当量だけm11れ皿形電極板32cとドーナツ形円+
&32aとが構成する空洞内に対向し、フランジ32q
と円板32hとは冷却水送入孔32eが連絡する水路3
2i を、フランジ32Qと円板32d1円板32hと
電極板32cとはそれぞれ排出孔32f、32gが連絡
する水路32j 、 32kを構成するようになってい
る。
Then, the flange 32q of the shaft portion 32a and the disk 32h are separated by an appropriate amount m11, and the plate-shaped electrode plate 32c and the donut-shaped circle +
&32a, facing in the cavity formed by the flange 32q.
and the disc 32h are the water channel 3 that the cooling water inlet hole 32e communicates with.
2i, the flange 32Q, the disk 32d1, the disk 32h, and the electrode plate 32c constitute waterways 32j, 32k, which are connected by the discharge holes 32f, 32g, respectively.

従って、送入孔32eから流入された冷却水は、円板形
状の水路32iを通り水路32i、 32j 、 32
にの合流点、即ち■字形溝32mの底部が対向する部分
から、■字形溝32mの対向斜辺の双方へ沿って水路す
′ 32j 、 32kに分流し、該分流が排出孔32〃と
32fからそれぞれ排出されるが、電極板32cの溝3
2mの内側に沿って流れる際に、電子ビーム11の衝撃
に゛より発生した熱エネルギを吸収し除去する。
Therefore, the cooling water flowing in from the inlet hole 32e passes through the disc-shaped waterway 32i and the waterways 32i, 32j, 32.
From the confluence point, that is, the part where the bottoms of the ■-shaped groove 32m face each other, the water is divided into channels 32j and 32k along both opposite oblique sides of the ■-shaped groove 32m, and the branched streams are discharged from the discharge holes 32 and 32f. Although each is discharged, the groove 3 of the electrode plate 32c
As it flows along the inner side of 2 m, it absorbs and removes the thermal energy generated by the impact of the electron beam 11.

従って、回転陽極32は■字形溝32mの対向斜辺はそ
の双方が同等に冷却されることになり、且つ■字形溝3
2mに対向する水路で流速の弱まることおよび渦流の発
生がないため、衝撃電子ビームの入力パワーを従来の回
転陽極3より高めた使用が可能になった。と共に、衝撃
電子ビームのロスが低減されるようになった。
Therefore, in the rotating anode 32, both of the opposing hypotenuses of the ■-shaped groove 32m are equally cooled, and
Since the flow velocity is weakened and no eddy current is generated in the water channels facing each other by 2 m, it has become possible to use the impact electron beam with a higher input power than the conventional rotating anode 3. At the same time, the loss of the impact electron beam is reduced.

なお、第1図(イ)において電極板32cと円板32d
との接合部32nは溶接手段で気密接合し、軸部32a
 と円板32dとの接合部32pおよび軸部32bと電
極板32cとの嵌合部32oとはシール剤を値布して螺
着されている。
In addition, in FIG. 1(a), the electrode plate 32c and the disk 32d
The joint portion 32n with the shaft portion 32a is airtightly joined by welding means.
A joint portion 32p between the disk 32d and a fitting portion 32o between the shaft portion 32b and the electrode plate 32c are screwed together using a sealant.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、衝撃電子ビームの人
力パワーおよびロスが低減され且つ回転陽極の寿命が延
命されるため、X線転写装置に適用したとき該装置の性
能が向上し、転写工数の短縮および回転陽極の長期使用
を実現した効果はきわめて大きい。
As explained above, according to the present invention, the manual power and loss of the impact electron beam are reduced and the life of the rotating anode is extended, so when applied to an X-ray transfer device, the performance of the device is improved and the transfer man-hours are reduced. The effects of shortening the time and long-term use of the rotating anode are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる回転陽極の断面図(イ
)とそのC−C断面図([1)およびD−DUT面図(
ハ)、  、 第2図はX線転写装置の構成例を説明するためその主要
部を示す側面図、 第3図は回転陽極3の断面図(イ)とそのA−A断面図
(ロ)、 第4図は断面■字形溝が電子ビーム衝撃面に形成された
回転陽極13の断面図(イ)とそのB−B断面図(ロ)
、 である。 図中において、 lはX線発生室、2はXvA露光室、 3.3L32は回転陽極(ターゲット)、4はアライメ
ントコイル、 5は電子銃、11は電子ビーム、 12.13はX線、 3a、31a、32a、32bは軸部、3b、 31b
、 32cは皿形電極板、3c、 31c、 32dは
ドーナツ形円板3C13d、31d、32eは冷却水送
入孔3d、3e、 31e、 32f 、 32gは冷
却水排出孔、3g、3h、31g、31h、32t、3
2j、32には水路、31は電子衝撃面、 31J + 32mは断面■字形の溝(電子衝撃面)を
示す。
FIG. 1 is a cross-sectional view (A) of a rotating anode according to an embodiment of the present invention, its CC cross-sectional view ([1)], and a D-DUT cross-sectional view ([1]).
c), , Fig. 2 is a side view showing the main parts of the X-ray transfer device to explain an example of its configuration, and Fig. 3 is a cross-sectional view of the rotating anode 3 (A) and its A-A cross-sectional view (B). , Figure 4 is a cross-sectional view (a) of the rotating anode 13 in which the cross-sectional ■-shaped groove is formed on the electron beam impact surface, and its B-B cross-sectional view (b).
, is. In the figure, l is the X-ray generation chamber, 2 is the XvA exposure chamber, 3.3L32 is the rotating anode (target), 4 is the alignment coil, 5 is the electron gun, 11 is the electron beam, 12.13 is the X-ray, 3a , 31a, 32a, 32b are shaft parts, 3b, 31b
, 32c is a dish-shaped electrode plate, 3c, 31c, 32d is a donut-shaped disk 3C, 13d, 31d, 32e are cooling water inlet holes 3d, 3e, 31e, 32f, 32g are cooling water discharge holes, 3g, 3h, 31g, 31h, 32t, 3
2j and 32 are water channels, 31 is an electron impact surface, and 31J + 32m is a groove (electron impact surface) with a ■-shaped cross section.

Claims (1)

【特許請求の範囲】[Claims] 電子ビーム衝撃面が断面V字形溝に形成された回転陽極
内の冷却水路が前記V字形溝の底部から対向斜辺の双方
へ沿って分流するように構成してなることを特徴とする
電子衝撃型回転陽極。
An electron impact type characterized in that a cooling water channel in a rotating anode in which an electron beam impact surface is formed in a V-shaped groove in cross section is configured to branch from the bottom of the V-shaped groove to both opposing hypotenuses. Rotating anode.
JP59154663A 1984-07-25 1984-07-25 Electron bombardment type rotary anode Granted JPS6158150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154663A JPS6158150A (en) 1984-07-25 1984-07-25 Electron bombardment type rotary anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154663A JPS6158150A (en) 1984-07-25 1984-07-25 Electron bombardment type rotary anode

Publications (2)

Publication Number Publication Date
JPS6158150A true JPS6158150A (en) 1986-03-25
JPH0372179B2 JPH0372179B2 (en) 1991-11-15

Family

ID=15589166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154663A Granted JPS6158150A (en) 1984-07-25 1984-07-25 Electron bombardment type rotary anode

Country Status (1)

Country Link
JP (1) JPS6158150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215541A (en) * 1988-06-30 1990-01-19 Mc Sci:Kk Rotating anode x-ray tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619855A (en) * 1979-07-27 1981-02-24 Nippon Hoso Kyokai <Nhk> X-ray generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619855A (en) * 1979-07-27 1981-02-24 Nippon Hoso Kyokai <Nhk> X-ray generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215541A (en) * 1988-06-30 1990-01-19 Mc Sci:Kk Rotating anode x-ray tube

Also Published As

Publication number Publication date
JPH0372179B2 (en) 1991-11-15

Similar Documents

Publication Publication Date Title
EP0142249B1 (en) High vacuum rotating anode x-ray tube
KR920000912B1 (en) Magnetron cathode for sputtering ferromagnetic targets
JPS6086741A (en) High vacuum rotary anode x-ray tube
CN1910968B (en) X-ray tube cooling device and cooling method and X-ray tube assembly
JPS61153933A (en) High-intensity x ray source
US2559526A (en) Anode target for high-voltage highvacuum uniform-field acceleration tube
JPH0610346B2 (en) Flat magnetron / sputtering cathode assembly
KR850008360A (en) Vacuum sputtering device
JPH09171788A (en) Microfocus x-ray tube and apparatus using it as well as its usage method
US4521903A (en) High power x-ray source with improved anode cooling
JPS6158150A (en) Electron bombardment type rotary anode
CN116844931B (en) X-ray tube, cathode chassis assembly and tube core assembly thereof
EP0342207A4 (en) Target positioning for minimum debris
US20040099643A1 (en) Higher-power laser welding installation
EP0242178A3 (en) X-ray lithography system
EP0342208B1 (en) X-ray lithography system comprising a thin target
JPS6151922A (en) Rotating anode x-ray generating equipment
JP3000417U (en) Cathode sputtering equipment
JP2001508593A (en) X-ray tube with cooling distribution adapted to the shape of the focal spot
JPS62211846A (en) Rotating anode x-ray generator
JPS57154756A (en) Rotary anode for x-ray tube
JPH05114363A (en) Grid type electron gun
JPH08148105A (en) Ion source device
JP2000346998A (en) Electron beam irradiator
JPH0649430Y2 (en) Laser printer