JPS6158076B2 - - Google Patents

Info

Publication number
JPS6158076B2
JPS6158076B2 JP54042789A JP4278979A JPS6158076B2 JP S6158076 B2 JPS6158076 B2 JP S6158076B2 JP 54042789 A JP54042789 A JP 54042789A JP 4278979 A JP4278979 A JP 4278979A JP S6158076 B2 JPS6158076 B2 JP S6158076B2
Authority
JP
Japan
Prior art keywords
signal
signals
gamma correction
circuit
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54042789A
Other languages
Japanese (ja)
Other versions
JPS55135491A (en
Inventor
Masanobu Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4278979A priority Critical patent/JPS55135491A/en
Publication of JPS55135491A publication Critical patent/JPS55135491A/en
Publication of JPS6158076B2 publication Critical patent/JPS6158076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • H04N9/69Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits for modifying the colour signals by gamma correction

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は分離輝度方式にてカラーテレビジヨン
信号を得るカラー撮像装置のガンマ補正方式に関
し、特に白信号、シアン信号、イエロー信号から
なる分離輝度方式のカラー装置のガンマ補正方式
に関する。 入射光を白成分光、シアン成分光、イエロー成
分光に分離するカラー撮像装置については本発明
と同一出願人によつて既に提案(特願昭53−
112770)したように、感度向上を必要とするとき
に有効なカラー撮像装置といえる。本発明はこの
種のカラー撮像装置のガンマ補正方式に関して効
果のある方式を提案するものである。 この種の分離輝度方式のカラー撮像装置のガン
マ補正方式について、前記特願昭53−112770の中
で2つの方式を提案している。その1つの方式は
白信号、シアン信号、イエロー信号をそのままプ
ロセスアンプに通し、一般に知られているガンマ
補正回路を通すことによつて従来の赤信号、緑信
号、青信号の三原色信号のときと同じ径路の映像
増幅回路を用いる方式である。他のひとつの方式
は、白信号、シアン信号、イエロー信号を一般に
知られているガンマ補正回路を通さず、マトリク
ス回路にて、輝度信号と二種類の色差信号とを合
成し、この輝度信号を一般に知られているガンマ
補正回路を通し、二種類の色差信号は副搬送波信
号を変調し、クロミナンス信号にして、このクロ
ミナンス信号を前述の輝度信号が低レベルのと
き、クロミナンス信号の利得を増大させ、輝度信
号が高レベルのときクロミナンス信号の利得を減
少させるように回路を構成し、赤信号、緑信号、
青信号をそれぞれガンマ補正回路を通す通常のガ
ンマ補正方式に近い効果を得ようとする方式であ
る。 前者の方式では、ガンマ補正回路を通す信号が
受像機の三原色信号と対応する赤信号、緑信号、
青信号ではなく、これら三つの信号の和である白
信号、赤信号と緑信号の和であるイエロー信号、
緑信号と青信号の和であるシアン信号がガンマ補
正回路を通るので、正規のガンマ補正の補正量と
は誤差を生ずる。 後者の方式ではガンマ補正の制御信号を輝度信
号から作つているので、輝度信号は赤信号、緑信
号、青信号をそれぞれ0.3、0.59、0.11の割合で混
合された信号であるから、正確なガンマ補正とは
ならない。なぜなら、青色光が基準レベルの強さ
の部分では青信号は1となり、赤信号、緑信号は
0となつて輝度信号は0.11となることから、本来
は輝度信号もクロミナンス信号もレベルを変える
必要がないにもかかわらず輝度信号レベルが小さ
いため、クロミナンス信号の利得を上げ、輝度信
号もガンマ補正されることになることからガンマ
補正に誤差を生じていることは明らかである。 このような後者の方式では青信号、赤信号につ
いては輝度信号を合成する比率が0.11とか0.3と
緑信号に比べて小さい値を示しているので、緑信
号に比べて必要以上に補正され、赤、緑、青の三
原色信号のガンマ補正特性がそろつているという
色再現上の条件、いわゆるガンマバランスがくず
れたことになり、画質劣化をきたす欠点が明らか
となつた。 本発明は前記特願昭53−112770の改良に関し、
その目的とするところは、より誤差の少ない改善
されたガンマ補正方式を提供することにある。 本発明は入射光を白成分光、シアン成分光、イ
エロー成分光に分離するカラー撮像装置(以下W
−YeCy方式カラー撮像装置という)において、
前記マトリクス回路に前記二種類の色差信号のそ
れぞれに対応する利得制御信号を得る回路を設
け、この回路にて得られた二種類の制御信号を、
前記二種類の色差信号から副搬送波信号を有する
クロミナンス信号を合成する信号径路内に設けら
れた前記二種類の色差信号のそれぞれに対応する
利得制御回路に加えることによつて誤差の少ない
ガンマ補正を達成することができる。すなわち、
特願昭53−112770においてはクロミナンス信号の
振幅(利得)を輝度信号から形成した制御信号に
て制御しているため、赤信号、緑信号、青信号に
ある限定された色の信号のみガンマ補正に相当す
る利得制御を行なわねばならないときでも、輝度
信号は赤信号、緑信号、青信号のすべてを含んで
いるため、利得制御を行なわなくてもよい色の信
号まで同じように利得制御を行い、ガンマ補正を
過剰に行うようなことになる。 本発明はこのような欠点をなくすために二種類
の色差信号に対応する信号径路内の利得制御回路
に加える制御信号を、それぞれの色差信号が赤信
号、緑信号、青信号の占める割合から算出して合
成した信号にすることによつて誤差を軽減せしめ
ようとするものである。 以下図面にて具体的な実施例にて詳細に説明す
る。第1図は本発明の第1実施例を示すブロツク
図で、入力端子1,2,3の三信号、すなわち白
信号(W)、イエロー信号(Ye)、シアン信号
(Cy)からマトリクス回路4にて、輝度信号Y、
二種類の色差信号R−Y,B−Yとを合成し、そ
れぞれガンマ補正回路5、副搬送波を振幅変調す
る変調器6,7に送られる。変調器6の出力は利
得制御器10に、変調器7の出力は利得制御器1
1に送られる。 一方、マトリクス回路4は赤信号R、緑信号G
青信号Bを合成し、これら三信号から色差信号R
−Yの利得を制御する信号を合成するR−Y制御
信号合成回路8と、色差信号B−Yの利得を制御
する信号を合成するB−Y制御信号合成回路9と
によつて、それぞれその出力信号を利得制御器1
0,11に送り搬送波を有する色差信号R−Yを
利得制御器10にてガンマ補正に相当する振幅ま
で利得を制御し、搬送波を有する色差信号B−Y
を利得制御器11にて、ガンマ補正に相当する振
幅まで利得を制御する。 利得制御器10,11にて制御された信号は混
合器12に送られ、クロミナンス信号となり、混
合器13にて輝度信号Yと混合され、カラーテレ
ビジヨン信号として出力端子14に送り出され
る。 ここでR−Y制御信号合成回路8とB−Y制御
信号合成回路9の考え方について一つの具体例を
示すとR−Y制御信号に対して考えると、第2図
に示したようにR−Y軸とB−Y軸で示した赤信
号R、緑信号G、青信号Bのベクトルの向きはB
−Y軸に対してそれぞれθR(=103゜)、θG(=
241゜)、θB(=347゜)の角度を有している。こ
れら三色信号のR−Y軸に対する寄与の度合から
考えてR−Y制御信号は次式で表現できる。R-Y (aR|sinθR|+bG|sinθG| +cB|sinθB|) ―(1) ここでa、b、cは定数で、R、G、Bはそれ
ぞれ赤信号、緑信号、青信号の信号レベルを表わ
す。ガンマ補正は低レベル信号の方が利得が高く
高レベル信号は利得が低くなつているので、(1)式
のR、G、Bは小さい値のときに利得を増す方向
に|sinθR|、|sinθG|、|sinθB|は大きい
値のときに利得を増す方向に制御しなければなら
ない。すなわち、R、G、Bと|sinθR|、|
sinθG|、|sinθB|とは全く逆方向に働くこと
になり、定数a、b、cが任意の値では(1)式は正
確なガンマ補正を得ることができない。 例えば、定数a、b、cを次式で表わされる値
に選ぶことによつて、矛盾はなくなりガンマ補正
が可能となる。
The present invention relates to a gamma correction method for a color imaging device that obtains a color television signal using a separate luminance method, and more particularly to a gamma correction method for a color device using a separate luminance method that includes a white signal, a cyan signal, and a yellow signal. A color imaging device that separates incident light into white component light, cyan component light, and yellow component light has already been proposed by the same applicant as the present invention (Japanese Patent Application No.
112770), it can be said to be an effective color imaging device when improved sensitivity is required. The present invention proposes an effective gamma correction method for this type of color imaging device. Regarding the gamma correction method for this type of separated luminance type color imaging device, two methods are proposed in the aforementioned Japanese Patent Application No. 112,770/1983. One method is to pass the white, cyan, and yellow signals as they are through a process amplifier and pass them through a generally known gamma correction circuit, which is the same as the conventional three primary color signals of red, green, and blue. This method uses a video amplification circuit in the path. Another method is to combine the luminance signal and two types of color difference signals in a matrix circuit, without passing the white, cyan, and yellow signals through a generally known gamma correction circuit. Through a commonly known gamma correction circuit, the two color difference signals modulate the subcarrier signal into a chrominance signal, which increases the gain of the chrominance signal when the luminance signal is at a low level. , the circuit is configured to reduce the gain of the chrominance signal when the luminance signal is at a high level, and the red signal, green signal,
This method attempts to achieve an effect similar to the normal gamma correction method in which each green signal passes through a gamma correction circuit. In the former method, the signal passing through the gamma correction circuit is a red signal, a green signal, and a signal corresponding to the receiver's three primary color signals.
Instead of a green signal, a white signal is the sum of these three signals, a yellow signal is the sum of a red signal and a green signal,
Since the cyan signal, which is the sum of the green signal and the blue signal, passes through the gamma correction circuit, an error occurs from the normal gamma correction amount. In the latter method, the control signal for gamma correction is generated from the luminance signal, and since the luminance signal is a mixture of red, green, and blue signals at a ratio of 0.3, 0.59, and 0.11, respectively, accurate gamma correction is possible. It is not. This is because when the intensity of blue light is at the reference level, the blue signal is 1, the red and green signals are 0, and the luminance signal is 0.11, so originally it is necessary to change the levels of both the luminance signal and chrominance signal. Since the luminance signal level is small even though there is no error, the gain of the chrominance signal is increased and the luminance signal is also gamma corrected, so it is clear that an error has occurred in the gamma correction. In this latter method, the ratio for combining luminance signals for green and red signals is 0.11 or 0.3, which is a small value compared to green signals, so the red and red signals are corrected more than necessary compared to green signals. It has become clear that the condition for color reproduction, where the gamma correction characteristics of the three primary color signals of green and blue are the same, so-called gamma balance, has been disrupted, resulting in a deterioration in image quality. The present invention relates to an improvement of the above-mentioned Japanese Patent Application No. 53-112770,
The aim is to provide an improved gamma correction scheme with fewer errors. The present invention is a color imaging device (hereinafter referred to as W) that separates incident light into white component light, cyan component light, and yellow component light.
-YeCy color imaging device),
The matrix circuit is provided with a circuit for obtaining gain control signals corresponding to each of the two types of color difference signals, and the two types of control signals obtained by this circuit are
Gamma correction with less error is performed by adding it to gain control circuits corresponding to each of the two types of color difference signals provided in a signal path that synthesizes a chrominance signal having a subcarrier signal from the two types of color difference signals. can be achieved. That is,
In Japanese patent application No. 112770, the amplitude (gain) of the chrominance signal is controlled by a control signal formed from the luminance signal, so only limited color signals in the red, green, and blue signals can be gamma corrected. Even when corresponding gain control must be performed, since the luminance signal includes all red, green, and blue signals, gain control is performed in the same way even for color signals that do not require gain control, and gamma This would result in over-correction. In order to eliminate such drawbacks, the present invention calculates the control signal to be applied to the gain control circuit in the signal path corresponding to the two types of color difference signals from the ratio of the red signal, green signal, and blue signal to each color difference signal. The purpose of this is to reduce errors by creating a signal that is synthesized. A detailed explanation will be given below using specific examples with reference to the drawings. FIG. 1 is a block diagram showing a first embodiment of the present invention, in which three signals from input terminals 1, 2, and 3, that is, a white signal (W), a yellow signal (Ye), and a cyan signal (Cy) are connected to a matrix circuit 4. , the luminance signal Y,
The two types of color difference signals R-Y and B-Y are combined and sent to a gamma correction circuit 5 and modulators 6 and 7 that amplitude modulate the subcarrier, respectively. The output of modulator 6 is sent to gain controller 10, and the output of modulator 7 is sent to gain controller 1.
Sent to 1. On the other hand, the matrix circuit 4 has a red signal R and a green signal G.
The blue signal B is synthesized and the color difference signal R is obtained from these three signals.
-Y control signal synthesis circuit 8 that synthesizes a signal that controls the gain of the color difference signal B-Y, and a B-Y control signal synthesis circuit 9 that synthesizes a signal that controls the gain of the color difference signal B-Y. Output signal to gain controller 1
The gain controller 10 controls the gain of the color difference signal R-Y having a carrier wave at 0 and 11 to an amplitude corresponding to gamma correction, and converts the color difference signal B-Y having a carrier wave to
A gain controller 11 controls the gain to an amplitude corresponding to gamma correction. The signals controlled by the gain controllers 10 and 11 are sent to a mixer 12 to become a chrominance signal, mixed with a luminance signal Y in a mixer 13, and sent to an output terminal 14 as a color television signal. Here, we will give one specific example of the concept of the R-Y control signal synthesis circuit 8 and the B-Y control signal synthesis circuit 9. Considering the R-Y control signal, as shown in FIG. The direction of the vector of red signal R, green signal G, and green signal B shown on the Y axis and B-Y axis is B
θ R (=103°) and θ G (=
241°) and θ B (=347°). Considering the degree of contribution of these three color signals to the RY axis, the RY control signal can be expressed by the following equation. RY (aR | sinθ R | +bG | sinθ G | +cB | sinθ B |) -(1) Here, a, b, and c are constants, and R, G, and B are the signal levels of the red signal, green signal, and blue signal, respectively. represents. In gamma correction, the gain is higher for low-level signals and lower for high-level signals, so when R, G, and B in equation (1) are small values, the gain is increased by |sinθ R |, |sinθ G | and |sinθ B | must be controlled to increase the gain when they have large values. That is, R, G, B and |sinθ R |, |
It works in the completely opposite direction to sinθ G | and |sinθ B |, and if the constants a, b, and c have arbitrary values, equation (1) cannot obtain accurate gamma correction. For example, by selecting the constants a, b, and c as values expressed by the following equations, there is no contradiction and gamma correction becomes possible.

【表】 したがつて、(1)式はR-Y (R+G+B−R|sinθR| −G|sinθG|−B|sinθB|) ―(3) となる。同様にB−Y制御信号も次式で表現でき
る。B-Y (R+G+B−R|cosθR| −G|cosθG|−B|cosθB|) ―(4) (3)式も(4)式もかつこ内の変数が小さい値のとき
に、利得制御器10,11の利得を増大させ、か
つこ内に変数が大きい値のときに利得制御器1
0,11の利得を減少させる方向に働くようにす
れば、正しいガンマ補正の補正量にすることがで
きる。(3)式と(4)式にθR=103゜、θG=241゜、θ
B347゜を代入すると次式のように表現できる。 R-Y(0.026R+0.125G+0.775B) ―(5) B-Y(0.758R+0.515G+0.026B) ―(6) 第3図は第1図の変形で、もう1つの実施例を
示すブロツク図を表わす。第1図と同じ機能の回
路は同一の符号で示した。すなわち、第1図と異
なつているところは変調器と利得制御器との信号
の流れの順序を逆にしていることである。第1図
では変調器6あるいは7にて変調された信号の利
得を制御しているが、第3図では色差信号そのも
のを利得制御器10′あるいは11′にて利得を制
御しその後変調器6′あるいは7′にて変調する構
成にしているが、効果そのものは第1図の場合と
何ら変らない。 本発明は以上のように、二種類の色差信号に寄
与する割合を赤信号、緑信号、青信号のそれぞれ
ベクトルから、それぞれの色差軸に投影した量に
よつて導く方法によると、ガンマ補正の近似の度
合も一段と改善される。 以上の説明のとおり、W−YeCy方式では感度
が向上する代りに色再現の上で問題があるが、本
発明のガンマ補正の方式を採用することによつて
その補正誤差を軽減でき、色再現の上で改善でき
る。 本発明に示した制御信号を合成するために、白
信号、イエロー信号、シアン信号から赤信号、緑
信号、青信号を合成するなら、これらの信号から
カラーテレビジヨン信号に変換した方がよいよう
に一見考えられるが、このような方法で形成した
赤信号、緑信号、青信号は入力の白信号、イエロ
ー信号、シアン信号から差信号を合成することに
よつて得ているので、信号対雑音比が悪くなつて
いる。従つて、本発明ではガンマ補正の制御信号
のように帯域が狭く、多少信号対雑音比が悪くて
も、綜合の画質を悪くする度合の少ないところに
用いるなら、それほど画質劣化の原因とはならな
い。 従つて、本発明のガンマ補正を採用すると、感
度が向上した上に、色再現上の画質劣化も少ない
という利点が得られる。 尚、本発明は実施例に限定されることなく、例
えばR−Y制御信号合成回路8とB−Y制御信号
合成回路9とが赤信号R、緑信号G、青信号Bか
ら合成するのではなく、マトリクス回路4の中に
組み込んで直接白信号W、イエロー信号Ye、シ
アン信号Cyからそれぞれの制御信号を合成する
回路にしても同様の効果が得られ、本発明の請求
範囲に含まれることは明らかである。また制御信
号が(5)式と(6)式で表現されるものに限定されるこ
となく、(1)式を満たす考え方の制御信号であれ
ば、すべて本発明の請求範囲に含まれる。
[Table] Therefore, equation (1) becomes RY (R+G+B−R|sinθ R | −G|sinθ G |−B|sinθ B |) −(3). Similarly, the BY control signal can also be expressed by the following equation. BY (R+G+B−R | cosθ R | −G | cosθ G | −B | cosθ B |) - (4) Both equations (3) and (4) indicate that the gain controller 10 and 11, and when the variable in this range has a large value, the gain controller 1
If the gain of 0 and 11 is made to work in the direction of decreasing, it is possible to obtain the correct amount of gamma correction. In equations (3) and (4), θ R = 103°, θ G = 241°, θ
By substituting B 347°, it can be expressed as the following equation. RY (0.026R+0.125G+0.775B) -(5) BY (0.758R+0.515G+0.026B) -(6) FIG. 3 is a modification of FIG. 1 and shows a block diagram showing another embodiment. Circuits with the same functions as in FIG. 1 are indicated by the same symbols. That is, the difference from FIG. 1 is that the order of signal flow between the modulator and the gain controller is reversed. In FIG. 1, the gain of the signal modulated by the modulator 6 or 7 is controlled, but in FIG. 3, the gain of the color difference signal itself is controlled by the gain controller 10' or 11', and then Although the configuration is such that the modulation is carried out at 1' or 7', the effect itself is no different from the case shown in FIG. As described above, the present invention approximates gamma correction by deriving the proportion contributing to two types of color difference signals from the respective vectors of the red signal, green signal, and blue signal by the amounts projected onto the respective color difference axes. The degree of this will also be further improved. As explained above, the W-YeCy method improves sensitivity but has problems with color reproduction, but by adopting the gamma correction method of the present invention, the correction error can be reduced and color reproduction is improved. It can be improved on. If red, green, and blue signals are to be synthesized from white, yellow, and cyan signals in order to synthesize the control signals shown in the present invention, it is better to convert these signals into color television signals. Although it may seem obvious at first glance, the red, green, and blue signals formed in this way are obtained by synthesizing the difference signals from the input white, yellow, and cyan signals, so the signal-to-noise ratio is low. It's getting worse. Therefore, in the present invention, even if the band is narrow and the signal-to-noise ratio is somewhat poor, such as the control signal for gamma correction, if it is used in a place where the degree of deterioration of the overall image quality is small, it will not cause much deterioration of image quality. . Therefore, when the gamma correction of the present invention is employed, it is possible to obtain the advantage that not only the sensitivity is improved but also there is little deterioration in image quality in terms of color reproduction. Note that the present invention is not limited to the embodiments, and for example, the R-Y control signal synthesis circuit 8 and the B-Y control signal synthesis circuit 9 do not synthesize the red signal R, the green signal G, and the blue signal B. The same effect can be obtained by incorporating the circuit into the matrix circuit 4 and directly synthesizing the respective control signals from the white signal W, yellow signal Ye, and cyan signal Cy, and this is not within the scope of the present invention. it is obvious. Further, the control signal is not limited to those expressed by equations (5) and (6), but any control signal that is based on a concept that satisfies equation (1) is included within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一つの実施例を示すブロツク
図、第2図は赤信号、緑信号、青信号のベクトル
図、第3図は本発明のもう一つの実施例を示すブ
ロツク図を表わす。 なお、図において、1は白信号Wの入力端子、
2はイエロー信号Yeの入力端子、3はシアン信
号Cyの入力端子、4はマトリクス回路、5はガ
ンマ補正回路、6,6′はR−Y信号の変調器、
7,7′はB−Y信号の変調器、8はR−Y制御
信号合成回路、9はB−Y制御信号合成回路、1
0,10′はR−Y信号系の利得制御器、11,
11′はB−Y信号系の利得制御器、12,13
は混合器、14は出力端子を、表わす。
FIG. 1 is a block diagram showing one embodiment of the invention, FIG. 2 is a vector diagram of red, green, and green lights, and FIG. 3 is a block diagram showing another embodiment of the invention. In addition, in the figure, 1 is the input terminal of the white signal W,
2 is an input terminal for the yellow signal Ye, 3 is an input terminal for the cyan signal Cy, 4 is a matrix circuit, 5 is a gamma correction circuit, 6 and 6' are R-Y signal modulators,
7, 7' are B-Y signal modulators, 8 is an R-Y control signal synthesis circuit, 9 is a B-Y control signal synthesis circuit, 1
0 and 10' are gain controllers for the R-Y signal system; 11;
11' is a gain controller for the B-Y signal system, 12, 13
represents a mixer, and 14 represents an output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 入射光をシアン成分光とイエロー成分光とこ
れら2つの成分光の分光特性を包み込む分光特性
を有する白成分光とに分解する分解光学系と、こ
れら3つの成分光を電気信号に変換する撮像デバ
イスと、この電気信号に変換されたシアン信号と
白信号とから輝度信号と二種類の色差信号とを合
成するマトリクス回路とを有するカラー撮像装置
のガンマ補正方式において、前記マトリクス回路
に、前記二種類の色差信号のそれぞれに対応する
利得制御信号を得る回路を設け、この回路にて得
られた二種類の制御信号を、前記二種類の色差信
号から副搬送波信号を有するクロミナンス信号を
合成する信号径路内に設けられた前記二種類の色
差信号のそれぞれに対応する利得制御回路に加え
るようにしたことを特徴とするカラー撮像装置の
ガンマ補正方式。
1. A separation optical system that separates incident light into cyan component light, yellow component light, and white component light that has spectral characteristics that encompass the spectral characteristics of these two component lights, and an imaging device that converts these three component lights into electrical signals. In a gamma correction method for a color imaging device, which includes a device and a matrix circuit that synthesizes a luminance signal and two types of color difference signals from a cyan signal and a white signal converted into electric signals, A circuit is provided to obtain a gain control signal corresponding to each of the types of color difference signals, and the two types of control signals obtained by this circuit are combined into a chrominance signal having a subcarrier signal from the two types of color difference signals. A gamma correction method for a color imaging device, characterized in that the gamma correction method is applied to a gain control circuit corresponding to each of the two types of color difference signals provided in the path.
JP4278979A 1979-04-09 1979-04-09 Gamma correction system for color pickup device Granted JPS55135491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4278979A JPS55135491A (en) 1979-04-09 1979-04-09 Gamma correction system for color pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4278979A JPS55135491A (en) 1979-04-09 1979-04-09 Gamma correction system for color pickup device

Publications (2)

Publication Number Publication Date
JPS55135491A JPS55135491A (en) 1980-10-22
JPS6158076B2 true JPS6158076B2 (en) 1986-12-10

Family

ID=12645725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4278979A Granted JPS55135491A (en) 1979-04-09 1979-04-09 Gamma correction system for color pickup device

Country Status (1)

Country Link
JP (1) JPS55135491A (en)

Also Published As

Publication number Publication date
JPS55135491A (en) 1980-10-22

Similar Documents

Publication Publication Date Title
US4833527A (en) Luminance signal forming circuit
JPS5919515B2 (en) White balance adjustment circuit
KR970007799B1 (en) Luminance signal forming circuit
KR0121296B1 (en) Solid-state color imaging apparatus
US4327374A (en) Flesh correction circuit for a color television receiver
US3699241A (en) Color television system with automatic correction of chroma amplitudes
JPS6158076B2 (en)
US3272916A (en) Color television systems utilizing a true luminance signal
JP2517934B2 (en) Luminance signal forming circuit
US2729697A (en) Color television system
JPS6158077B2 (en)
EP0130294B1 (en) Selective primary colour enhancement apparatus for an image pick-up device
JP2569046B2 (en) Method and apparatus for correcting luminance signal
US3281528A (en) Colour television system including means for separately deriving the luminance component
JP4499200B2 (en) Color signal processing circuit, processing method therefor, and camera system
JPS5819089A (en) Luminance signal correcting system for color television camera
JPH0369478B2 (en)
JPS58104588A (en) Color video camera
JPH0628480B2 (en) Color camera
JP2667496B2 (en) Color television transmission luminance signal correction circuit
KR910009883B1 (en) Color television transmission circuit
JP3067342B2 (en) Telecine equipment
KR100234742B1 (en) Device for compensating colour signal perimeter
JPS6219114B2 (en)
JP3018612B2 (en) Single-chip color camera and color signal processing circuit used therefor