JPS6157918B2 - - Google Patents

Info

Publication number
JPS6157918B2
JPS6157918B2 JP3008582A JP3008582A JPS6157918B2 JP S6157918 B2 JPS6157918 B2 JP S6157918B2 JP 3008582 A JP3008582 A JP 3008582A JP 3008582 A JP3008582 A JP 3008582A JP S6157918 B2 JPS6157918 B2 JP S6157918B2
Authority
JP
Japan
Prior art keywords
polarity
coil
electrolytic
steel strip
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3008582A
Other languages
Japanese (ja)
Other versions
JPS58147597A (en
Inventor
Susumu Mizukami
Hiroyasu Yuasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3008582A priority Critical patent/JPS58147597A/en
Publication of JPS58147597A publication Critical patent/JPS58147597A/en
Publication of JPS6157918B2 publication Critical patent/JPS6157918B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、冷間圧延を経た鋼帯の箱焼鈍前に
おける電解洗浄方法に関し、とくに上記箱焼鈍後
のコイルの巻戻しの際に懸念されたかき疵の発生
を有利に防止するとともに、電解中における電極
面の汚染も効果的に軽減できる冷延鋼帯の電解洗
浄方法を提案しようとするものである。 冷間圧延後コイルに巻取つた鋼帯は、その後の
箱焼鈍において板面同志の焼付きがしばしば生じ
る。このため従来からかような焼付きの防止につ
いては種々の対策が講じられ、とくに箱焼鈍前
に、けい酸ソーダをベースとした洗浴中で電解洗
浄を施して鋼帯表面の清浄化に併せ該鋼帯表面に
SiO2を付着させることが良好な結果をもたらす
ことが知られている。 ところでかような電解洗浄を施したコイルは、
箱焼鈍後にスキンパスミルにて調質圧延を施され
るのが普通であるが、その巻戻しの際、鋼帯同志
のずれによりかき疵が生じる不利があつた。ここ
にかき疵は、焼鈍後の調質圧延工程で巻戻す際
に、密着度不足によつて鋼帯同志間に生じたすき
間が、マンドレル(巻取軸)の上方にきたときに
コイルの自重によつてなくなるときに生じるすべ
りに起因して発生するものである。 また上記の如き電解洗浄においては、使用する
電極の極性配列は一定に保持されているのである
が、長時間連続して同一極性配列で電解処理を行
つた場合には、陰極面にFeやSiO2が付着して汚
れ、陰極面と電解液との間の抵抗が増大する結
果、洗浄に必要とする所定の電流を流すために
は、陰極面の汚染度に応じて電解電圧を無用に上
昇させねばならない不利もあつた。 この発明は上記の諸問題を有利に解決するもの
で、箱焼鈍時に焼付きを防止できるのは言うまで
もなく、コイルの巻戻しの際におけるかき疵の発
生を有利に防止すると共に、電解中での電極面の
汚染も効果的に軽減できる冷延鋼帯の電解洗浄方
法を提案するものである。 ところでこの種電解洗浄において、使用される
電極数は通常、鋼帯の片側につきそれぞれ4〜8
個であり、その極性配列はたとえば片側4個の場
合を例にとると、第1図a,bにそれぞれ示した
ように、鋼帯Sを挾んで同一極性をなし通板の向
きには極性を異にする2組の電極セル対が隣接極
性を揃えて+−−+,−++−のごとくに配列さ
れている。なお電極の極性配列は上記の他にも−
+−+や+−+−が考えられるが、かような極性
配列では無効電流が流れ易いので使用されること
は少ない。 以下この明細書で、第1図aおよびbにそれぞ
れ示したように最終電極が+,−で終る極性配列
をそれぞれ正電極極性配列および逆電極極性配列
と呼ぶ。 さて上掲したような正,逆電極極性いずれかの
極性配列で長時間の電解洗浄を行つた場合には、
前述した如く陰極面にFeやSiO2などが付着して
汚れ、陰極面と電解液との間の抵抗が増大する結
果、所定の電流を流すのに必要とする電解電圧は
上昇する。 この問題の解決手段としては、一定電解時間毎
に電極の極性配列の切替えを行うことが考えられ
る。第2図に極性配列の切替えを行つた場合の電
解電流と電圧との関係を、切替えを行わない従来
例と比較して示す。図中〇印は全て正電極極性で
電解洗浄を行つた従来例、●印は6コイルを正電
極極性、1コイルを逆電極極性の割合で電解洗浄
した場合、そして×印は1コイルにつきその13%
は逆電極極性、残り87%は正電極極性と単一コイ
ル内で極性配列の切替えを行つた場合について調
べたものである。 第2図より明らかなように数コイル毎または単
一コイル内において極性配列の切替えを行うこと
によつて電解電圧の上昇を低く抑えることはでき
る。しかしながら後述するように極性配列の切替
えによつてSiO2の付着量は大きく変動するの
で、単純に数コイル毎または単一コイル内で極性
配列の切替えを行うことは、焼付き防止の観点か
らは好ましくないのである。 すなわち、発明者らは上記2種の極性配列を用
いた場合における電解洗浄能力ならびにSiO2
着量について調べたところ、 (1) 洗浄能力は供給電流値によつて一義的に定ま
り、電極の極性配列には無関係である (2) 鋼帯面へのSiO2付着量は極性配列の違いに
よつて大きく異なり、第3図に示したように、
正電極極性配列aの場合は逆電極極性配列bと
した場合に比べSiO2付着量は2倍以上も多い ことがわかつたのである。 ところが焼付きならびにかき疵の発生状態につ
いての発明者らの詳しい調査によれば、第6図に
示したように、焼付きはコイルの外巻部すなわち
コイル肉厚で真中から外側に発生し易く、一方か
き疵はコイルの内巻部とくに肉厚300mm以上内に
発生することが新たに究明されたのである。 従つて、焼付きが発生し易いコイル外巻部につ
いては焼付き防止のために一定量以上のSiO2
着量を必要とするものの、内巻部については外巻
部ほどのSiO2付着量は必要とせず幾分少くして
もさしつかえなく、むしろ幾分少めにすることに
よつてかえつて内巻部での鋼帯の密着度は増して
かき疵の発生防止により効果があると考えられ
る。 そこで発明者らは、単一コイル内における
SiO2付着量の調整につき、極性配列の切替えに
よるSiO2付着量の変化を適用したところ、所期
した目的の達成に関し予想外の好結果が得られた
のである。 この発明は上記の新規知見に立脚するものであ
る。 すなわちこの発明は、冷間圧延を経た鋼帯を、
その箱焼鈍に先立つてけい酸ソーダベースの洗浴
中で電解洗浄しついでコイルに巻取るに当り、こ
の巻取りの途中で、鋼帯を挾んで同一極性をなし
通板の向きには極性を異にする複数の電解セル対
を、電解洗浄槽内で該セル対それぞれの隣接極性
を揃えて配列した電極の極性配列について、逆電
極極性配列から正電極極性配列となる極性の切替
えを行うことから成る、冷間圧延鋼帯の電解洗浄
方法である。 この発明法に従い、最初は逆電極極性で電解を
行い、コイル内巻部でのSiO2付着量は幾分少く
して従来に比べよりタイトに巻取ることにより、
焼鈍後のコイル巻戻しの際に懸念されたかき疵の
発生を完全に防止でき、ついで極性を正電極極性
に切替えて電解洗浄を続行することにより、コイ
ル外巻部における焼付きの発生も完全に防止で
き、さらには極性の切替えにより陰極面の汚染も
従来に較べ大幅に軽減されるのである。 ここに極性の切替えは、巻取り肉厚が、200mm
好ましくは300mm程度となつた時点から、最終肉
厚の50%に達するまでの間に行うのが望ましい。
というのは、後述の実施例にも示すとおり、巻取
り肉厚がほぼ200mmとなつた時点で切替えればか
き疵の発生はほとんどなく、従つてかき疵防止の
観点からは、巻取り肉厚がほぼ200mmに達した時
点以降であれば何時でもいいわけであるが、第6
図にも示したとおり、巻取り肉厚が50%を超える
と焼付きが発生するおそれが大きくなるからであ
る。 なおこの発明法において用いるけい酸ソーダと
しては、オルトけい酸ソーダ(2Na2O・SiO2)、
メタけい酸ソーダ(Na2SiO3)、二けい酸ソーダ
(Na2Si2O5)および四けい酸ソーダ(Na2Si4O9)の
いずれもが使用できるが、中でもオルトけい酸ソ
ーダが有利に適合する。 また極性の切替えに当つては、コイル演算器に
よつて巻取り径を求め、巻取り径が所定の値に達
した時点で電解電流極性切替器に切替信号を送る
ことにより、容易に切替えることができる。 以下この発明の実施例について説明する。 第4図に、この発明の実施に用いて好適な電解
洗浄装置を示し、番号1はペイオフリール、2は
電解洗浄槽、3はテンシヨンリール、4は巻取り
径演算器、5は電解電流極性の切替器、6は電解
電流の制御器である。 さて冷間圧延後コイルに巻取つた種々の鋼帯
を、オルトけい酸ソーダをベースとした電解洗浄
槽2に通し、電解電流:3000A×4で電解電流値
を一定に保持する条件下にまず逆電極極性で電解
洗浄を開始した。そして第5図aに示したように
テンシヨンリール3に巻取られたコイルの巻取り
径が900mm(巻取り肉厚:196mm)になつた時点
で、巻取り径演算器4から切替器5に極性切替え
信号を送り、逆電極極性から正電極極性に切替え
て電解洗浄を継続した。 電解終了後の各コイルの外径は平均2300〜最大
2650mm(コイル肉厚:896〜1071mm)であり、い
ずれのコイルにおいても極性の切替え前後におけ
るSiO2の付着量は第5図bに示したとおりであ
つた。 電解中における電解電圧の最高値を表1にす
る。また各コイルに焼鈍を施したのち、巻戻す際
のかき疵発生率について調べた結果を表1に示し
た。いずれのコイルにおいても焼付きの発生は皆
無であつた。 なお比較のため、電解途中で極性の切替えを行
わない従来法に従つて電解を行つた場合の電解電
圧の最高値ならびに巻戻しの際のかき疵発生率に
ついても調べ、その結果を表1に併せ示した。
The present invention relates to an electrolytic cleaning method before box annealing of a steel strip that has undergone cold rolling, and in particular advantageously prevents the occurrence of scratches that were a concern when unwinding a coil after box annealing, and also This paper attempts to propose an electrolytic cleaning method for cold-rolled steel strips that can effectively reduce contamination on electrode surfaces. Steel strips wound into coils after cold rolling often suffer from seizures between the sheet surfaces during subsequent box annealing. For this reason, various measures have been taken to prevent such seizure, and in particular electrolytic cleaning is carried out in a sodium silicate-based cleaning bath before box annealing to clean the surface of the steel strip. on the steel strip surface
It is known that depositing SiO 2 gives good results. By the way, a coil that has been electrolytically cleaned like this,
Normally, after box annealing, skin pass rolling is performed in a skin pass mill, but this has the disadvantage of causing scratches due to misalignment of the steel strips during unwinding. Scratches occur when the gap between the steel strips due to insufficient adhesion occurs when the coil is unrolled in the temper rolling process after annealing, and when it reaches above the mandrel (winding shaft), the coil's own weight This occurs due to the slippage that occurs when it disappears due to In addition, in electrolytic cleaning as described above, the polarity arrangement of the electrodes used is kept constant, but when electrolytic treatment is performed continuously for a long time with the same polarity arrangement, Fe and SiO2 are formed on the cathode surface. 2 adheres and becomes dirty, increasing the resistance between the cathode surface and the electrolyte.As a result, in order to flow the specified current required for cleaning, the electrolytic voltage needs to increase unnecessarily depending on the degree of contamination on the cathode surface. There were some disadvantages that I had to deal with. This invention advantageously solves the above-mentioned problems, and it goes without saying that it can prevent seizure during box annealing, as well as advantageously prevent the occurrence of scratches during coil unwinding. This paper proposes an electrolytic cleaning method for cold-rolled steel strips that can effectively reduce contamination on electrode surfaces. By the way, in this type of electrolytic cleaning, the number of electrodes used is usually 4 to 8 on each side of the steel strip.
For example, if there are four pieces on one side, the polarity arrangement is as shown in Figure 1 a and b, with the same polarity across the steel strip S and the same polarity in the direction of threading. Two sets of electrode cell pairs having different polarities are arranged in a manner such as +--+, -++- with the adjacent polarities aligned. In addition to the above, there are other polar arrangements of the electrodes.
+-+ and +-+- are conceivable, but such a polar arrangement is rarely used because reactive current tends to flow. Hereinafter, in this specification, the polarity arrays in which the final electrodes end in + and -, as shown in FIGS. 1a and 1b, respectively, will be referred to as positive electrode polarity arrays and reverse electrode polarity arrays, respectively. Now, when electrolytic cleaning is performed for a long time with either the positive or reverse polarity arrangement as listed above,
As described above, the cathode surface is contaminated with Fe, SiO 2 , etc., and the resistance between the cathode surface and the electrolyte increases, resulting in an increase in the electrolytic voltage required to flow a predetermined current. A possible solution to this problem is to switch the polarity arrangement of the electrodes every fixed electrolysis time. FIG. 2 shows the relationship between electrolytic current and voltage when the polarity arrangement is switched, in comparison with a conventional example in which the polarity arrangement is not switched. In the figure, the ○ marks are all conventional examples in which electrolytic cleaning was performed with positive electrode polarity, the ● marks are the cases in which 6 coils were electrolytically cleaned with positive electrode polarity and 1 coil with reverse electrode polarity, and the × marks are the cases in which electrolytic cleaning was performed for each coil. 13%
87% is the reverse electrode polarity, and the remaining 87% is the positive electrode polarity, and the polarity arrangement is changed within a single coil. As is clear from FIG. 2, by switching the polarity arrangement every several coils or within a single coil, it is possible to suppress the increase in electrolytic voltage to a low level. However, as will be explained later, the amount of SiO 2 deposited varies greatly depending on the switching of the polarity arrangement, so simply switching the polarity arrangement every few coils or within a single coil is not effective from the viewpoint of preventing seizure. This is not desirable. That is, the inventors investigated the electrolytic cleaning ability and the amount of SiO 2 deposited when using the above two types of polarity arrangement, and found that (1) The cleaning ability is uniquely determined by the supplied current value, and the polarity of the electrode (2) The amount of SiO 2 deposited on the steel strip surface varies greatly depending on the polarity arrangement, and as shown in Figure 3,
It was found that in the case of positive electrode polarity arrangement a, the amount of SiO 2 deposited was more than twice as large as in the case of reverse electrode polarity arrangement b. However, according to the inventors' detailed investigation into the occurrence of seizure and scratches, as shown in Figure 6, seizure tends to occur from the center to the outside in the outer winding portion of the coil, that is, the coil wall thickness. On the other hand, it has been newly discovered that scratches occur in the inner winding part of the coil, especially in the wall thickness of 300 mm or more. Therefore, although a certain amount or more of SiO 2 is required to adhere to the outer winding part of the coil, where seizure is likely to occur, in order to prevent seizure, the inner winding part does not have as much SiO 2 adhesion as the outer winding part. It is not necessary to reduce the amount to some extent, but it is thought that by reducing the amount to a certain extent, the degree of adhesion of the steel strip at the inner winding portion will increase, which will be more effective in preventing the occurrence of scratches. . Therefore, the inventors developed a method within a single coil.
When adjusting the amount of SiO 2 deposited by changing the amount of SiO 2 deposited by changing the polarity arrangement, unexpectedly good results were obtained in achieving the desired purpose. This invention is based on the above-mentioned novel findings. In other words, this invention provides steel strips that have undergone cold rolling.
Prior to box annealing, the steel strip is electrolytically cleaned in a sodium silicate-based washing bath and then wound into a coil.During this winding, the steel strip is sandwiched to make it have the same polarity and to change the polarity in the direction of threading. A plurality of electrolytic cell pairs are arranged in an electrolytic cleaning tank with the adjacent polarities of each cell pair aligned, and the polarity of the electrodes is switched from a reverse electrode polarity arrangement to a positive electrode polarity arrangement. This is a method for electrolytic cleaning of cold rolled steel strip. According to this invention method, electrolysis is performed with opposite electrode polarity at first, and the amount of SiO 2 deposited on the inner winding part of the coil is somewhat reduced, and by winding it more tightly than before,
The occurrence of scratches that were a concern when unwinding the coil after annealing can be completely prevented, and by switching the polarity to positive electrode polarity and continuing electrolytic cleaning, the occurrence of seizure on the outer winding of the coil can be completely prevented. This can be prevented, and furthermore, by switching the polarity, contamination of the cathode surface can be significantly reduced compared to the conventional method. To change the polarity here, the winding thickness is 200mm.
It is preferable to carry out the process from the time when the wall thickness reaches approximately 300 mm to the time when the wall thickness reaches 50% of the final thickness.
This is because, as shown in the examples below, if the switch is made when the winding thickness reaches approximately 200 mm, scratches will hardly occur. Any time is fine as long as it reaches approximately 200mm, but the 6th
This is because, as shown in the figure, if the winding thickness exceeds 50%, there is a greater risk of seizure occurring. Note that the sodium silicate used in this invention method includes sodium orthosilicate (2Na 2 O・SiO 2 ),
Sodium metasilicate (Na 2 SiO 3 ), sodium disilicate (Na 2 Si 2 O 5 ), and sodium tetrasilicate (Na 2 Si 4 O 9 ) can all be used, but sodium orthosilicate is particularly useful. suit advantageously. In addition, when switching the polarity, the winding diameter is determined by a coil calculator, and when the winding diameter reaches a predetermined value, a switching signal is sent to the electrolytic current polarity switch, making it easy to switch. I can do it. Examples of the present invention will be described below. FIG. 4 shows an electrolytic cleaning device suitable for carrying out the present invention, where 1 is a payoff reel, 2 is an electrolytic cleaning tank, 3 is a tension reel, 4 is a winding diameter calculator, and 5 is an electrolytic current. The polarity switch 6 is an electrolytic current controller. Now, the various steel strips wound into coils after cold rolling were passed through an electrolytic cleaning tank 2 based on sodium orthosilicate, and the electrolytic current value was kept constant at 3000 A x 4. First, electrolytic cleaning was started with reverse electrode polarity. As shown in FIG. A polarity switching signal was sent to the electrode, and the electrolytic cleaning was continued by switching from the reverse electrode polarity to the positive electrode polarity. The outer diameter of each coil after electrolysis is average 2300~maximum
The coil thickness was 2650 mm (coil thickness: 896 to 1071 mm), and the amount of SiO 2 deposited before and after polarity switching was as shown in FIG. 5b in each coil. Table 1 shows the maximum electrolysis voltage during electrolysis. Furthermore, Table 1 shows the results of investigating the scratch occurrence rate during unwinding after annealing each coil. There was no occurrence of seizure in any of the coils. For comparison, we also investigated the maximum electrolysis voltage and scratch occurrence rate during unwinding when electrolysis was performed according to the conventional method without switching the polarity during electrolysis, and the results are shown in Table 1. Also shown.

【表】 表1から明らかなように、実施例においてはか
き疵の発生は従来例に比べて格段に低減され、ま
た電解電圧の上昇も大幅に軽減された。 以上述べたようにこの発明法によれば、箱焼鈍
時における焼付きを防止できるのは言うまでもな
く、箱焼鈍後の巻戻しの際に発生が懸念されたか
き疵を格段に低減できる上、電解中での陰極面の
汚染を効果的に軽減して、電解電圧の上昇を低く
抑えることができる。
[Table] As is clear from Table 1, the occurrence of scratches in the examples was significantly reduced compared to the conventional example, and the increase in electrolytic voltage was also significantly reduced. As described above, according to the method of the present invention, it goes without saying that it is possible to prevent seizure during box annealing, and it is also possible to significantly reduce scratches that may occur during unwinding after box annealing. It is possible to effectively reduce contamination of the cathode surface and suppress the increase in electrolytic voltage to a low level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはそれぞれ正電極極性および逆電
極極性の配列図、第2図は電解電流と電圧との関
係を示したグラフ、第3図は電極の極性配列の違
いによるSiO2付着量の差異と示したグラフ、第
4図はこの発明の実施に用いて好適な電解洗浄装
置の配置図、第5図aは電極の極性切替えのタイ
ミングを示したグラフ、同図bは極性切替え前後
におけるSiO2付着量の変化を示したグラフ、そ
して第6図は、コイル肉厚比とかき疵発生率およ
び焼付き発生率との関係を示したグラフである。
Figures 1a and b are arrangement diagrams of positive electrode polarity and reverse electrode polarity, respectively. Figure 2 is a graph showing the relationship between electrolytic current and voltage. Figure 3 is the amount of SiO 2 deposited depending on the difference in electrode polarity arrangement. 4 is a layout diagram of an electrolytic cleaning device suitable for implementing the present invention, FIG. 5 a is a graph showing the timing of electrode polarity switching, and FIG. 5 b is a graph showing the timing before and after polarity switching FIG. 6 is a graph showing the change in the SiO 2 adhesion amount, and FIG. 6 is a graph showing the relationship between the coil thickness ratio and the scratch occurrence rate and seizure occurrence rate.

Claims (1)

【特許請求の範囲】[Claims] 1 冷間圧延を経た鋼帯を、その箱焼鈍に先立つ
てけい酸ソーダベースの洗浴中で電解洗浄しつい
でコイルに巻取るに当り、この巻取りの途中で、
鋼帯を挾んで同一極性をなし通板の向きには極性
を異にする複数の電解セル対を、電解洗浄槽内で
該セル対それぞれの隣接極性を揃えて配列した電
極の極性配列について、逆電極極性配列から正電
極極性配列となる極性の切替えを行うことを特徴
とする冷間圧延鋼帯の電解洗浄方法。
1. When a cold-rolled steel strip is electrolytically cleaned in a sodium silicate-based washing bath prior to box annealing and then wound into a coil, during this winding,
Regarding the polarity arrangement of electrodes, in which a plurality of electrolytic cell pairs having the same polarity across a steel strip and having different polarities in the direction of threading are arranged in an electrolytic cleaning tank with the adjacent polarities of each of the cell pairs aligned, A method for electrolytic cleaning of cold rolled steel strip, characterized by switching the polarity from a reverse electrode polarity arrangement to a positive electrode polarity arrangement.
JP3008582A 1982-02-26 1982-02-26 Electrolytic washing method of cold rolled steel strip Granted JPS58147597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008582A JPS58147597A (en) 1982-02-26 1982-02-26 Electrolytic washing method of cold rolled steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008582A JPS58147597A (en) 1982-02-26 1982-02-26 Electrolytic washing method of cold rolled steel strip

Publications (2)

Publication Number Publication Date
JPS58147597A JPS58147597A (en) 1983-09-02
JPS6157918B2 true JPS6157918B2 (en) 1986-12-09

Family

ID=12293952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008582A Granted JPS58147597A (en) 1982-02-26 1982-02-26 Electrolytic washing method of cold rolled steel strip

Country Status (1)

Country Link
JP (1) JPS58147597A (en)

Also Published As

Publication number Publication date
JPS58147597A (en) 1983-09-02

Similar Documents

Publication Publication Date Title
US8632955B2 (en) Conditioning a surface of an aluminium strip
JPS6157918B2 (en)
JPS6157917B2 (en)
US20090209444A1 (en) Instrument for cleaning and aluminum workpiece
JPS62237B2 (en)
KR101568477B1 (en) Method for annealing-pickling ferritic stainless steel having high silicon content
CN115921531A (en) Preparation method of alloy foil
JP4763273B2 (en) Method for manufacturing electrode material for electrolytic capacitor
JPH0790700A (en) Electrolytic washing device for cold rolled steel strip
JP3495265B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP4052140B2 (en) Steel plate shape correction method
JP2003119585A (en) Method for manufacturing aluminum foil electrolytic capacitor electrode
JPS60231000A (en) Electrolytically treating device for steel strip
JPH11199933A (en) Production of grain oriented magnetic steel sheet
JPS5893875A (en) Production of directional silicon steel plate
JPS6131200B2 (en)
JPH11191401A (en) Steel plate for dry battery
JPH0280105A (en) Method for cold rolling silicon steel sheet
KR20050068253A (en) Method for manufacturing hot-rolled high carbon steel sheets with excellent red scales surface appearance
SU1255224A1 (en) Method of producing sheets
JPH0474439B2 (en)
JPH0623576Y2 (en) Insulation Guide for Electrodes and Steel Sheets in Electrolytic Cleaning Equipment for Steel Sheets
EP0947588B1 (en) Process for hot-rolling stainless steel and surface treatment compositions used therein
JPH05205983A (en) Aluminum foil for electrolytic capacitor
JP2698408B2 (en) Cold rolling method in the production process of grain oriented silicon steel sheet.