JPS6157902B2 - - Google Patents

Info

Publication number
JPS6157902B2
JPS6157902B2 JP3062782A JP3062782A JPS6157902B2 JP S6157902 B2 JPS6157902 B2 JP S6157902B2 JP 3062782 A JP3062782 A JP 3062782A JP 3062782 A JP3062782 A JP 3062782A JP S6157902 B2 JPS6157902 B2 JP S6157902B2
Authority
JP
Japan
Prior art keywords
welding
metal
weld
cast iron
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3062782A
Other languages
Japanese (ja)
Other versions
JPS58151451A (en
Inventor
Atsunobu Suzuki
Masaru Meguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3062782A priority Critical patent/JPS58151451A/en
Publication of JPS58151451A publication Critical patent/JPS58151451A/en
Publication of JPS6157902B2 publication Critical patent/JPS6157902B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶接時の硬化を抑制した溶接性の優れ
た鋳鉄に関するものである。一般に鋳鉄は溶接部
の白銑化傾向が強いことから、複雑な形状のもの
も一体でつくる鋳造品が多く、溶接する例が少な
い。僅かに鋳造後の補修が、使用中の破損の修理
に溶接が適用されているにすぎない。従つて溶接
性が改善されると、耐摩耗材料、防振材料、構造
物材料等への用途は飛躍的に拡大されることが期
待される。 従来白銑化による硬化を抑制する技術として溶
接棒の組成、被覆材の組成、溶接方法、溶接装置
の改善に重点が置かれていたが、それぞれに欠点
があり、それらは溶着金属と未溶解母材の界面近
傍に存在している薄い固液混合相において、黒鉛
化元素の未拡散及び不完全拡散層が生じ、この部
分が母材からの冷却効果を受けて白銑化凝固する
ということが考えられ、これらの点から鋳物自体
の溶接性を向上させる技術の必要性にせまられ
た。本発明は鋳物の溶接時の硬化を抑制する元素
を添加し、溶接性の優れた鋳鉄を提供することを
目的とするものである。 すなわち、本発明は (1) C:2〜4.8%、Mn:0.1〜1.5%、Si:2.5〜
4.5%、Al:1.0〜4.0%、Sb:0.05〜1.0%、残
部鉄および不可避的不純物からなることを特徴
とする溶接性の優れた鋳鉄。 (2) c:2〜4.8%、Mn:0.1〜1.5%、Si:2.5〜
4.5%、Al:1.0〜4.0%、Sb:0.05〜1.0%、
Ti:0.01〜1.0%残部鉄及び不可避的不純物か
らなることを特徴とする溶接性の優れた鋳鉄で
ある。 本発明において、溶接性をよくするために、溶着
金属面白銑化を防止することが必要である。すな
わち、本発明鋳鉄は従来知られている鋳鉄に較べ
てAl、Sb、Tiを添加したのが特徴であり、これ
らの添加元素は母材と溶着金属の界面及び溶着金
属へ溶出し、この部分の凝固中に黒鉛晶出の核と
なり、その成長を促進し、白銑化を防止すると考
えられる。またこれらの元素は母材内においても
黒鉛化を促進し、白銑化防止に有効な初晶黒鉛の
晶出をもたらす。即ち溶接中、この初晶黒鉛の未
溶解部分が、母材と溶着金属の界面及び溶着金属
へ移動拡散し、その部分が凝固する過程におい
て、黒鉛晶出の核となり、その成長を促進し、白
銑化を防止すると考えられる。 以下本発明にかゝる鋳鉄を表を参照してさらに
詳しく説明する。第1表に試験片素材溶製条件、
第2表に試験片形状、第3表に溶接棒の化学組
成、第4表にTIG溶接条件を示した。
The present invention relates to cast iron that suppresses hardening during welding and has excellent weldability. In general, cast iron has a strong tendency to whiten the welded parts, so many cast products are made in one piece, even those with complex shapes, and there are few examples of welding. Only a few post-casting repairs and welding have been applied to repair damage during use. Therefore, if weldability is improved, it is expected that the applications for wear-resistant materials, anti-vibration materials, structural materials, etc. will be dramatically expanded. Traditionally, technologies to suppress hardening caused by white pig iron have focused on improving the composition of the welding rod, the composition of the sheathing material, the welding method, and the welding equipment, but each has its drawbacks, and they are caused by the increase in deposited metal and unmelted metal. In the thin solid-liquid mixed phase that exists near the interface of the base metal, an undiffused and incompletely diffused layer of graphitizing elements occurs, and this area solidifies into white iron due to the cooling effect from the base metal. From these points, there was a need for a technology to improve the weldability of the casting itself. The object of the present invention is to provide cast iron with excellent weldability by adding elements that suppress hardening during welding of castings. That is, the present invention has (1) C: 2 to 4.8%, Mn: 0.1 to 1.5%, Si: 2.5 to
Cast iron with excellent weldability characterized by consisting of 4.5%, Al: 1.0~4.0%, Sb: 0.05~1.0%, the balance being iron and unavoidable impurities. (2) c: 2~4.8%, Mn: 0.1~1.5%, Si: 2.5~
4.5%, Al: 1.0~4.0%, Sb: 0.05~1.0%,
Ti: Cast iron with excellent weldability characterized by consisting of 0.01-1.0% balance iron and unavoidable impurities. In the present invention, in order to improve weldability, it is necessary to prevent the deposited metal from becoming dull. In other words, the cast iron of the present invention is characterized by the addition of Al, Sb, and Ti compared to conventionally known cast irons, and these added elements are eluted into the interface between the base metal and the weld metal and into the weld metal. It is thought that it becomes a nucleus for graphite crystallization during solidification, promotes its growth, and prevents whitening. These elements also promote graphitization within the base metal, leading to the crystallization of primary graphite, which is effective in preventing whitening. That is, during welding, the undissolved portion of primary graphite moves and diffuses to the interface between the base metal and the weld metal and to the weld metal, and in the process of solidification, this portion becomes a nucleus for graphite crystallization and promotes its growth. It is thought that this prevents whitening. The cast iron according to the present invention will be explained in more detail below with reference to the table. Table 1 shows test piece material melting conditions,
Table 2 shows the shape of the test piece, Table 3 shows the chemical composition of the welding rod, and Table 4 shows the TIG welding conditions.

【表】【table】

【表】【table】

【表】【table】

【表】 第5表は、C:3.69〜3.82%、Mn:0.52〜0.55
%を基材にSi:2.09〜4.75%の範囲で4水準の溶
接母材を溶製し、過共晶溶接棒を用いて、第1
表、第2表、第3表の条件によりTIG溶接し、溶
接部の特性を調べ溶接性を評価した。
[Table] Table 5 shows C: 3.69-3.82%, Mn: 0.52-0.55
% base material and Si: 4 levels of welding base material in the range of 2.09 to 4.75%, using a hypereutectic welding rod, the first
TIG welding was performed under the conditions shown in Tables 2 and 3, and the characteristics of the welded parts were examined to evaluate weldability.

【表】 第5表は溶接母材の化学組成と溶接部の特性及
び総合評価をしたものでSi:2.51%以上におい
て、母材と溶着金属の界面に白銑化がみられず、
引張試験では母材から破断し、かたさは機械加工
の容易なHv=300を下廻つた。しかしSi:4.75%
含有する母材は、本発明における鋳鉄に許容され
るかたさであるHRB=100を上廻つている。 第6表は、C:3.64〜3.78%、Si2.57〜2.62
%、Mn:0.49〜0.52%を基材に、Al:0.9〜4.2の
範囲で4水準の溶接表材を第1表と同じ条件で溶
製し、第2,3,4と同じ条件で溶接し、溶接部
の特性を調べ、溶接性を評価した。
[Table] Table 5 shows the chemical composition of the weld base metal, the characteristics of the weld zone, and the overall evaluation.When Si: 2.51% or more, no whitening was observed at the interface between the base metal and the weld metal.
In the tensile test, it broke from the base material, and the hardness was below Hv = 300, which is easy to machine. But Si: 4.75%
The base material contained exceeds HRB=100, which is the hardness allowed for cast iron in the present invention. Table 6 shows C: 3.64-3.78%, Si2.57-2.62
%, Mn: 0.49 to 0.52% as a base material, Al: 0.9 to 4.2, four levels of welding surface materials were melted under the same conditions as in Table 1, and welded under the same conditions as in Tables 2, 3, and 4. Then, the characteristics of the welded part were investigated and weldability was evaluated.

【表】 第6表はAl含有の溶接母材の化学組成と溶接
部の特性及び総合評価を示したものである。
Al1.0〜4.0%の範囲で母材と溶着金属界面に白銑
化がみられず、引張試験では母材で破断した。溶
接作業性を阻害するキツシユ黒鉛晶出は1.0〜4.0
%で問題ないぐらい少なく1.0%未満で観察され
なかつた。かたさは1.0%以上でHv=300以下で
機械加工はきわめて容易であつた。したがつて
Al含有量は1.0〜4.0%が適当である。 第7表はC:3.64〜3.74%、Si:2.60〜2.63
%、Mn:0.48〜0.52%を基材に、Sb:0.04〜1.15
%の範囲で4水準の溶接素材を表1と同じ条件で
溶製し、表2,3,4と同じ条件で溶接し、溶接
部の特性を調べ、溶接性を評価した。
[Table] Table 6 shows the chemical composition of the Al-containing weld base metal, the characteristics of the weld zone, and the overall evaluation.
In the Al range of 1.0 to 4.0%, no whitening was observed at the interface between the base metal and the weld metal, and fracture occurred at the base metal in the tensile test. Hard graphite crystallization that impairs welding workability is 1.0 to 4.0
%, it was so small that there was no problem, and it was not observed at less than 1.0%. The hardness was 1.0% or more, Hv = 300 or less, and machining was extremely easy. Therefore
A suitable Al content is 1.0 to 4.0%. Table 7 shows C: 3.64-3.74%, Si: 2.60-2.63
%, Mn: 0.48~0.52% as base material, Sb: 0.04~1.15
Four levels of welding materials in the range of % were melted under the same conditions as in Table 1, welded under the same conditions as in Tables 2, 3, and 4, the characteristics of the welded parts were examined, and weldability was evaluated.

【表】 第7表はSb含有の溶接母材の化学組成と溶接
部の特性及び総合評価を示したものである。
Sb:0.05%以上で母材と溶着金属界面に白銑化が
起こらない。しかし、1.01%では異形黒鉛の晶出
が観察された。引張試験ではSb:0.05〜1.01%の
範囲のものが母材で破断した。同範囲でかたさは
Hv=300以下で、機械加工は可能であつた。した
がつてSb含有量は0.05〜1.00%が適当である。 以上の実験例が示すように、鋳鉄の溶接時の硬
化を抑制するためにSi,Al,Sbの元素を添加し
その抑制効果を調べその有効なことが解つた。こ
れらの元素の含有量はSi:2.5〜4.5%、Al:1.0〜
4.0%、Sb:0.05〜1.0、Siの含有量は2.1%より少
ない含有量では母材と溶着金属の界面における白
銑化を防止できない。4.5%より多い場合、フエ
ライト結晶格子へのSiの固溶が増し、硬化と延性
阻害が起こる。Alを含有せしめた場合、1.0%よ
り少ない量では白銑化を防止できない。4.0%よ
り多い場合、母材の初晶黒鉛の過剰晶出のため、
その強度低下を招き、また溶接中キツシユ黒鉛が
晶出して溶接作業性を阻害し、溶接部の外観を悪
くする。Sb含有の場合、0.05%より少ない場合、
白銑化を防止できない。1.0%より多い場合、黒
鉛形状に変化をきたし、母材及び溶接部の強度及
び延性を阻害することになる。このように本発明
は、普通の鋳鉄においてSi,Al,Sbを共存せし
むることによつて極めて溶接性のより鋳鉄が得ら
れる。 ところで、Sbを含有させた溶接母材の基地に
はパーライトが折出し、母材の延性を阻害するこ
とがある。それを防ぐにはTiが添加される。 第8表C:3.56〜3.61%、Si:2・57〜2.65
%、Mn:0.49〜0.54%、Sb:0.95〜1.03%を基材
にTi:0.008〜1.020%の範囲で4水準の溶接素材
を表1の条件で溶製し、パーライトの析出状況、
Ti介在物の晶出状況を調べたものである。
[Table] Table 7 shows the chemical composition of the Sb-containing weld base metal, the characteristics of the weld zone, and the overall evaluation.
Sb: At 0.05% or more, whitening does not occur at the interface between the base metal and the weld metal. However, crystallization of irregular graphite was observed at 1.01%. In the tensile test, samples containing Sb in the range of 0.05 to 1.01% broke at the base metal. Hardness within the same range
Machining was possible at Hv=300 or less. Therefore, the appropriate Sb content is 0.05 to 1.00%. As shown in the above experimental examples, the elements Si, Al, and Sb were added to suppress hardening during welding of cast iron, and the suppression effect was investigated and found to be effective. The content of these elements is Si: 2.5~4.5%, Al: 1.0~
If the Si content is less than 4.0%, Sb: 0.05 to 1.0, and Si content is less than 2.1%, whitening at the interface between the base metal and the weld metal cannot be prevented. If the amount exceeds 4.5%, solid solution of Si in the ferrite crystal lattice increases, causing hardening and ductility inhibition. When Al is contained, whitening cannot be prevented if the amount is less than 1.0%. If it is more than 4.0%, due to excessive crystallization of primary graphite in the base material,
This leads to a decrease in the strength, and during welding, hard graphite crystallizes, impeding welding workability and worsening the appearance of the welded part. If Sb content is less than 0.05%,
Unable to prevent whitening. If it is more than 1.0%, the shape of graphite will change and the strength and ductility of the base metal and weld will be impaired. As described above, in the present invention, by coexisting Si, Al, and Sb in ordinary cast iron, cast iron with extremely high weldability can be obtained. By the way, pearlite may be precipitated in the base of the welding base material containing Sb, which may impede the ductility of the base material. To prevent this, Ti is added. Table 8 C: 3.56-3.61%, Si: 2.57-2.65
%, Mn: 0.49 to 0.54%, Sb: 0.95 to 1.03%, and Ti: 0.008 to 1.020%, four levels of welding materials were melted under the conditions shown in Table 1, and the precipitation status of pearlite,
The crystallization status of Ti inclusions was investigated.

【表】 第8表が示す通り、Ti0.010%以上でパーライ
トは消滅し、Ti1.020%以上でTi介在物の晶出が
認められた。したがつてSb0.05〜1.00%含有した
溶接母材においてはTi0.010〜1.000%含有せしめ
ることが適当であるパーライト析出を阻止する元
素として、Ti以外にNi,Co,Cu,Bなど元素が
あり、これらの元素を活用することも可能であ
る。 なお、Cは鋼の場合、溶着金属部分および熱影
響部を硬化させ、靭性を低下させるため、できる
限り低い方がこのましいのは、よく知られている
ことである。 しかるに鋳鉄においては、既に多量の黒鉛を含
んでいるため溶接部へのCの溶け込み量を調整す
ることは全く不可能である。従つて鋳鉄の溶接性
に対するCの影響は小さい。しかし本発明の構成
と幾つかの実験例に示したように、溶接部の白銑
化防止には、初晶黒鉛の晶出と未溶解初晶黒鉛の
残留と核作用が必要であるそのための条件として
は、過共晶組織であることが必要であるが、あま
りに過共晶であると、溶接作業を阻害し、かつ溶
接の特性を劣化する。 そこで実験結果より、Cについては次のように
規定した。 すなわち、C:2〜4.8%である。C:4.8%以
上であると溶接部の特性を劣化せしめるので4.8
以下と限定した。 実施例 1 第9表に示す化学成分を持つ元素と残部鉄及び
不可避不純物からなる鋳鉄を表1の条件で溶製
し、これを表2に示した形状に加工し、表3に示
した化学成分を持つた溶接棒を用い、表4の条件
でTIG溶接し、溶接部の各種特性を調査した。そ
の結果白銑の晶出が全く見られず、引張試験では
母材において破断した。 かたさは、ビツカースかたさ、300以下で容易
に機械加工できた。またキツシユ黒鉛の晶出はみ
られなかつた。上述したように、この母材は溶接
性のすぐれたものである。なお、母材の金属組織
の基地には若干、パーライト折出がみとめられ
た。
[Table] As shown in Table 8, pearlite disappeared when Ti was 0.010% or more, and crystallization of Ti inclusions was observed when Ti was 1.020% or more. Therefore, in a welding base material containing 0.05 to 1.00% Sb, it is appropriate to contain 0.010 to 1.000% Ti.In addition to Ti, other elements such as Ni, Co, Cu, and B can be used to prevent pearlite precipitation. It is also possible to utilize these elements. It is well known that in the case of steel, C hardens the welded metal part and the heat affected zone and reduces toughness, so it is preferable that C be as low as possible. However, since cast iron already contains a large amount of graphite, it is completely impossible to adjust the amount of C that penetrates into the weld. Therefore, the influence of C on the weldability of cast iron is small. However, as shown in the structure of the present invention and some experimental examples, crystallization of primary graphite, residual undissolved primary graphite, and nucleation are necessary to prevent whitening of the weld zone. As a condition, it is necessary to have a hypereutectic structure, but if it is too hypereutectic, it will hinder welding work and deteriorate the welding characteristics. Therefore, based on the experimental results, C was defined as follows. That is, C: 2 to 4.8%. C: If it is 4.8% or more, the properties of the weld will deteriorate, so 4.8
Limited to the following. Example 1 Cast iron consisting of the elements with the chemical components shown in Table 9, the balance iron, and unavoidable impurities was melted under the conditions shown in Table 1, processed into the shape shown in Table 2, and processed into the chemical composition shown in Table 3. TIG welding was carried out under the conditions shown in Table 4 using a welding rod with different compositions, and various characteristics of the welded parts were investigated. As a result, no crystallization of white pig iron was observed, and fracture occurred in the base metal in the tensile test. Hardness was less than 300 Bitkers hardness and could be easily machined. In addition, no crystallization of woody graphite was observed. As mentioned above, this base material has excellent weldability. In addition, some pearlite precipitation was observed at the base of the metallographic structure of the base metal.

【表】 実施例 2 第10表に示す化学成分を持つ元素と残部鉄及び
不可避不純物からなる鋳鉄製溶接母材を表1の条
件で溶製し、これを表2に示した形状に加工し、
表3に示した化学成分を持つた溶接棒を用い、表
4の条件でTIG溶接し、実施例1と同様、溶接部
の各種特性を調査した。その結果、母材の金属組
織の基地にパーライト及びTi介在物の晶出が全
くみられなかつた。又、溶接部には白銑、キツシ
ユ黒鉛などの晶出がみられず、かたさもビツカー
スかたさ、300以下であつた。上述したようにこ
の溶接母材は溶接部における溶接性及び母材自身
の性質がともにすぐれたものである。
[Table] Example 2 A cast iron welding base material consisting of the elements with the chemical components shown in Table 10, the balance iron, and unavoidable impurities was melted under the conditions shown in Table 1, and processed into the shape shown in Table 2. ,
Using a welding rod having the chemical composition shown in Table 3, TIG welding was performed under the conditions shown in Table 4, and as in Example 1, various characteristics of the welded part were investigated. As a result, no crystallization of pearlite or Ti inclusions was observed at the base of the metallographic structure of the base material. In addition, no crystallization of white pig iron or wood graphite was observed in the welded area, and the hardness was less than 300 bits. As mentioned above, this welding base material has excellent weldability at the welded part and the properties of the base material itself.

【表】 本発明の溶接母材は予熱後熱が不要であり、溶
接方法、溶接装置に白銑化を防止するための考慮
を払わずに溶接することができる。また、溶接母
材の形状、肉厚にも制約を受けずに溶接可能であ
る。
[Table] The welding base metal of the present invention does not require heating after preheating, and can be welded without taking into account the welding method or welding equipment to prevent whitening. Further, welding can be performed without being restricted by the shape or thickness of the welding base material.

Claims (1)

【特許請求の範囲】 1 C:2〜4.8%、Mn:0.1〜1.5%、Si:2.5〜
4.5%、Al:1.0〜4.0%、Sb:0.05〜1.0%、残部
鉄および不可避的不純物からなることを特徴とす
る溶接性の優れた鋳鉄。 2 C:2〜4.8%、Mn:0.1〜1.5%、Si:2.5〜
4.5%、Al:1.0〜4.0%、Sb:0.05〜1.0%、Ti:
0.01〜1.0%、残部鉄及び不可避的不純物からな
ることを特徴とする溶接性の優れた鋳鉄。
[Claims] 1 C: 2 to 4.8%, Mn: 0.1 to 1.5%, Si: 2.5 to
Cast iron with excellent weldability characterized by consisting of 4.5%, Al: 1.0~4.0%, Sb: 0.05~1.0%, the balance being iron and unavoidable impurities. 2 C: 2~4.8%, Mn: 0.1~1.5%, Si: 2.5~
4.5%, Al: 1.0~4.0%, Sb: 0.05~1.0%, Ti:
A cast iron with excellent weldability characterized by consisting of 0.01 to 1.0%, the balance being iron and unavoidable impurities.
JP3062782A 1982-03-01 1982-03-01 Cast iron with superior weldability Granted JPS58151451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062782A JPS58151451A (en) 1982-03-01 1982-03-01 Cast iron with superior weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062782A JPS58151451A (en) 1982-03-01 1982-03-01 Cast iron with superior weldability

Publications (2)

Publication Number Publication Date
JPS58151451A JPS58151451A (en) 1983-09-08
JPS6157902B2 true JPS6157902B2 (en) 1986-12-09

Family

ID=12309083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062782A Granted JPS58151451A (en) 1982-03-01 1982-03-01 Cast iron with superior weldability

Country Status (1)

Country Link
JP (1) JPS58151451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194560A (en) * 1993-12-28 1995-08-01 Tetsumasa Harufuji Simple measuring instrument for pressure within vagina

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963056B2 (en) * 2006-04-03 2012-06-27 株式会社フロム工業 Disposer cleaning method
JP5875538B2 (en) * 2013-02-01 2016-03-02 株式会社リケン Cast iron and brake parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194560A (en) * 1993-12-28 1995-08-01 Tetsumasa Harufuji Simple measuring instrument for pressure within vagina

Also Published As

Publication number Publication date
JPS58151451A (en) 1983-09-08

Similar Documents

Publication Publication Date Title
BRPI0408346B1 (en) gray cast iron alloy for the production of cylinder block and / or cylinder cylinder head castings.
JPS6119700B2 (en)
US5023051A (en) Hypoeutectic aluminum silicon magnesium nickel and phosphorus alloy
JP5618466B2 (en) High rigidity high damping capacity cast iron
JPS6157902B2 (en)
US4373967A (en) Process for making resulfurized machinable steel
US2038639A (en) Method of producing castings
US2276287A (en) Production of cast iron
JP6267408B1 (en) Aluminum alloy and aluminum alloy castings
US4547221A (en) Abrasion-resistant refrigeration-hardenable ferrous alloy
US2555014A (en) Composition for addition to cast iron or steel
SU1691419A1 (en) Cast iron
US2280286A (en) Addition agent and its use in the treatment of iron and steel
JPH06108199A (en) Spheroidal graphite cast iron
US2241575A (en) Method of making cast iron and addition material therefor
JPH04280942A (en) Cast steel excellent in machinability
JP3917451B2 (en) Iron-based high strength and high rigidity steel
JPS6056056A (en) Process-hardenable austenite manganese steel and manufacture
JP2006057139A (en) Spheroidal graphite cast iron having excellent machinability and mechanical property
US2280173A (en) Aluminum alloy
US2220063A (en) Production of cast iron
US2943932A (en) Boron-containing ferrous metal having as-cast compacted graphite
US3253907A (en) High-grade cast iron having improved constancy of shape and volume
KR102581323B1 (en) Mold powder and mold coating
US3318691A (en) Process for producing castings from an iron alloy containing silicon