JPS6157819A - Measurement system for temperature - Google Patents

Measurement system for temperature

Info

Publication number
JPS6157819A
JPS6157819A JP18140184A JP18140184A JPS6157819A JP S6157819 A JPS6157819 A JP S6157819A JP 18140184 A JP18140184 A JP 18140184A JP 18140184 A JP18140184 A JP 18140184A JP S6157819 A JPS6157819 A JP S6157819A
Authority
JP
Japan
Prior art keywords
temperature
voltage
heating resistor
variation
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18140184A
Other languages
Japanese (ja)
Inventor
Tomohisa Mikami
三上 知久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18140184A priority Critical patent/JPS6157819A/en
Publication of JPS6157819A publication Critical patent/JPS6157819A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit

Abstract

PURPOSE:To measure the temperature of a heating resistor at a high speed with high precision by calculating variation in the temperature of the heating resistor from the detected value of variation in voltage or current appearing at the heating resistor by impressed electric power and the detected value of variation based upon only variation in impressed electric power. CONSTITUTION:The series circuit of the heating resistor Rh and a detection resistance Rs is impressed with a voltage E from a power source 1 to develope a voltage Vh across Rh and a voltage V across Rs. The series circuit of Ra and Rb connected in parallel to said series circuit generates a reference voltage equal to the voltages Vh and V when a resistance value is Ro at reference temperature To, and a small sresistance-temperature coefficient among Rs, Ra, and Rb is used. Then, Rs detects variation of the current flowing through Rh, i.e. variation due to variation in voltage E and temperature variation in the resistance value of Rh with the voltage V, and Rb detects the detected value corresponding only variation in voltage E with the voltage Vo on the basis of the detected value of Rs at the temperature to of Rh. The voltages V and Vo are processed by a divider to measure the temperature of the heating body at a high speed with high precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は温度測定方式に係り、特に熱転写プリンタ等に
使用するサーマルヘッドの発熱抵抗体の駆動時の抵抗変
化に基づいて、印加電力が高速に変化する場合の発熱抵
抗体温度を正確に測定できる温度測定方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a temperature measurement method, and in particular, the present invention relates to a temperature measurement method, in which the applied power is applied at high speed based on the resistance change during driving of the heating resistor of a thermal head used in a thermal transfer printer, etc. The present invention relates to a temperature measurement method that can accurately measure the temperature of a heating resistor when the temperature changes.

近年、印刷装置の技術進歩は目覚ましく、特にサーマル
ヘッド駆動装置を用いた熱転写プリンタは印刷時の騒音
を伴わず、高速で多階調のカラー印刷技術が開発されつ
つある。
In recent years, technological advances in printing devices have been remarkable, and in particular, thermal transfer printers using thermal head drive devices are developing high-speed, multi-gradation color printing technology that does not produce noise during printing.

ところで、多階調の熱転写プリンタ技術の基本となるも
のは、多階調に対応する発熱抵抗体の温度を高速に制御
する手段であって、そのために発熱抵抗体の瞬時温度が
測定できる手段の確立が必要である。しかしながら、現
状では適切な測定方法に乏しく、早急な測定技術の開発
がのぞまれている。
By the way, the basis of multi-gradation thermal transfer printer technology is a means to quickly control the temperature of a heating resistor corresponding to multiple gradations. Need to be established. However, there is currently a lack of suitable measurement methods, and there is an urgent need for the development of measurement techniques.

〔従来の技術〕[Conventional technology]

印加電力が高速に変化する場合の発熱抵抗体の温度特性
を測定するために、高速応答用の特殊サーミスタ、熱電
対、赤外線顕微鏡などが用いられていたが、前記2者は
高精度の実現が難しく、後者は非常に高価であった。し
かも、何れの場合も発熱抵抗体に直接接触しなければ測
定が不可能であった。また、この他の方法として発熱抵
抗体の温度変化を測定する方法もあるが通常2値駆動時
の温度−ヒy特性しか測定できない問題点があった。
Special thermistors, thermocouples, infrared microscopes, etc. for high-speed response have been used to measure the temperature characteristics of heat-generating resistors when applied power changes rapidly, but these two methods cannot achieve high accuracy. The latter was difficult and extremely expensive. Moreover, in either case, measurement was impossible without direct contact with the heating resistor. Further, as another method, there is a method of measuring the temperature change of the heating resistor, but there is a problem in that it is usually possible to measure only the temperature-high characteristic during binary driving.

良く知られているように、通常の発熱抵抗体は温度が変
化するとその発熱抵抗体の抵抗値も変化する。従って、
印加電圧とその時に流れる電流とを精密に測定すれば、
発熱抵抗体の温度が計算できることになる。従来、抵抗
一温度係数の安定な白金抵抗線等の定常状態での抵抗値
変化を、ホイートストンブリッジ等で精密測定する方法
が広く用いられている。
As is well known, when the temperature of a typical heating resistor changes, the resistance value of the heating resistor also changes. Therefore,
If you precisely measure the applied voltage and the current flowing at that time,
This means that the temperature of the heating resistor can be calculated. BACKGROUND ART Conventionally, a method has been widely used in which a Wheatstone bridge or the like is used to precisely measure a change in resistance value in a steady state of a platinum resistance wire or the like having a stable resistance-temperature coefficient.

しかしながら、印加電力が高速に変化する場合について
は殆ど検耐されていなかった。2値的駆動、すなわち、
駆動電力のON″、OFF”に対して、ON”時の7.
の抵抗値を測定する方法は試みられているが、駆動電力
がON″の時間帯に限定される温度−に胃性1ノ1のみ
を測定する不完全なものである。
However, there has been little testing of the case where the applied power changes rapidly. Binary drive, i.e.
7. When the drive power is ON'' and OFF'',
Attempts have been made to measure the resistance value of the gas, but it is an incomplete method that measures only the gastric resistance at a temperature limited to the period when the driving power is ON.

第5図64、従来の発熱抵抗体の測定回路を示す。FIG. 564 shows a conventional measurement circuit for a heating resistor.

図においてEは電源電圧値、Ilhは発熱抵抗体の抵抗
値、Rsは発熱抵抗体に流れる電流を検出するための微
小な検出抵抗の抵抗値、■は検出抵抗両端の電圧値、S
は電源スィッチを示す。電圧Vは次式にて与えられる。
In the figure, E is the power supply voltage value, Ilh is the resistance value of the heating resistor, Rs is the resistance value of the minute detection resistor for detecting the current flowing through the heating resistor, ■ is the voltage value across the detection resistor, and S
indicates a power switch. The voltage V is given by the following equation.

V−E−R5/(Rh十R3)・・・・・・■発熱抵抗
体の抵抗温度計数をαとし、発熱抵抗体の温度Toにお
ける抵抗値をRo、温度Ttにおける抵抗値をRtとし
て、αを次式で定義する一定の値とする。
V-E-R5/(Rh + R3)... ■The resistance temperature coefficient of the heating resistor is α, the resistance value of the heating resistor at temperature To is Ro, and the resistance value at temperature Tt is Rt, Let α be a constant value defined by the following equation.

tx= ((Rt−1?o)/Ro) Xl06/(T
t−To)  ・・・・■任意の時刻における発熱抵抗
体の温度をThとし、発熱抵抗体の抵抗値Rhを、式■
に基づき温度Toにおける抵抗値Roで表すと、 Rh=Ro・αo・(Th−To)  十R。
tx= ((Rt-1?o)/Ro) Xl06/(T
t-To) ・・・・■ Let the temperature of the heating resistor at any time be Th, and the resistance value Rh of the heating resistor is expressed by the formula ■
Based on the resistance value Ro at the temperature To, Rh=Ro・αo・(Th−To) 10R.

=Ro ・(1+cxo ・(Th−To)) ・・・
■但し、α。−10−6αとする。
=Ro ・(1+cxo ・(Th−To)) ・・・
■However, α. -10-6α.

式■において温度Toからの温度変化Th −ToをΔ
Tとおくと、 Rh = Ro・ (1+α0ΔT)・ ・ ・ ・ 
・■式■を式■に代入すると、 V = E ・Rs/ (Ro ・(1+αoΔT)十
Rs〕・・■ここで、検出抵抗Rsは発熱抵抗体の抵抗
Rhに比して無視できるほど小さい必要があるので、R
O>R3%かつ、1>α0として近値計算を行うと、V
=E−Rs・ (1%へT)/Ro・・・■となり、電
圧■が温度変化ΔTとほぼ直線的な関係にあることが分
かる。
In the formula ■, the temperature change Th −To from the temperature To is expressed as Δ
If we set it as T, then Rh = Ro・ (1+α0ΔT)・・・・・
・■ Substituting the formula ■ into the formula ■, V = E ・Rs/ (Ro ・(1+αoΔT)0Rs) ・・■Here, the detection resistance Rs is negligibly small compared to the resistance Rh of the heating resistor. Because it is necessary, R
When performing a near-value calculation assuming O>R3% and 1>α0, V
=E-Rs・(T to 1%)/Ro...■, and it can be seen that the voltage ■ has a substantially linear relationship with the temperature change ΔT.

弐〇からも明らかなように、この測定方式では印加電力
が零、ずなわち、2値的駆動のOFF”時には測定は行
えないし、印加電力が変化する場合にも検出抵抗の電圧
Vの変化の原因が、発熱抵抗体の温度変化によるものか
、印加電力の変化によるものか識別できない。
As is clear from 20, with this measurement method, measurement cannot be performed when the applied power is zero, that is, when the binary drive is OFF, and even when the applied power changes, the voltage V of the detection resistor changes. It is not possible to determine whether this is caused by a change in the temperature of the heating resistor or a change in the applied power.

基本的には弐■、■において、測定電圧■を電源電圧E
で除ずれぼ印加電力の変化は除去できる。
Basically, at 2■ and ■, the measurement voltage ■ is set to the power supply voltage E.
The variation in applied power can be removed by dividing by .

しかし、温度変化による測定電圧■の変化は小さく、一
方電源電圧Eの変化は大きくなり得るので、除算器の精
度が極めて高くなければならず、到底実用には成らない
欠点があった。
However, since the change in the measured voltage (2) due to temperature change is small, while the change in the power supply voltage (E) can be large, the accuracy of the divider must be extremely high, which has the disadvantage that it cannot be put to practical use.

また、駆動電力がOFF”の場合の温度下降特性も測定
できなかった。
Furthermore, it was not possible to measure the temperature drop characteristics when the drive power was OFF.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は」二記従来の問題点に鑑み、印加電力の変化に
依存せずに発熱抵抗体の温度を算出できる手段により、
発熱抵抗体に接触することなく温度測定が行え、高精度
、高応答速度、かつ、安価な温度測定方式の1に供を目
的とする。
In view of the conventional problems mentioned in section 2, the present invention provides means for calculating the temperature of a heating resistor without depending on changes in applied power.
The purpose of the present invention is to provide a temperature measurement method that can measure temperature without contacting a heating resistor, has high accuracy, high response speed, and is inexpensive.

〔問題を解決するための手段〕[Means to solve the problem]

そしてこの目的は、発熱抵抗体の抵抗値を検出して温度
を測定する方式において、前記発熱抵抗体に印加する電
力を所定の微小電力以上に保持する手段と、前記発熱抵
抗体に印加する電力により前記発熱抵抗体に現れる電圧
または電流の変化分を検出する手段と、該検出値に含ま
れる前記印加電力の変化のみに基づく変化分を検出する
手段と、前記2つの検出手段の各検出値から前記発熱抵
抗体の温度変化を算出する演算手段として除算器を設け
たことを特徴とする温度測定方式を提供することにより
達成される。
The purpose of this is to provide means for maintaining the electric power applied to the heating resistor at a predetermined micropower or higher in a method of measuring temperature by detecting the resistance value of the heating resistor, and means for detecting a change in voltage or current appearing on the heating resistor; means for detecting a change based only on a change in the applied power included in the detected value; and each detected value of the two detecting means. This is achieved by providing a temperature measurement method characterized in that a divider is provided as a calculation means for calculating the temperature change of the heating resistor from .

〔作用〕[Effect]

すなわち、本発明しJ発熱抵抗体に印加する電力が変化
する場合に、該印加電力のJit小埴を発す4’ I+
(抗体の抵抗値変化が測定可能な所定のtii&小電力
1)ν上とし、その抵抗値の変化を除算2:;を用いY
′(り川する演算手段に、1′す、印加電力の′C゛化
にかかi)+’。
That is, according to the present invention, when the power applied to the J heating resistor changes, the 4' I+
(Predetermined tii & small power 1) where the change in resistance value of the antibody can be measured, and divide the change in resistance value using 2:;
(1)+' to convert the applied power to 'C'.

ず正面゛に発熱IK li″11体の温度を測)iテで
きる。1・)Cに1゜たちのである。
First, you can measure the temperature of the 11 bodies that generate heat in front of you. 1.) It is 1° above C.

〔実施例〕〔Example〕

以下本発明の実施例を図面によ、って詳jIトする。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明のン晶度測定方式の回路図を示す。FIG. 1 shows a circuit diagram of the crystallinity measuring method of the present invention.

なお、構成、動作の説明を理解し易くするために全図お
よび全数式を通じて同一部分には同一符号を付して示し
た。
In order to make the explanation of the configuration and operation easier to understand, the same parts are given the same reference numerals throughout all the figures and all the formulas.

図において、1は電源、2は除算器を示す。発熱抵抗体
Rhと検出抵抗Rsとの直列回路に印加される電源電圧
Eにより発熱抵抗体Rhには電圧vh、検出抵抗Rsに
は検出電圧■が発生する。この直列回路に並列接続され
た抵抗1?aとRhの直列回路は、発熱抵抗体1?hが
基準温度Toにおける抵抗値Roのときの前記電圧vh
および■と等しい参照電圧を作るバランス抵抗であって
、各抵抗Rs、Ra、Rhの抵抗一温度係数は同一の小
さい値を有するものを用いる。
In the figure, 1 indicates a power supply and 2 indicates a divider. A power supply voltage E applied to the series circuit of the heating resistor Rh and the detection resistor Rs generates a voltage vh in the heating resistor Rh and a detection voltage ■ in the detection resistor Rs. Resistor 1 connected in parallel to this series circuit? The series circuit of a and Rh is heating resistor 1? The voltage vh when h is the resistance value Ro at the reference temperature To
A balance resistor is used that produces a reference voltage equal to (1) and (2), and each resistor Rs, Ra, Rh has the same small resistance-temperature coefficient.

そして、抵抗Ra、 Rbの両端の電圧をそれぞれVa
Then, the voltages across the resistors Ra and Rb are respectively Va.
.

Voとし、電圧vhにはVaが対応するように配設する
Vo is set, and Va is arranged so as to correspond to voltage vh.

このような並列回路に構成すると、検出抵抗Rs番11
全61I(抗体Rhに流れる電流の変化分、すなわち、
電源電圧Eの変化と発熱抵抗体11hの抵抗値の温度変
化との両原因による電流の変化分を電圧Vにて検出する
。一方ハランス抵抗Rhは発熱抵抗体Rhの温度1゛o
に才月する検出抵抗Rsの検出値を基準にして、電源電
圧Eの変化のみQに対応する検出値を電圧ν0にて検出
する。
When configured in such a parallel circuit, the detection resistor Rs No. 11
Total 61I (change in current flowing through antibody Rh, i.e.,
A change in current due to both a change in the power supply voltage E and a temperature change in the resistance value of the heating resistor 11h is detected using the voltage V. On the other hand, the temperature of the heat generating resistor Rh is 1゛o.
With reference to the detected value of the detection resistor Rs that changes over time, a detected value corresponding to only a change in the power supply voltage E is detected at the voltage ν0.

検出fl(抗Rsに発生する検出電圧Vは式■、■より V  −E −Rs /  (Rh +Rs)=  P
、−R8/  (RO・(1+(xo  ・  八T)
→−R3〕  ・ ・ ■またバランス抵抗1?hに発
生する検出電圧Voは式■でΔT=0とおいて シo−E−R3/〔Ro+R3〕・・・・・・・・■し
たがって、電圧VとVoとの差Vxは式■と山)よりν
x=V −ν0 =E−Rs・[+/ (Ro・(1+ffo HΔTl
1h11/(Ro+Rs) ] −E−R3−Po・α。・ΔT/ [(Ilo(Ll 
α++ ・Δ1゛)」−R3〕・(Ro)R8)】・・
・・・・・・重代〇に式■を代入して シx−■・ΔT ・αo−Ro/ (llo+Fls)
  ・・−・(fΦ、゛、    Δ T=Vx  ・
 (Ro十Rs)  /  (V  ・ (Xo  −
Ro)   ・ @すなわち、νに/Vおよびその他の
既知の値を除算器2にて計算することにより、弐〇より
返信なしに発熱抵抗体の温度変化ΔTあるいは発熱抵抗
体の温度Thが求められる。
Detection fl (detection voltage V generated at anti-Rs is calculated from equations ■ and ■: V −E −Rs / (Rh +Rs) = P
, -R8/ (RO・(1+(xo・8T)
→−R3] ・ ・ ■Balance resistance 1 again? The detected voltage Vo generated at h is expressed by the equation (■), assuming ΔT=0, and the difference Vx between the voltages V and Vo is expressed by the equation (■) and the peak. ) from ν
x=V −ν0 =E−Rs・[+/ (Ro・(1+ffo HΔTl
1h11/(Ro+Rs)] -E-R3-Po·α.・ΔT/ [(Ilo(Ll
α++ ・Δ1゛)”-R3〕・(Ro)R8)】・・
・・・・・・Substituting the formula ■ into 〇〇 gives x−■・ΔT・αo−Ro/ (llo+Fls)
・・・−・(fΦ, ゛, Δ T=Vx ・
(Ro1Rs) / (V ・ (Xo −
Ro) ・ @In other words, by calculating ν with /V and other known values with divider 2, the temperature change ΔT of the heating resistor or the temperature Th of the heating resistor can be obtained without reply from 2〇. .

印加電力の最低値をある一定値以上にするためには、印
加電力を検知する回路を設けてこれが一定値未満になっ
たときに、印加電力の最小値を保証する他の電源に切換
えればよい。
In order to keep the minimum value of applied power above a certain value, it is necessary to install a circuit that detects the applied power, and when this becomes less than a certain value, switch to another power source that guarantees the minimum value of applied power. good.

第2図は本発明に利用する電源回路の一例を示す。図に
おいて3は電圧Evの可変電源、4ば印加電圧の最小値
Efを出力する固定電源、DvとDfはそれぞれダイオ
ードを示す。可変電源3の電圧Evが固定電源4の電圧
Efより大きいときには、ダイオードDvは導通、ダイ
オードOfは非導通であって出力電圧EはI!vに等し
い。また、可変電源3の電圧ljvが固定電源4の電圧
Efより小さいときには、ダイオードDvは非導通、ダ
イオードDfは導通であって出力電圧EはE[に等しく
、最小電圧が保証される。
FIG. 2 shows an example of a power supply circuit used in the present invention. In the figure, numeral 3 denotes a variable power supply with a voltage Ev, numeral 4 a fixed power supply that outputs the minimum value Ef of the applied voltage, and Dv and Df each represent a diode. When the voltage Ev of the variable power supply 3 is greater than the voltage Ef of the fixed power supply 4, the diode Dv is conductive, the diode Of is non-conductive, and the output voltage E is I! Equal to v. Further, when the voltage ljv of the variable power supply 3 is lower than the voltage Ef of the fixed power supply 4, the diode Dv is non-conductive, the diode Df is conductive, and the output voltage E is equal to E[, so that the minimum voltage is guaranteed.

2稙的駆動を行・う場合、OFF”時に対応する印加電
力を15.える電源を用意してON″時とOFF”時で
切換えてもよい。しかし、わざわざ別電源を用意しなく
ても第3図の回路で簡単に最小電力の供給回路が実現で
きる。すなわちスイッチSがON″時には、可変電源の
出力電圧がそのまま出力される。スイッチSがOFF″
時には抵抗Rはトロソバ−として作用し、Rの値を適当
な値に設定することにより容易に最小電力を保証するこ
とができる。
When performing bidirectional driving, it is possible to prepare a power supply that applies the corresponding applied power when OFF" and switch between ON" and OFF.However, there is no need to go to the trouble of preparing a separate power supply. A minimum power supply circuit can be easily realized with the circuit shown in FIG. 3. That is, when the switch S is turned on, the output voltage of the variable power supply is output as is. Switch S is OFF''
Sometimes the resistor R acts as a trossover, and by setting the value of R to an appropriate value, minimum power can be easily guaranteed.

しかも、電源電圧の変動は前記のように温度測定には何
等の依存性もない。
Moreover, as mentioned above, fluctuations in the power supply voltage have no dependence on temperature measurement.

第3図の回路を用いて多階調熱転写プリンタのザーマル
ヘソドの発熱抵抗体の温度を測定した温度波形の一例を
第4図に示す。図において、波形Bはザーマルヘソ1−
を駆動する印加電圧の波形を示し、縦軸に印加電圧、横
軸に時間をとっている。
FIG. 4 shows an example of a temperature waveform obtained by measuring the temperature of a heating resistor of a thermal head of a multi-gradation thermal transfer printer using the circuit shown in FIG. In the figure, waveform B is thermal navel 1-
The waveform of the applied voltage that drives the is shown, with the vertical axis representing the applied voltage and the horizontal axis representing time.

波形Aは縦軸に411度、横軸に波形への横軸とおなし
目盛の時間をとり、波形への各タイミングにおLJる印
加電圧に対応して変化する温度の状態を示している。
Waveform A has 411 degrees on the vertical axis and the time on the horizontal scale and the horizontal axis to the waveform on the horizontal axis, and shows the state of temperature that changes in response to the applied voltage LJ at each timing to the waveform.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明の温度測定方式によれ
ば、任意の駆動波形を1)つ駆動信号に対する発熱抵抗
体温度を、該発熱抵抗体に接触することなく高精度、高
速、かつ、安価に測定することができる。
As described above in detail, according to the temperature measurement method of the present invention, the temperature of the heating resistor in response to the drive signal of an arbitrary drive waveform can be measured with high accuracy, high speed, and without contacting the heating resistor. It can be measured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の温度測定方式の回路図、第2図C才木
発明に利用する電源凹1−8の一例、第3図は第2図の
電源回路の仙の実施例を利用した温度測定方式の回路図
、 第4図は本発明の温度測定方式による・リーーマルヘッ
ドの温度波形の実測例、 第5図は従来の発熱抵抗体の測定回路を示す。 図において、1は駆動電源、2は除算器、3は可変電源
、4は固定電源、Rhは発熱抵抗体、Rsは検出抵抗、
■は検出電圧、ν0は参照電圧をそれぞれ示す。 剣ζ 第3図 第5図
Fig. 1 is a circuit diagram of the temperature measurement method of the present invention, Fig. 2 is an example of the power supply circuit 1-8 used in the C-saiki invention, and Fig. 3 is an example of the power supply circuit using the third embodiment of the power supply circuit of Fig. 2. FIG. 4 is a circuit diagram of the temperature measurement method. FIG. 4 shows an actual measurement example of the temperature waveform of a thermal head using the temperature measurement method of the present invention. FIG. 5 shows a conventional measurement circuit for a heating resistor. In the figure, 1 is a driving power supply, 2 is a divider, 3 is a variable power supply, 4 is a fixed power supply, Rh is a heating resistor, Rs is a detection resistor,
(2) indicates the detection voltage, and ν0 indicates the reference voltage, respectively. Sword ζ Figure 3 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)発熱抵抗体の抵抗値を検出して温度を測定する方
式において、前記発熱抵抗体に印加する電力を所定の微
小電力以上に保持する手段と、前記発熱抵抗体に印加す
る電力により前記発熱抵抗体に現れる電圧または電流の
変化分を検出する手段と、該検出値に含まれる前記印加
電力の変化のみに基づく変化分を検出する手段と、前記
2つの検出手段の各検出値から前記発熱抵抗体の温度変
化を算出する演算手段とを設けたことを特徴とする温度
測定方式。
(1) In the method of measuring the temperature by detecting the resistance value of the heating resistor, there is provided a means for maintaining the electric power applied to the heating resistor at a predetermined minute power or more, and means for detecting a change in voltage or current appearing in the heating resistor; means for detecting a change based only on the change in the applied power included in the detected value; A temperature measurement method characterized by comprising a calculation means for calculating a temperature change of a heating resistor.
(2)前記演算手段が除算器により構成されることを特
徴とする特許請求の範囲第1項に記載の温度測定方式。
(2) The temperature measurement method according to claim 1, wherein the calculation means is constituted by a divider.
JP18140184A 1984-08-29 1984-08-29 Measurement system for temperature Pending JPS6157819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18140184A JPS6157819A (en) 1984-08-29 1984-08-29 Measurement system for temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18140184A JPS6157819A (en) 1984-08-29 1984-08-29 Measurement system for temperature

Publications (1)

Publication Number Publication Date
JPS6157819A true JPS6157819A (en) 1986-03-24

Family

ID=16100102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18140184A Pending JPS6157819A (en) 1984-08-29 1984-08-29 Measurement system for temperature

Country Status (1)

Country Link
JP (1) JPS6157819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541974A1 (en) * 2003-12-08 2005-06-15 Hitachi, Ltd. Heating resistor type flow-measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541974A1 (en) * 2003-12-08 2005-06-15 Hitachi, Ltd. Heating resistor type flow-measuring device
US7010971B2 (en) 2003-12-08 2006-03-14 Hitachi Ltd. Heating resistor type flow-measuring device having a heating resistor and a thermoresistance, whose resistance value varies in response to the ambient temperature

Similar Documents

Publication Publication Date Title
JPS6157819A (en) Measurement system for temperature
JPH06198943A (en) Thermal head
SU777585A1 (en) Gaseous and liquid media parameter measuring method
JP2008508517A (en) How to operate a heat loss pressure sensor with resistance
RU2257553C1 (en) Compensating mode of measuring temperature
RU2269750C2 (en) Method of thermoresistant temperature measurement
SU788004A1 (en) Constant-temperature thermoanemometer
SU1040352A1 (en) Device for measuring thermoelectric converter thermal lag index
SU838419A1 (en) Time-to-pulse converter for resistive temperature gages
SU1151834A1 (en) Device for measuring temperature (its versions)
CN2257924Y (en) Multifunctional thermo detector
SU892234A1 (en) Temperature to digital code converter
SU974148A1 (en) Device for measuring thermoconverter thermal lag
SU1073557A1 (en) Electromagnetic thickness gauge
RU2255314C1 (en) Quick-action medicinal thermometer
SU603855A1 (en) Reference radiation beam forming device
SU527604A2 (en) Temperature measuring device
SU777586A1 (en) Method of graduating thermoanemometer
SU1645861A1 (en) Device for pressure measurement
SU1437699A1 (en) Pressure-measuring device
SU773455A1 (en) Temperature measuring apparatus
SU1312405A1 (en) Thermoresistive temperature meter with digital indication
SU613248A1 (en) Gas stream speed transducer
SU1422037A1 (en) Thermal-conductivity vacuum gauge
SU1280351A1 (en) Thermal-conductivity resistance vacuum gauge