JPS6157764B2 - - Google Patents

Info

Publication number
JPS6157764B2
JPS6157764B2 JP57029476A JP2947682A JPS6157764B2 JP S6157764 B2 JPS6157764 B2 JP S6157764B2 JP 57029476 A JP57029476 A JP 57029476A JP 2947682 A JP2947682 A JP 2947682A JP S6157764 B2 JPS6157764 B2 JP S6157764B2
Authority
JP
Japan
Prior art keywords
electrodes
pair
liquid
skin
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57029476A
Other languages
Japanese (ja)
Other versions
JPS58146334A (en
Inventor
Mitsuo Numamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANEI MEDEISU KK
Original Assignee
SANEI MEDEISU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANEI MEDEISU KK filed Critical SANEI MEDEISU KK
Priority to JP57029476A priority Critical patent/JPS58146334A/en
Publication of JPS58146334A publication Critical patent/JPS58146334A/en
Publication of JPS6157764B2 publication Critical patent/JPS6157764B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は主として水頭症の治療に用いられる脳
室−腹腔短絡管設置手術後の短絡管内の脳脊髄液
の流量を、生体の外部から無侵襲で計測するよう
にした生体用液体流量測定装置に関するものであ
る。
[Detailed Description of the Invention] The present invention is designed to non-invasively measure the flow rate of cerebrospinal fluid in a shunt tube after a ventricular-peritoneal shunt tube installation surgery, which is mainly used for the treatment of hydrocephalus, from outside the living body. The present invention relates to a biological fluid flow rate measuring device.

従来このような脳室−腹腔短絡管内の脳脊髄液
の流量を測定するためには、短絡管の一部を人工
的に皮膚を隔て即ち皮膚上より冷却し、短絡管の
下流に於いて皮膚上にサーミスタ等の温度計を設
置して置き、冷却された脳脊髄液が冷却部より温
度計に到達する迄の時間を測定し、短絡管内の液
体の流量を知るようにした方法が提案されている
が、この場合は皮膚を隔て短絡管を冷却している
ために、この生体内の冷却の伝達速度が一定せ
ず、よつてその計測が不正確となり実用的でない
欠点がある。
Conventionally, in order to measure the flow rate of cerebrospinal fluid in such a ventricular-peritoneal shunt, a part of the shunt is artificially separated from the skin, that is, it is cooled from above the skin, and a part of the shunt is cooled from above the skin downstream of the shunt. A method has been proposed in which a thermometer such as a thermistor is placed on top of the tube, and the time taken for the cooled cerebrospinal fluid to reach the thermometer from the cooling section is measured to determine the flow rate of the fluid in the short-circuit tube. However, in this case, since the shunt tube is cooled through the skin, the transmission rate of the cooling within the body is not constant, and therefore the measurement is inaccurate, making it impractical.

その他の方法としては、注射器を用いて放射性
アイソトープを脳室内に注入し、外部よりこのア
イソトープの移動速度をガイドー計数管によつて
測定する方法が考えられているが、放射性アイソ
トープの注入に際して細菌感染の危険を伴い、又
放射性による副作用から考えても、度々測定する
ことは困難である欠点がある。又細菌感染は脳に
重大な結果をもたらすことは論をもたない。
Another method is to inject a radioactive isotope into the ventricles of the brain using a syringe and measure the movement speed of this isotope externally using a guide counter, but bacterial infection may occur during injection of the radioisotope. It also has the disadvantage that it is difficult to measure frequently due to the risk of radioactivity and the side effects caused by radioactivity. It is also undeniable that bacterial infection has serious consequences for the brain.

本発明は上述した欠点を回避し、所要の機器
を、短絡管設置手術時に生体の皮下に埋設し、手
術後は全て生体外部より無侵襲で髄時且つ連続的
に計測を行うことができるようにしたものであ
り、従つて全く感染やその他の副作用の心配を回
避し得るようにしたものである。尚、本発明によ
る装置は上述した脳脊髄液の流量計測に限られる
ものではなく、腎から膀胱への輸尿管内の尿の流
量測定等にも使用できるものである。
The present invention avoids the above-mentioned drawbacks, and makes it possible to implant the necessary equipment under the skin of the living body during the surgery to install the shunt tube, and to perform continuous and continuous measurements of the spinal cord from outside the living body after the surgery. Therefore, there is no need to worry about infection or other side effects. The device according to the present invention is not limited to measuring the flow rate of cerebrospinal fluid as described above, but can also be used to measure the flow rate of urine in the ureter from the kidney to the bladder.

以下図面について本発明による装置の一例を説
明する。第1図に於いて1は生体、2はその皮
膚、3は頭蓋骨、4は脳室、5は腹腔を示す。
An example of the device according to the invention will be described below with reference to the drawings. In FIG. 1, 1 is the living body, 2 is the skin, 3 is the skull, 4 is the ventricle of the brain, and 5 is the abdominal cavity.

上述したように水頭症の治療に於いては、脳室
4と腹腔5とを液体流通管いわゆる短絡管6によ
り連結し、脳室内に溜る脳脊髄液を腹腔5内に逃
すようにして治療している。この短絡管6は、内
径が例えば1.2mmのシリコンゴムにより製造され
たものを使用することができる。
As mentioned above, in the treatment of hydrocephalus, the ventricles 4 and the abdominal cavity 5 are connected by a fluid flow tube, so-called a shunt tube 6, and the cerebrospinal fluid accumulated in the ventricles is released into the abdominal cavity 5. ing. This short-circuit tube 6 may be made of silicone rubber and have an inner diameter of, for example, 1.2 mm.

本発明では、このような短絡管6に対して、気
泡発生手段7と、その下流に位置した気泡検知手
段8とを設けるものである。
In the present invention, such a short-circuit pipe 6 is provided with a bubble generating means 7 and a bubble detecting means 8 located downstream thereof.

まず気泡発生手段7についてその一例を説明す
る。この気泡発生手段7は第1図に示すように、
外部機器7aと、生体1内に埋設される内部機器
7bとより構成される。外部機器7aは、所定の
周波数例えば200KHzの周波数の信号を発振する
発振器9と、その出力が供給される外部コイル1
0とより構成されている。
First, an example of the bubble generating means 7 will be explained. This bubble generating means 7, as shown in FIG.
It is composed of an external device 7a and an internal device 7b embedded within the living body 1. The external device 7a includes an oscillator 9 that oscillates a signal at a predetermined frequency, for example, 200 KHz, and an external coil 1 to which the output is supplied.
0.

次に内部機器7bについて第2図を参照して説
明する。11はこの内部機器7bを包んだ包埋体
であつて、例えばシリコンゴムにより形成するこ
とができる。その内部にはコイル12、ダイオー
ド13、定電圧素子14等が埋込まれており、コ
イル12の出力がダイオード13により整流さ
れ、且つ定電圧素子例えばツエナーダイオード1
4により一定の電圧に保持されるように成されて
いる。この場合の電圧としては例えば20V程度で
ある。包埋体11の一部には短絡管6とほゞ同様
の内径を有する貫通孔6′が形成されており、そ
の内部に1対の電解用電極15a及び15bが取
付けられている。この電極15a,15b間には
上述したツエナーダイオード14の両端の電圧が
印加される。この両電極15a,15bは図面に
示すように内部に液体が通り得るように夫々環状
に形成されている。このような1対の電解用電極
15a,15bを挾むようにして、更に、集電電
極16a及び16bが貫通孔6′の両端に取付け
られており、これら両電極16a,16bが短絡
線17により電気的に短絡されている。そしてこ
のような電極16a及び16bが包埋体11外の
短絡管6に連結されるように成されている。
Next, the internal device 7b will be explained with reference to FIG. Reference numeral 11 denotes an embedding body that encloses the internal device 7b, and can be made of silicone rubber, for example. A coil 12, a diode 13, a constant voltage element 14, etc. are embedded inside the coil 12, and the output of the coil 12 is rectified by the diode 13.
4 to maintain a constant voltage. The voltage in this case is, for example, about 20V. A through hole 6' having an inner diameter substantially the same as that of the short-circuit tube 6 is formed in a part of the embedded body 11, and a pair of electrolytic electrodes 15a and 15b are attached inside the through hole 6'. The voltage across the Zener diode 14 described above is applied between the electrodes 15a and 15b. As shown in the drawing, both electrodes 15a and 15b are each formed into an annular shape so that a liquid can pass therethrough. Further, current collecting electrodes 16a and 16b are attached to both ends of the through hole 6' so as to sandwich such a pair of electrolytic electrodes 15a and 15b, and these electrodes 16a and 16b are electrically connected by a shorting wire 17. is shorted to. The electrodes 16a and 16b are connected to the short-circuit tube 6 outside the embedding body 11.

尚、気泡発生手段7としてはこの他に通常周知
の注射器を使用でき、この場合は、この注射器に
より単に空気を短絡管6内に注入すればよい。
In addition, a commonly known syringe can be used as the bubble generating means 7, and in this case, air may simply be injected into the short-circuit pipe 6 using this syringe.

次に気泡検知手段8について説明する。この検
知手段8は同様に外部機器8aと内部機器8bと
より構成されている。まず内部機器8bについて
説明する。これに短絡管6の長手方向即ち液体の
流通方向に沿つて所定の距離lだけ隔てて複数個
(図示の実施例では2個)の第1及び第2の電気
ギヤツプ18a及び18bを設け、これらを互に
電気的に直列に接続するものである。このため図
に示すように短絡管6と同様の材質より成る短絡
管6″を設け、その長さをlより僅かに小に選定
して置き、その両端に於いて上述した電気ギヤツ
プ18a及び18bを形成しているものである。
Next, the bubble detection means 8 will be explained. This detection means 8 is similarly composed of an external device 8a and an internal device 8b. First, the internal device 8b will be explained. A plurality of (two in the illustrated embodiment) first and second electric gap 18a and 18b are provided at a predetermined distance l along the longitudinal direction of the short-circuiting pipe 6, that is, along the flow direction of the liquid. are electrically connected to each other in series. For this purpose, as shown in the figure, a short-circuit tube 6'' made of the same material as the short-circuit tube 6 is provided, the length of which is selected to be slightly smaller than 1, and the above-mentioned electric gap 18a and 18b are connected at both ends of the short-circuit tube 6''. It is what forms the.

これら両電気ギヤツプは本例では共に同様に形
成されているのでギヤツプ18aについてのみに
説明し、他方はその説明を省略する。即ち短絡管
6に連結される電極19と、上述した短絡管6″
の先端に取付けられる電極20とを、電気的絶縁
材料例えばポリエチレンより成る連結管21によ
り、所定の間隔hを隔て互いに連結したものであ
る。この場合電極19及び20はその内部に液体
が通り得るように夫々透孔を設け、即ち筒状に形
成しているものである。又これら電極19及び2
0は夫々ステンレスにより構成することができ
る。又短絡管6″の両端に設けられた電極20
は、夫々短絡管6″の内部に埋設されている電気
導体部22により互いに電気的に連結されてお
り、これにより両電気ギヤツプ18a及び18b
が直列に接続される。尚、外側の電極19として
は、図に示すように外表面を大きく彎曲させ、即
ち全体として外表面が球状となるように構成して
いるが、これは後述するように外部電極との対向
面を広く構成し得るように成すと共に、この電極
19の存在位置を皮膚上より容易に判知し得るよ
うにしたためである。
Since both of these electric gaps are formed in the same manner in this example, only the gap 18a will be explained, and the explanation of the other one will be omitted. That is, the electrode 19 connected to the short-circuit tube 6 and the above-mentioned short-circuit tube 6''
The electrodes 20 attached to the tips of the tubes are connected to each other at a predetermined distance h by a connecting tube 21 made of an electrically insulating material such as polyethylene. In this case, the electrodes 19 and 20 are each provided with a through hole, that is, formed in a cylindrical shape, so that liquid can pass therethrough. Also, these electrodes 19 and 2
0 can be made of stainless steel. Further, electrodes 20 provided at both ends of the short-circuit tube 6''
are electrically connected to each other by electrical conductor portions 22 buried inside the short-circuit pipes 6'', thereby connecting both electrical gaps 18a and 18b.
are connected in series. As shown in the figure, the outer electrode 19 is configured to have a largely curved outer surface, that is, to have a spherical outer surface as a whole. This is because the electrode 19 can be configured in a wide range of configurations, and the position of the electrode 19 can be easily determined from the skin.

一方外部機器8aは、第1図及び第3図より明
らかなように、インピーダンス検出器23を有
し、その両端に皮膚電極24a及び24bを接続
している。このインピーダンス検出器23は従来
周知であるから、その詳細な説明を省略するも例
えば100KHz程度の高周波信号を電極24a及び
24b間に供給し、これに流れる高周波電流値を
測定することにより、いわゆる電極24a及び2
4b間のインピーダンスを検出すればよいもので
ある。25は流量表示器である。
On the other hand, as is clear from FIGS. 1 and 3, the external device 8a has an impedance detector 23, and skin electrodes 24a and 24b are connected to both ends of the impedance detector 23. Since this impedance detector 23 is conventionally well known, a detailed explanation thereof will be omitted. However, by supplying a high frequency signal of, for example, about 100 KHz between the electrodes 24a and 24b and measuring the value of the high frequency current flowing therein, the impedance detector 23 is connected to the so-called electrode 24a and 2
It is sufficient to detect the impedance between 4b. 25 is a flow rate indicator.

上述した本発明による装置は、脳室−腹腔短絡
管設置手術に際して生体の皮下数mmの深さに埋設
されるものである。
The above-described device according to the present invention is implanted at a depth of several mm under the skin of a living body during a ventricular-peritoneal shunt tube installation surgery.

次にその使用方法及び動作について説明する。 Next, its usage and operation will be explained.

まず外部機器7aの発振器9を動作させて、コ
イル10に例えば200KHzの信号を供給する。こ
のコイル10は内部機器7bのコイル12と対向
させておくものであり、これにより内部機器7b
のコイル12に電圧が誘起される。この電圧はダ
イオード13により整流され、且つツエナーダイ
オード14により一定電圧に制御されて電解用電
極15a,15b間に供給される。よつて脳室よ
り短絡管6を通じて腹腔に向つて流れている液
体、この場合は脳脊髄液はこの電極15a,15
b間に於いて電解作用を受ける。即ち電気分解作
用により酸素十水素の気泡が発生する。
First, the oscillator 9 of the external device 7a is operated to supply a signal of, for example, 200 KHz to the coil 10. This coil 10 is arranged to face the coil 12 of the internal device 7b, so that the internal device 7b
A voltage is induced in the coil 12 of. This voltage is rectified by a diode 13, controlled to a constant voltage by a Zener diode 14, and supplied between the electrolysis electrodes 15a and 15b. Therefore, fluid flowing from the ventricles toward the abdominal cavity through the shunt tube 6, in this case cerebrospinal fluid, is transferred to the electrodes 15a, 15.
It is subjected to electrolytic action between b and b. That is, bubbles of oxygen and hydrogen are generated by electrolysis.

このような気泡が貫通孔6′の内室を満す大き
さになると、脳脊髄液の流れにより下流に向つて
押し流される。尚この気泡が万一電解用電極15
a,15b間に停留した場合には、この両電極間
に生じる電流は短絡管内の脳脊髄液を伝わつて脳
あるいは心臓等の重要器官を刺激するおそれがあ
るが、本例ではこれら電解用電極15a及び15
bを挾むように、集電電極16a,16bを設
け、これらを短絡線17により短絡してあるため
に、上述した電流はこの短絡回路を通り、上述し
た器官に通ずるおそれはないので、その危険性を
自動的に予防することができる。一方気泡検知手
段8の内部機器8bに於いては、短絡管6及び
6″を通じて脊髄液が順次流通しており、これに
より電極19と20とが電気的にほとんど短絡し
ている。即ち1対の電気ギヤツプ18a及び18
b間のインピーダンスは非常に低い状態にある。
When such bubbles reach a size that fills the inner chamber of the through hole 6', they are swept downstream by the flow of cerebrospinal fluid. In addition, in the unlikely event that this bubble
If the current remains between electrodes a and 15b, there is a risk that the current generated between these two electrodes will travel through the cerebrospinal fluid in the shunt tube and stimulate important organs such as the brain or heart, but in this example, these electrolytic electrodes 15a and 15
Since the current collecting electrodes 16a and 16b are provided so as to sandwich the electrodes 16a and 16b, and these are short-circuited by the short-circuit wire 17, there is no risk that the above-mentioned current will pass through this short-circuit and reach the above-mentioned organs, so there is no risk of this happening. can be automatically prevented. On the other hand, in the internal device 8b of the bubble detection means 8, spinal fluid is sequentially flowing through the short-circuit tubes 6 and 6'', so that the electrodes 19 and 20 are almost electrically short-circuited. electric gap 18a and 18
The impedance between b and b is in a very low state.

よつて今インピーダンス検出器23の皮膚電極
24a及び24bを、上述した内部機器8bの
夫々の電極19に対向させておくときは、この皮
膚電極24a及び24b間のインピーダンスがこ
れにより計測され、第4図に於いて時点t1以前に
示すように低いインピーダンス値Z1を示す。
Therefore, when the skin electrodes 24a and 24b of the impedance detector 23 are placed opposite the respective electrodes 19 of the internal device 8b described above, the impedance between the skin electrodes 24a and 24b is measured thereby, and the fourth In the figure, a low impedance value Z 1 is shown before time t 1 .

このような状態で上述した気泡が検知手段8の
内部機器8bに於ける第1の電気ギヤツプ18a
に到達すると、この電極19及び20間に於ける
インピーダンスが急激に上昇する。この値を第4
図に於いてZ2として示している。この気泡が短絡
管6″内に入ると再び電極19及び20間は液に
より短絡され、それら間のインピーダンスが低下
し、Z1となる。斯くして気泡が順次押し流され、
これが更に第2の電気ギヤツプ18bに到達する
と、再びイピーダンスがZ2まで上昇する。この時
点をt2で示している。このようにして気泡が第1
のギヤツプ18a及び第2のギヤツプ18bを通
過する時間Tを知ることにより、管6及び6″の
内径が知られていることからして、斯かる管内を
通ずる液体の流量を知ることができる。
In such a state, the above-mentioned air bubbles are detected in the first electric gap 18a in the internal device 8b of the detection means 8.
When this point is reached, the impedance between the electrodes 19 and 20 increases rapidly. Set this value to 4th
It is shown as Z 2 in the figure. When this bubble enters the short-circuit tube 6'', the electrodes 19 and 20 are again short-circuited by the liquid, and the impedance between them decreases to Z 1.The bubbles are thus successively swept away,
When this further reaches the second electric gap 18b, the impedance increases again to Z2 . This point is designated as t2 . In this way, the bubbles
By knowing the time T for passing through the first gap 18a and the second gap 18b, the flow rate of the liquid through the tubes can be determined, given that the inner diameters of the tubes 6 and 6'' are known.

上述した流量表示器25はその換算によつて自
動的に表示する機器である。この機器の構成も本
発明の要旨に直接関係がなく、周知の技術で構成
し得るものであるから、その詳細な説明を省略す
る。
The above-mentioned flow rate indicator 25 is a device that automatically displays the value based on the conversion. The configuration of this device is also not directly related to the gist of the present invention and can be configured using well-known technology, so detailed explanation thereof will be omitted.

尚以上は電気ギヤツプを第1及び第2の18a
及び18bとして2個設けた場合であるが、これ
に限らず3個以上設け、電極24a及び24bを
夫々最外側の電気ギヤツプの外側の電極に対向さ
せることにより、夫々の電気ギヤツプ18a,1
8b……において順次第4図に示す如きパルスが
得られ、よつて夫々の通過時間を平均して検出す
ることができ、よつて、更に平均的な速度を知る
ことができ、より正確な流量を検出することが可
能となる。
In the above, the electric gap is connected to the first and second 18a.
This is a case where two or more electrodes 24a and 18b are provided, but the present invention is not limited to this, and by providing three or more electrodes and making the electrodes 24a and 24b face the outer electrodes of the outermost electric gap, the respective electric gaps 18a, 1
At 8b..., pulses as shown in Fig. 4 are obtained in sequence, and therefore each passing time can be averaged and detected, and the average speed can be determined to obtain a more accurate flow rate. It becomes possible to detect.

尚、従来気泡の移動速度を測定するため、超音
波を使用したドツプラー法が用いられていたが、
流量が少なく気泡の移動速度が遅い場合にはこの
ドツプラー法では検出できない欠点があつた。例
えば0.033ml/分以下の流量のときは、測定でき
ない欠点があつたが、上述した本発明によればこ
の従来の欠点を回避しより正確に測定ができる特
徴を有するものである。
Conventionally, the Doppler method using ultrasound was used to measure the moving speed of bubbles, but
This Doppler method had the disadvantage that it could not be detected when the flow rate was small and the moving speed of the bubbles was slow. For example, when the flow rate was 0.033 ml/min or less, there was a drawback that measurement was not possible, but the present invention described above avoids this conventional drawback and has the feature of being able to perform measurements more accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の使用状態の概略を
示す一部を断面とした説明図、第2図及び第3図
はその一部の機器を示す縦断面図、第4図は本発
明の説明に使用する波形図である。 1は生体、4は脳室、5は腹腔、6は短絡管、
7は気泡発生手段、8は気泡検知手段、18a,
18bは第1及び第2の電気ギヤツプ、19及び
20は夫々電極、23はインピーダンス検出器、
24a,24bはその皮膚電極である。
FIG. 1 is an explanatory diagram, partially in cross section, showing an outline of the usage state of the device according to the present invention, FIGS. 2 and 3 are longitudinal sectional views showing some of the equipment, and FIG. It is a waveform diagram used for explanation. 1 is the living body, 4 is the ventricle, 5 is the peritoneal cavity, 6 is the shunt duct,
7 is a bubble generating means, 8 is a bubble detecting means, 18a,
18b is a first and second electric gap, 19 and 20 are electrodes, 23 is an impedance detector,
24a and 24b are the skin electrodes.

Claims (1)

【特許請求の範囲】 1 気泡発生手段により発生された液体流通管内
の気泡を検知する気泡検知手段を有し、該気泡検
知手段は、外部機器と内部機器とよりなり、上記
内部機器は、上記液体流通管の一部に連結されて
該液体流通管と共に生体内に埋設されるものであ
つて、上記液体流通管を通ずる液体の流通方向に
沿つて所定の距離を隔てて複数個の電気ギヤツプ
を有し、これらの各電気ギヤツプは夫々対をなす
電極が互に対向して構成されてなり、上記外部機
器は、最外側に位置する上記電気ギヤツプの外側
の電極に対して、上記生体の皮膚上より対向して
配置される一対の皮膚電極と、該一対の皮膚電極
間のインピーダンスを測定する機器よりなること
を特徴とする生体用液体流量測定装置。 2 上記特許請求の範囲の第1項に記載した気泡
発生手段は、電磁波により電圧が誘起されるコイ
ルと、該コイルにより生じた電圧が印加され且
つ、上記液体流通管を通じて流れる液体と接触す
る如く、配置された一対の電解用電極と、該一対
の電解用電極を挾むように対向して配置された一
対の集電電極と、該一対の集電電極を電気的に短
絡する短絡線とよりなることを特徴とする生体用
液体流量測定装置。
[Scope of Claims] 1. A bubble detecting means for detecting bubbles in a liquid flow pipe generated by a bubble generating means, the bubble detecting means comprising an external device and an internal device, and the internal device comprises the above-mentioned internal device. A plurality of electric gears are connected to a part of the liquid distribution tube and buried in the living body together with the liquid distribution tube, and are separated by a predetermined distance along the flow direction of the liquid through the liquid distribution tube. Each of these electric gap is configured with a pair of electrodes facing each other, and the external device is configured to detect the temperature of the living body with respect to the outer electrode of the outermost electric gap. 1. A biological fluid flow measuring device comprising: a pair of skin electrodes that are placed facing each other on the skin; and a device that measures impedance between the pair of skin electrodes. 2. The bubble generating means described in claim 1 includes a coil to which a voltage is induced by electromagnetic waves, and a coil to which the voltage generated by the coil is applied and which is in contact with the liquid flowing through the liquid flow pipe. , consisting of a pair of electrolytic electrodes arranged, a pair of current collecting electrodes arranged facing each other so as to sandwich the pair of electrolytic electrodes, and a shorting line that electrically shorts the pair of current collecting electrodes. A biological liquid flow rate measuring device characterized by:
JP57029476A 1982-02-25 1982-02-25 Apparatus for measuring flow amount of liquid for living body Granted JPS58146334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57029476A JPS58146334A (en) 1982-02-25 1982-02-25 Apparatus for measuring flow amount of liquid for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57029476A JPS58146334A (en) 1982-02-25 1982-02-25 Apparatus for measuring flow amount of liquid for living body

Publications (2)

Publication Number Publication Date
JPS58146334A JPS58146334A (en) 1983-08-31
JPS6157764B2 true JPS6157764B2 (en) 1986-12-08

Family

ID=12277136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57029476A Granted JPS58146334A (en) 1982-02-25 1982-02-25 Apparatus for measuring flow amount of liquid for living body

Country Status (1)

Country Link
JP (1) JPS58146334A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685638B1 (en) * 2002-12-23 2004-02-03 Codman & Shurtleff, Inc. Acoustic monitoring system
WO2010062997A2 (en) * 2008-11-26 2010-06-03 Pronk Technologies, Inc. Pump tester

Also Published As

Publication number Publication date
JPS58146334A (en) 1983-08-31

Similar Documents

Publication Publication Date Title
US3661148A (en) Induction type artery gage
WO2003092495A1 (en) Intracavitary impedance measuring probe
US4856529A (en) Ultrasonic pulmonary artery catheter and method
CA2001503C (en) Catheter for measuring motility and peristalsis in tubular organs that transport their contents by means of simultaneous, multiple impedance measurement
Brown et al. The urethral pressure profile
US6615067B2 (en) Method and device for measuring physical characteristics in a body
US3347224A (en) Apparatus and method for measuring cardiac output
US4836214A (en) Esophageal electrode array for electrical bioimpedance measurement
US20060116564A1 (en) Esophageal diagnostic sensor
US20020156393A1 (en) Device and procedure for controlling the extent of intra-abdominal fat in the monitoring of an individual's slimming
US3734083A (en) Electromagnetic catheter velometer-flow meter
EP0092438A3 (en) Method and apparatus for measuring cardiac output
US4561450A (en) Electrolytic pressure transduction system
US3605726A (en) Flexible,extra vascular electromagnetic blood flow probe
US4899759A (en) Flow-through resistivity cell
Hara et al. A new method for measuring cerebrospinal fluid flow in shunts
US6709380B2 (en) Brachytherapy needle with impedance measurement apparatus and methods of use
US4875488A (en) System for measuring the volume of a part of a human body
EP0057681A1 (en) Apparatus and method for measuring blood vessel and cardiac characteristics
JPS6157764B2 (en)
US20080275368A1 (en) Apparatus For Detecting Axial Force In The Digestive System
Kolin A new approach to electromagnetic blood flow determination by means of catheter in an external magnetic field
JPS6363856B2 (en)
Mortensen et al. A system for measurements of micturition urethral cross-sectional areas and pressures
Ferguson et al. Magnetic meters: effects of electrical resistance in tissues on flow measurements, and an improved calibration for square-wave circuits