JPS6157741B2 - - Google Patents

Info

Publication number
JPS6157741B2
JPS6157741B2 JP4055182A JP4055182A JPS6157741B2 JP S6157741 B2 JPS6157741 B2 JP S6157741B2 JP 4055182 A JP4055182 A JP 4055182A JP 4055182 A JP4055182 A JP 4055182A JP S6157741 B2 JPS6157741 B2 JP S6157741B2
Authority
JP
Japan
Prior art keywords
frequency
signal
output
transmission
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4055182A
Other languages
Japanese (ja)
Other versions
JPS57181239A (en
Inventor
Hiroaki Shimayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4055182A priority Critical patent/JPS57181239A/en
Publication of JPS57181239A publication Critical patent/JPS57181239A/en
Publication of JPS6157741B2 publication Critical patent/JPS6157741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Description

【発明の詳細な説明】 本発明は狭帯域の無線周波数による電話及びデ
ーター伝送方式において、衛星回線で生ずる周波
数変動分の補正をする送信周波数制御装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transmission frequency control device for correcting frequency fluctuations occurring in satellite lines in narrowband radio frequency telephone and data transmission systems.

衛星通信の分野においては、INTELSATの
SPADE方式あるいは海事衛星のMARISAT方式
というPSK変調あるいはFM変調を使用した狭帯
域無線周波数による電話あるいはデーター伝送が
広く使用されている。この狭帯域の無線伝送方式
(Single Channel Per Carrier、以下SCPCとい
う)は、受信波が復調器入力において、ある定め
られた指定周波数の範囲内に配置されるようにす
る必要がある。このため地球局の送受信装置には
通常10-8以下の高周波数安定度を有する水晶発振
源を使用し、この要求を満たしているが、衛星区
間で生ずる周波数変動が問題となる。この周波数
変動は、衛星トランスポンダー内の周波数変換器
の周波数安定度に主に起因しており、これにドツ
プラー・シフトが加算される。
In the field of satellite communications, INTELSAT's
Narrowband radio frequency telephone or data transmission using PSK or FM modulation is widely used, such as the SPADE method or the Maritime Satellite MARISAT method. This narrowband wireless transmission system (Single Channel Per Carrier, hereinafter referred to as SCPC) requires that the received wave be placed within a certain designated frequency range at the input of the demodulator. For this reason, earth station transceivers usually use crystal oscillation sources with high frequency stability of 10 -8 or less to meet this requirement, but frequency fluctuations that occur between satellites pose a problem. This frequency variation is primarily due to the frequency stability of the frequency converter in the satellite transponder, plus the Doppler shift.

この衛星区間で発生する周波数変動は、現在の
実用回線では4GHz帯ダウンリングでは、およそ
10-5オーダー(40KHz)となり、SCPC波の占有
帯域巾以上の周波数偏差となる。このため、地球
局の送受信装置においてこの周波数偏差を補正す
る手段が必要となる。この目的のためSCPC方式
では通信パイロツト無線周波数が使用されこのパ
イロツト周波数を基準にして周波数偏差を補正す
る自動周波数制御(以下AFCという)が適用さ
れている。このAFCには2つの方法がある。す
なわち、第1の方法は受信局でこのパイロツト周
波数を受信して衛星区間での周波数変動分を検出
すると共に受信波の周波数スペクトラムを一様
に、この周波数変動分だけ補正し各受信波を定め
られた指定周波数の範囲内に配置する方法であ
る。この方法は対象とする各地球局が相互に通信
網を構成する様なシステムに有効で、例えば
INTELSATのSPADEあるいはSCPCシステムは
この方法が使用されている。
The frequency fluctuation that occurs in this satellite section is approximately
The frequency deviation is on the order of 10 -5 (40KHz), which is greater than the occupied bandwidth of the SCPC wave. Therefore, means for correcting this frequency deviation is required in the earth station's transmitter/receiver. For this purpose, the SCPC method uses a communication pilot radio frequency and applies automatic frequency control (hereinafter referred to as AFC) to correct frequency deviations based on this pilot frequency. There are two methods for this AFC. That is, the first method is to receive this pilot frequency at the receiving station, detect frequency fluctuations in the satellite interval, uniformly correct the frequency spectrum of the received waves by this frequency fluctuation, and determine each received wave. This is a method of placing the signal within the specified frequency range. This method is effective for systems in which target earth stations mutually configure a communication network, for example.
This method is used in INTELSAT's SPADE or SCPC system.

また、第2の方法は地球局の受信機でパイロツ
ト周波数を受信し、衛星区間の周波数変動分を検
出して、自局送信波の周波数をこの周波数変動分
だけ、あらかじめ補正して送信する如く構成する
方法である。この方法は1つの中心となる地球局
が存在し、これと通信する多数の子局とで構成す
る様なシステムに有効な手段で中心局の送信装置
で周波数補正が行なわれている。
In the second method, the earth station's receiver receives the pilot frequency, detects the frequency fluctuation in the satellite interval, and corrects the frequency of the own station's transmission wave by this frequency fluctuation before transmitting. This is a method of configuring. This method is effective for a system in which there is one central earth station and a large number of slave stations communicate with it, and frequency correction is performed by the transmitting device of the central station.

本発明はこの第2の方法に関連するもので、こ
の動作原理を図面により内容を説明する。
The present invention relates to this second method, and the principle of its operation will be explained in detail with reference to the drawings.

第1図は送受信の周波数配置図を示すもので、
横軸は周波数、fPTはパイロツト送信周波数、f
PRはパイロツト受信周波数、fTは送信信号周波
数、又fRは受信信号周波数を示す。送信パイロ
ツト信号fPTは高周波数安定度を有するもので指
定の周波数で送信局より送出される。
Figure 1 shows the frequency allocation diagram for transmission and reception.
The horizontal axis is the frequency, f PT is the pilot transmission frequency, f
PR represents the pilot reception frequency, f T represents the transmission signal frequency, and f R represents the reception signal frequency. The transmission pilot signal fPT has high frequency stability and is transmitted from the transmitting station at a specified frequency.

一方衛星区間を通つた受信パイロツト信号fPR
は衛星区間での周波数変動がない場合には点線で
示すfPR′で受信されるが、通常は周波数偏移を
受け、例えば図示の如く+△f偏移しfPRで受信
される。パイロツト受信機では、この偏移分+△
fを検出すると共に受信信号波fRが所定の周波
数で受信できる様に送信信号波fT′はあらかじめ
一△fだけ偏移させfTで送信する様周波数制御
する手段が必要となる。
On the other hand, the received pilot signal f PR passing through the satellite section
If there is no frequency variation in the satellite interval, it is received at f PR ' shown by the dotted line, but normally it is received at f PR with a frequency shift, for example, +Δf shift as shown. In the pilot receiver, this deviation +△
In addition to detecting f, a means is required to control the frequency so that the transmitted signal wave f T ' is shifted in advance by 1 Δf so that the received signal wave f R can be received at a predetermined frequency, and is transmitted at f T .

従来の送信周波数制御装置は第2図のブロツク
図に示すものが用いられていた。図において、受
信パイロツト周波数fPRの入力信号は、入力端子
1に接続され、帯域ろ波器2で不要波を除去し、
第1周波数変換器(ミキサー)3に接続され、発
振周波数fL(但し、fL<fPRとする)周波数安
定度の高い局部発振器4の出力と混合される。こ
の第1ミキサー3の出力は、帯域ろ波器5を通
り、中間周波増幅器6で増幅され、位相検波器7
の一方の入力として供給される。この位相検波出
力は、直流増幅器8で増幅されループフイルタ9
を通つて、出力周波数fVの電圧制御発振器10
(以下VCOという)を駆動する。
The conventional transmission frequency control device shown in the block diagram of FIG. 2 has been used. In the figure, an input signal with a receiving pilot frequency f PR is connected to an input terminal 1, and a bandpass filter 2 removes unnecessary waves.
It is connected to a first frequency converter (mixer) 3 and mixed with the output of a local oscillator 4 having a highly stable oscillation frequency f L (where f L <f PR ). The output of this first mixer 3 passes through a bandpass filter 5, is amplified by an intermediate frequency amplifier 6, and is amplified by a phase detector 7.
is supplied as one input. This phase detection output is amplified by a DC amplifier 8 and passed through a loop filter 9.
through a voltage controlled oscillator 10 with an output frequency f V
(hereinafter referred to as VCO).

VCO10の出力は、ハイブリツド分岐器12
で分岐され、この一方の出力は、周波数fR(但
し、fV<fRとする)の基準周波数発振器11の
出力と共に第2ミキサー13で混合される。この
第2ミキサーの出力は帯域ろ波器14を通つて、
前記の位相検波器7の他の入力信号となつて、位
相同期系を構成する。
The output of VCO 10 is connected to hybrid branch 12
This one output is mixed in a second mixer 13 with the output of the reference frequency oscillator 11 having a frequency f R (where f V <f R ). The output of this second mixer passes through a bandpass filter 14,
This serves as another input signal to the phase detector 7 and forms a phase synchronization system.

この場合、受信パイロツト周波数fPRが+△f
の変動があると第1ミキサー出力周波数(fPR
L)も+△fの変動をする。この位相同期系
は、位相同期系の一方の入力周波数に+△fの変
動があると、もう一方の入力信号もそれに従つて
変動する必要があり、このように第2ミキサー1
3の出力(fR−fV)が+△f変動するために
は、VCO10の出力が−△fとなるように構成
する必要がある。
In this case, the receiving pilot frequency f PR is +△f
If there is a fluctuation in the first mixer output frequency (f PR
f L ) also fluctuates by +Δf. In this phase synchronization system, if the input frequency of one side of the phase synchronization system fluctuates by +△f, the other input signal must also fluctuate accordingly.
In order for the output (f R −f V ) of VCO 10 to fluctuate by +Δf, it is necessary to configure the VCO 10 so that its output becomes −Δf.

一方、送信中間周波信号は、送信入力端子21
から入り、中間周波増幅器22で増幅され、送信
ミキサー23でVCO10から分岐した出力と混
合される。このミキサー23の出力は帯域ろ波器
24を通り、送信パイロツト信号発生器25の出
力とハイブリツト合成器26で混合され、帯域ろ
波器27を通つて送信端子30から送信信号とし
て送出される。
On the other hand, the transmission intermediate frequency signal is transmitted to the transmission input terminal 21.
The signal enters the signal from the VCO 10, is amplified by the intermediate frequency amplifier 22, and is mixed with the output branched from the VCO 10 by the transmission mixer 23. The output of this mixer 23 passes through a bandpass filter 24, is mixed with the output of a transmission pilot signal generator 25 at a hybrid combiner 26, passes through a bandpass filter 27, and is sent out from a transmission terminal 30 as a transmission signal.

VCO10の出力は−△fの変動をするように
働くので、このVCOの出力を用いた送信信号は
−△fの変動をすることになる。したがつて受信
信号の+△fの変動に対して、送信信号は−△f
変動するように制御し、自動周波数制御
(AFC)機能を有することになる。
Since the output of the VCO 10 operates to fluctuate by -Δf, the transmission signal using the output of this VCO fluctuates by -Δf. Therefore, for a +△f fluctuation in the received signal, the transmitted signal changes by -△f
It will be controlled to fluctuate and have automatic frequency control (AFC) function.

しかし、従来の装置においては、位相検波器7
の入力信号が前述のように40KHz程度周波数変
動し、この変動をカバーするようにろ波器5およ
び14の帯域幅を広くする必要があるため、受信
信号のS/Nを改善できない。したがつて、相手
の送信出力を上げるなどのシステム的な改善対策
が必要となる。また、位相検波器7の動作帯域幅
も広くする必要がある。さらに、従来の基準周波
数fRはVCO10の出力と比較されるため、高い
周波数であり、安定な高周波発振源として構成さ
れる必要があつた。
However, in the conventional device, the phase detector 7
As mentioned above, the frequency of the input signal fluctuates by about 40 KHz, and it is necessary to widen the bandwidth of the filters 5 and 14 to cover this fluctuation, so the S/N of the received signal cannot be improved. Therefore, it is necessary to take systematic improvement measures such as increasing the transmission output of the other party. Furthermore, the operating bandwidth of the phase detector 7 must also be widened. Furthermore, since the conventional reference frequency f R is compared with the output of the VCO 10, it is a high frequency and needs to be configured as a stable high frequency oscillation source.

本発明の目的は、このような従来の欠点を除き
受信信号のS/Nを改善しかつ安価な送信周波数
制御装置を提供することにある。
An object of the present invention is to eliminate such conventional drawbacks, improve the S/N of a received signal, and provide an inexpensive transmission frequency control device.

本発明は、入力周波数とVCOの出力周波数を
混合し、この出力を基準周波数と位相比較して、
この位相比較出力によりVCOを駆動するように
構成した送信周波数制御装置にある。
The present invention mixes the input frequency and the output frequency of the VCO, compares the phase of this output with the reference frequency, and
A transmission frequency control device is configured to drive a VCO using this phase comparison output.

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図は本発明実施例のブロツク図を示す。こ
の実施例は受信入力信号fPRを直接VCO10の
出力と共にミキサー15で混合するので+△fの
入力周波数変動はそのままVCO10の周波数変
動(+△f)として出力される。したがつて、こ
の実施例は送信系に局部発振器28と送信第2ミ
キサー29とを設けて構成している。この送信系
において、入力第1中間周波信号fIFは増幅器2
2で増幅後、第1ミキサー23でVCO10の局
部発振信号と混合され、第2中間周波出力信号を
得る。第2中間周波信号はハイブリツド合成器2
6及び帯域ろ波器27を通り、送信第2ミキサー
29に接続される。局部発振器28は高周波数安
定度を有するものでその発振周波数fLはfL>f
PTあるいはfL>fTとなる様配置される。したが
つて第2ミキサー29の出力信号の周波数スペク
トラムは入力信号に対しその極性が反転し、出力
帯域ろ波器31を通り送信出力端子30に接続さ
れている。一方、送信パイロツト発振器25は高
周波数安定度を有するもので送信第1ミキサーの
出力でハイブリツド合成器26により送信信号波
と合成されている。すなわち、前述の如く送信第
2局部発振器の出力周波数fLは第2ミキサーの
出力では入力送信信号機の出力端子30に於いて
は−△fの周波数偏移を与えることになる。
FIG. 3 shows a block diagram of an embodiment of the invention. In this embodiment, the received input signal f PR is directly mixed with the output of the VCO 10 in the mixer 15, so the input frequency fluctuation of +Δf is directly output as the frequency fluctuation (+Δf) of the VCO 10. Therefore, in this embodiment, a local oscillator 28 and a second transmission mixer 29 are provided in the transmission system. In this transmission system, the input first intermediate frequency signal f IF is transmitted to the amplifier 2
After being amplified in step 2, it is mixed with the local oscillation signal of VCO 10 in first mixer 23 to obtain a second intermediate frequency output signal. The second intermediate frequency signal is sent to the hybrid synthesizer 2
6 and a bandpass filter 27, and is connected to a second transmitting mixer 29. The local oscillator 28 has high frequency stability, and its oscillation frequency f L is f L > f
PT or arranged so that f L > f T . Therefore, the frequency spectrum of the output signal of the second mixer 29 has its polarity inverted with respect to the input signal, and is connected to the transmission output terminal 30 through the output bandpass filter 31. On the other hand, the transmission pilot oscillator 25 has high frequency stability, and the output of the first transmission mixer is combined with the transmission signal wave by a hybrid combiner 26. That is, as described above, the output frequency f L of the second transmitting local oscillator will give a frequency deviation of -Δf at the output terminal 30 of the input transmitting signal at the output of the second mixer.

本発明の場合、+△fの周波数変動を有する中
間周波数はVCOの出力周波数と混合され、周波
数変換される。したがつて、ミキサー15の出力
を帯域ろ波するろ波器16の帯域幅は、パイロツ
ト周波数変動と無関係に充分に狭くすることがで
きる。例えば、この帯域ろ波器16の帯域幅を3
〜5KHzとすることができるので、従来の帯域幅
40KHzと比較して、約10dBのS/N改善が可能
である。このことは、帯域幅を狭くすることによ
り、それだけ受信パイロツト信号レベルを低くで
きることになり、衛星の送信出力を低く抑えるこ
ともでき、システム全体の構成が容易にできると
いえる。また本発明の位相検波器の動作帯域幅は
それだけ狭くできる。また、帯域幅を狭くするこ
とにより、受信パイロツト信号捕捉の問題が生ず
るが、これはVCOを低周波で掃引することによ
り解決できる。さらに本発明の基準発振周波数f
Rはミキサー15の出力と比較されるので、周波
数は充分低く設定できるので、周波数安定度を高
くでき、かつその構成を簡単化できる。
In the case of the present invention, the intermediate frequency with a frequency variation of +Δf is mixed with the output frequency of the VCO and frequency converted. Therefore, the bandwidth of the filter 16 that performs bandpass filtering on the output of the mixer 15 can be made sufficiently narrow regardless of the pilot frequency fluctuation. For example, the bandwidth of this bandpass filter 16 is set to 3.
Traditional bandwidth can be ~5KHz
Compared to 40KHz, it is possible to improve the S/N by about 10dB. This means that by narrowing the bandwidth, the level of the received pilot signal can be lowered accordingly, and the transmission output of the satellite can also be kept low, making the overall system configuration easier. Furthermore, the operating bandwidth of the phase detector of the present invention can be made narrower accordingly. Also, narrowing the bandwidth creates a receive pilot signal acquisition problem, which can be solved by sweeping the VCO at a lower frequency. Furthermore, the reference oscillation frequency f of the present invention
Since R is compared with the output of the mixer 15, the frequency can be set sufficiently low, so that frequency stability can be increased and the configuration can be simplified.

なお、この実施例の送信パイロツト発振器は、
他の地球局から送信されている信号を用いて構成
することもできる。
Note that the transmitting pilot oscillator of this embodiment is
It can also be configured using signals transmitted from other earth stations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は送受信周波数の配置図、第2図は従来
の装置のブロツク図、第3図は本発明の実施例の
ブロツク図である。 図において、1……入力端子、2,5,14,
16,24,27,31……帯域ろ波器、3,1
3,15,23,29……ミキサー、4,28…
…局部発振器、6,22……中間周波増幅器、7
……位相検波器、8……直流増幅器、9……ルー
プフイルタ、10……VCO、11……基準周波
数発振器、12……ハイブリツド分岐器、21…
…中間周波入力端子、25……パイロツト信号発
振器、26……ハイブリツド合成器、30……出
力端子、である。
FIG. 1 is a layout diagram of transmitting and receiving frequencies, FIG. 2 is a block diagram of a conventional device, and FIG. 3 is a block diagram of an embodiment of the present invention. In the figure, 1...input terminal, 2, 5, 14,
16, 24, 27, 31...Band filter, 3, 1
3, 15, 23, 29... mixer, 4, 28...
... Local oscillator, 6, 22 ... Intermediate frequency amplifier, 7
... Phase detector, 8 ... DC amplifier, 9 ... Loop filter, 10 ... VCO, 11 ... Reference frequency oscillator, 12 ... Hybrid branching circuit, 21 ...
... intermediate frequency input terminal, 25 ... pilot signal oscillator, 26 ... hybrid synthesizer, 30 ... output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 無線パイロツト信号を受信し受信パイロツト
信号を抽出し出力する第1の手段と、制御信号に
応答して発振信号の周波数を変化させる電圧制御
発振器と、前記受信パイロツト信号と前記発振信
号とを周波数混合する第1の周波数変換器と、前
記第1の周波数変換器の出力を帯域ろ波する帯域
ろ波器と、前記帯域ろ波器の出力を所定の基準周
波数をもつ信号で位相検波しこの検波出力を前記
制御信号として前記電圧制御発振器に供給する第
2の手段と、前記発振信号と送信信号とを周波数
混合する第2の周波数変換器と、前記第2の周波
数変換器の出力から前記発振信号の周波数と前記
送信信号の周波数との和周波数を有する信号を抽
出する第3の手段と、前記和周波数より大きい周
波数を有する局部発振信号を出力する局部発振器
と、前記局部発振信号と前記和周波数を有する信
号とを周波数混合する第3の周波数変換器と、前
記第3の周波数変換器の出力から前記局部発振信
号の周波数と前記和周波数との差周波数を有する
信号を抽出する第4の手段とを含む送信周波数制
御装置。
1: a first means for receiving a radio pilot signal, extracting and outputting a received pilot signal; a voltage controlled oscillator for changing the frequency of an oscillation signal in response to a control signal; a first frequency converter for mixing; a bandpass filter for bandpass filtering the output of the first frequency converter; and a bandpass filter for performing phase detection on the output of the bandpass filter using a signal having a predetermined reference frequency. a second means for supplying the detected output as the control signal to the voltage controlled oscillator; a second frequency converter for frequency mixing the oscillation signal and the transmission signal; a third means for extracting a signal having a sum frequency of the frequency of the oscillation signal and the frequency of the transmission signal; a local oscillator for outputting a local oscillation signal having a frequency greater than the sum frequency; a third frequency converter for frequency mixing a signal having a sum frequency; and a fourth frequency converter for extracting a signal having a difference frequency between the frequency of the local oscillation signal and the sum frequency from the output of the third frequency converter. a transmitting frequency control device comprising: means for controlling the transmission frequency;
JP4055182A 1982-03-15 1982-03-15 Transmission frequency controller Granted JPS57181239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4055182A JPS57181239A (en) 1982-03-15 1982-03-15 Transmission frequency controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4055182A JPS57181239A (en) 1982-03-15 1982-03-15 Transmission frequency controller

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52133860A Division JPS5811143B2 (en) 1977-11-07 1977-11-07 Transmission frequency control device

Publications (2)

Publication Number Publication Date
JPS57181239A JPS57181239A (en) 1982-11-08
JPS6157741B2 true JPS6157741B2 (en) 1986-12-08

Family

ID=12583581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4055182A Granted JPS57181239A (en) 1982-03-15 1982-03-15 Transmission frequency controller

Country Status (1)

Country Link
JP (1) JPS57181239A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654891B2 (en) * 1983-07-22 1994-07-20 日本電気株式会社 Mobile communication system
JPS60185437A (en) * 1984-03-04 1985-09-20 Kokusai Denshin Denwa Co Ltd <Kdd> Frequency control method in regenerative relay satellite communication system
US6724804B1 (en) 1998-07-13 2004-04-20 Kabushiki Kaisha Kobe Seiko Sho Frequency converter and radio communications system employing the same
JP4892286B2 (en) * 2006-06-29 2012-03-07 京セラ株式会社 Mobile radio communication apparatus and transmission frequency control method
JP5422285B2 (en) * 2009-07-21 2014-02-19 株式会社Ihiエアロスペース Communication device

Also Published As

Publication number Publication date
JPS57181239A (en) 1982-11-08

Similar Documents

Publication Publication Date Title
US6212397B1 (en) Method and system for controlling remote multipoint stations
US4363129A (en) Method and means of minimizing simulcast distortion in a receiver when using a same-frequency repeater
US4520474A (en) Duplex communication transceiver with modulation cancellation
US4932070A (en) Mechanism for deriving accurate frequency reference for satellite communications burst demodulator
US6229991B1 (en) Method of and apparatus for automatic frequency control range extension
JPH03112224A (en) Satellite transponder
JPH0365691B2 (en)
JPS6157741B2 (en)
US5077731A (en) Telecommunication arrangement
US5497402A (en) Automatic frequency control device for satellite communications ground system
CA1201777A (en) Two pilot frequency control for communication systems
CA1193674A (en) Two pilot frequency control for communication systems
JPS5811143B2 (en) Transmission frequency control device
JP2002101032A (en) Gap filler for ground-wave digital broadcasting
JPS5923500B2 (en) Transmission frequency control device
JPH04257126A (en) Transmission/reception equipment
EP0990340A1 (en) Method of synchronization
JP4074807B2 (en) Millimeter-wave transmission / reception system, transmission device, and reception device
JP2812194B2 (en) Satellite communication earth receiving station equipment
JPS62120738A (en) Pilot signal transmission and reception equipment
JP2700972B2 (en) Pilot signal and its signal-to-noise ratio detection circuit
JPH05191214A (en) Automatic frequency control system
KR0143727B1 (en) Apparatus for oscillating frequency for satellite communication
JPH02181526A (en) Reference station for satellite communication
JPS59158137A (en) Pilot receiver