JPS6157678A - Refrigerant and refrigerator - Google Patents

Refrigerant and refrigerator

Info

Publication number
JPS6157678A
JPS6157678A JP59179652A JP17965284A JPS6157678A JP S6157678 A JPS6157678 A JP S6157678A JP 59179652 A JP59179652 A JP 59179652A JP 17965284 A JP17965284 A JP 17965284A JP S6157678 A JPS6157678 A JP S6157678A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
assistant
main
main refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59179652A
Other languages
Japanese (ja)
Inventor
Seiji Sumikawa
澄川 清治
Haruhiko Takada
高田 晴彦
Tomoyuki Nakano
中野 知之
Kagehisa Kato
加藤 景久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP59179652A priority Critical patent/JPS6157678A/en
Publication of JPS6157678A publication Critical patent/JPS6157678A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To provide a refrigerant capable of lowering the ejecting gas temperature of a compressor, and suitable for automobile or domestic cooler or refrigerator, by mixing a main refrigerant with an assistant refrigerant having higher boiling point than the main refrigerant. CONSTITUTION:A refrigerant for refrigeration cycle is produced by mixing a main refrigerant such as flon-12, etc. with an assistant refrigerant such as flon- 113. The amount of the assistant refrigerant is <=10wt% in liquid state. EFFECT:The assistant refrigerant is evaporated by the compressor 1 connected with an engine via an electromagnetic clutch 1a, to effect the lowering of the ejecting gas temperature, and the prevention of the seizing of the compressor. Both main refrigerant and assistant refrigerant are liquefied in the condenser 2, and transferred through the liquid reservior 3 and the expansion valve 4. Since only the main refrigerant is evaporated in the evaporator 5 and the assistant refrigerant is passed in liquid state, the fluidity of the refrigerator oil can be increased, and the heat-exchange efficiency can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車若しくは家庭用の冷房装置又は冷蔵庫
等の比較的蒸発温度の高い蒸発式の冷凍機にあって、特
に冷凍サイクルに封入される冷媒の改善に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an evaporative refrigerator that has a relatively high evaporation temperature, such as an automobile or household cooling device or a refrigerator, and particularly relates to an evaporative refrigerator that is enclosed in a refrigeration cycle. This relates to the improvement of refrigerants.

(従来の技術) 従来、この種の冷凍機においては、一般にフロン−12
等の単一成分の冷媒が用いられている。
(Prior art) Conventionally, in this type of refrigerator, Freon-12 is generally used.
Single-component refrigerants such as

ただし、特公昭54−37328号公報に示されている
ように、二成分以上を組み合わせて冷媒を構成すること
は公知であるが、これは共沸点混合物であり、異なる沸
点をもつ成分を組み合わせるという技術思想は従来見ら
れない。   。
However, as shown in Japanese Patent Publication No. 54-37328, it is known that a refrigerant can be constructed by combining two or more components, but this is an azeotropic mixture, which means that components with different boiling points are combined. Technical ideas are not seen in the past. .

(発明が解決しようとする問題点) しかして、上述したように、従来においては、冷媒の沸
点は唯一で蒸発器において全ての冷媒が蒸発するように
なっているので、圧縮機に吸入される冷媒は過熱蒸気で
あり、これを圧縮機において圧縮するので、吐出ガスの
温度が高くなりがちであって、特に自動車用冷房装置の
ように冷房負荷及び圧縮機の回転数の変動が大きく、且
つ回転式圧縮機のように体積効率の良い圧縮機を用いた
場合には異常高温となることがあった。このように吐出
ガスの温度が高くなると、接続のためのゴムホースやシ
ールのためのパツキン類を破損するばかりではなく、圧
i1機が焼付く虞があったのである。
(Problem to be solved by the invention) However, as mentioned above, conventionally, the boiling point of the refrigerant is unique and all the refrigerant evaporates in the evaporator, so the refrigerant is sucked into the compressor. The refrigerant is superheated vapor, which is compressed in a compressor, so the temperature of the discharged gas tends to be high, especially when the cooling load and compressor rotational speed fluctuate greatly, such as in automobile cooling systems. When a compressor with good volumetric efficiency, such as a rotary compressor, is used, abnormally high temperatures may occur. If the temperature of the discharged gas were to rise in this way, there was a risk that not only would the rubber hoses for connection and the gaskets for sealing be damaged, but the pressure I1 machine would seize up.

そこで、本発明は、沸点の異なる二以上の成分を組み合
わせた冷媒を用いることによって、圧縮機の吐出ガス温
度を低下させることを課題としている。
Therefore, an object of the present invention is to lower the temperature of the gas discharged from the compressor by using a refrigerant that is a combination of two or more components with different boiling points.

(問題点を解決するための手段) 本発明の最も特徴とするところは、主冷媒と比較して沸
点が高く圧縮機において蒸発する補助冷媒を前記主冷媒
に対して10重量%以下混合したことにある。特に圧縮
機として回転式のものを有する冷凍機に用いた場合に効
果がある。
(Means for Solving Problems) The most characteristic feature of the present invention is that an auxiliary refrigerant, which has a higher boiling point than the main refrigerant and evaporates in the compressor, is mixed with the main refrigerant in an amount of 10% by weight or less. It is in. This is particularly effective when used in a refrigerator that has a rotary compressor.

(作用) したがって、主冷媒は、一般の冷凍機と同様に冷凍サイ
クルを循環して空気等の冷却に供されるが、補助冷媒は
、沸点が高くて蒸発器では蒸発せずに圧縮機において吸
熱蒸発するので、その圧縮時に主冷媒の熱を潜熱として
奪って吐出ガス温度を低下させ、このため、上記課題を
達成することができるものである。
(Function) Therefore, the main refrigerant circulates through the refrigeration cycle and is used to cool air, etc. in the same way as in general refrigerators, but the auxiliary refrigerant has a high boiling point and does not evaporate in the evaporator, but in the compressor. Since the refrigerant evaporates endothermically, it absorbs the heat of the main refrigerant as latent heat during compression, lowering the temperature of the discharged gas, thereby achieving the above object.

(実施例) 以下、本発明の実施例を図面により説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第2図において、本発明の対象となる自動車用冷房装置
が示され、圧縮機1、凝縮器2、受液器3、膨張弁4及
び蒸発器5が順次配管結合されて閉回路たる冷凍サイク
ルを構成しており、前記圧wi機1は、電磁クラッチ1
aを介して図示しない自動車の走行用エンジンに連結さ
れ、この′1を磁クラッチ1aを断続することで駆動、
停止の制御がなされ、また、前記凝縮器2は、送風機6
で吸入される外気で冷却されるようになっている。
In FIG. 2, an automobile cooling system to which the present invention is applied is shown, in which a compressor 1, a condenser 2, a liquid receiver 3, an expansion valve 4, and an evaporator 5 are sequentially connected via piping to form a closed circuit refrigeration cycle. The compressor 1 includes an electromagnetic clutch 1
is connected to a vehicle engine (not shown) via a, and this '1 is driven by connecting and disconnecting a magnetic clutch 1a.
The condenser 2 is controlled to stop, and the condenser 2 is connected to the blower 6.
It is designed to be cooled by the outside air drawn in.

また、前記圧縮機lは、例えば第3図に示すように、回
転式に属するベーンタイプのもので、楕円形の案内面を
有するシリンダ7の両側にサイドブロック8a、8bが
固装されて圧縮機本体9が構成され、この圧縮機本体9
内に円筒状のロータ10が配置されている。このロータ
lOは、両サイドブロック8a、8bに軸支されたシャ
フト11に固く結合されていると共に、該ロータ10の
ほぼ半径方向に複数の溝12が形成され、該溝12にベ
ーン13がそれぞれ摺動自在に嵌挿されている。該ベー
ン13は、ロータ10の回転に伴って前記シリンダ7の
案内面に該ベーン13の先端が案内されながら回転し、
圧wJ機本体9、ロータ10及びベーン13に囲まれた
圧縮室14が径方向に移動しながらその容積を変化する
ようになっている。
Further, as shown in FIG. 3, for example, the compressor 1 is of a rotary vane type, and side blocks 8a and 8b are fixed to both sides of a cylinder 7 having an elliptical guide surface for compression. A compressor main body 9 is constructed, and this compressor main body 9
A cylindrical rotor 10 is arranged inside. This rotor 1O is firmly connected to a shaft 11 that is pivotally supported by both side blocks 8a and 8b, and a plurality of grooves 12 are formed in the substantially radial direction of the rotor 10, and vanes 13 are installed in each of the grooves 12. It is slidably inserted. The vane 13 rotates with the tip of the vane 13 being guided by the guide surface of the cylinder 7 as the rotor 10 rotates,
A compression chamber 14 surrounded by a pressure wJ machine main body 9, a rotor 10, and a vane 13 changes its volume while moving in the radial direction.

圧縮機本体9の周囲は、フロント側のシリンダヘッド1
5とリア側のシェル16とに囲まれて、圧―機本体9、
シリンダヘッド15及びシェル16とから成る低圧室1
7と高圧室18とが適宜仕切られて形成されている。低
圧室17は、シリンダヘッド15に形成された冷媒人口
19に通じていると共に、一方のサイドブロック8aに
形成された吸入孔20を介して吸入行程時の圧縮室14
に通じるようになっている。また、高圧室18は、シェ
ル16に形成された冷媒出口21に通じていると共に、
シリンダ7の形成された吐出孔(図示せず)を介して吐
出行程時の圧縮室14に通じるようになっており、この
吐出行程時には吐出孔に設けされた吐出弁が押開かれる
The area around the compressor body 9 is the front cylinder head 1.
5 and the rear shell 16, the pressure machine body 9,
Low pressure chamber 1 consisting of cylinder head 15 and shell 16
7 and a high pressure chamber 18 are appropriately partitioned. The low pressure chamber 17 communicates with the refrigerant port 19 formed in the cylinder head 15, and also communicates with the compression chamber 14 during the suction stroke through a suction hole 20 formed in one side block 8a.
It is becoming familiar to Further, the high pressure chamber 18 communicates with a refrigerant outlet 21 formed in the shell 16, and
It communicates with the compression chamber 14 during the discharge stroke through a discharge hole (not shown) formed in the cylinder 7, and a discharge valve provided in the discharge hole is pushed open during this discharge stroke.

したがって、シャフト11が回転すると、ロータ10の
回転に伴ってベーン13がシリンダ7の案内面に沿って
回転し、吸入行程にあれば圧縮室14が低圧室17と連
通し、圧縮室14に冷媒ガスが吸入され、この圧縮室1
4の容積が徐々に小さくなることにより圧縮され、吐出
弁を押開いて吐出孔から高圧室18に吐出され、さらに
この高圧室18を介して冷媒出口21から出ていくよう
になる。
Therefore, when the shaft 11 rotates, the vane 13 rotates along the guide surface of the cylinder 7 as the rotor 10 rotates, and if it is in the suction stroke, the compression chamber 14 communicates with the low pressure chamber 17, and the refrigerant flows into the compression chamber 14. Gas is inhaled and this compression chamber 1
As the volume of refrigerant 4 gradually decreases, the refrigerant is compressed, the discharge valve is pushed open, and the refrigerant is discharged from the discharge hole into the high pressure chamber 18, and then exits from the refrigerant outlet 21 via the high pressure chamber 18.

しかして、このような冷凍サイクルにあっては、冷凍機
油と共に冷媒が封入されているが、この冷媒は、主冷媒
と補助冷媒とから成る。主冷媒は、例えばフロン−12
(CFz Ct、 )から成り、一方、補助冷媒は、例
えばフロン−113(CCI□F・CCIFg)から成
る。この補助冷媒は、蒸発器5では蒸発せずに圧縮機1
において蒸発するように主冷媒よりもその沸点が高い。
In such a refrigeration cycle, a refrigerant is sealed together with refrigerating machine oil, and this refrigerant consists of a main refrigerant and an auxiliary refrigerant. The main refrigerant is, for example, Freon-12
(CFz Ct, ), while the auxiliary refrigerant consists of, for example, Freon-113 (CCI□F/CCIFg). This auxiliary refrigerant is not evaporated in the evaporator 5 and is transferred to the compressor 1.
Its boiling point is higher than that of the main refrigerant so that it evaporates at

そして、この補助冷媒は、主冷媒に対して液状態で10
重量%以下混合されている。その混合方法は、例えば、
真空にした冷凍サイクル内に液状態の補助冷媒を差圧を
利用して封入し、その後主冷媒を封入する。
This auxiliary refrigerant has a liquid state of 10% compared to the main refrigerant.
They are mixed at less than % by weight. The mixing method is, for example,
A liquid auxiliary refrigerant is introduced into the evacuated refrigeration cycle using differential pressure, and then the main refrigerant is introduced.

または、主冷媒と補助冷媒とを混合した状態で缶等に封
入しておき、この缶から通常の方法で冷凍サイクルに移
し変えるようにしてもよい。
Alternatively, a mixed state of the main refrigerant and the auxiliary refrigerant may be sealed in a can or the like, and the mixture may be transferred from the can to the refrigeration cycle in a normal manner.

上記構成において、圧縮[1で圧縮されたフロン−12
とフロン113の混合冷媒は、凝縮器2に入る。ここで
、凝縮温度を60℃とすると、フロン−12の凝縮圧力
は約15.5kg/cal abs、フロン−113の
それは1.53kg/cal absであるから、主冷
媒と共に補助冷媒がこの凝縮器2において凝縮され液化
する。
In the above configuration, Freon-12 compressed by compression [1]
The mixed refrigerant of CFC and CFC 113 enters the condenser 2. Here, if the condensation temperature is 60°C, the condensation pressure of Freon-12 is approximately 15.5 kg/cal abs, and that of Freon-113 is 1.53 kg/cal abs, so the auxiliary refrigerant is used in this condenser together with the main refrigerant. 2, it is condensed and liquefied.

次にこの液化された冷媒は、受液器3を経由して膨張弁
4を通り、蒸発器5に入る。ここで、蒸発温度を0℃と
すると、フロン−12の飽和蒸発圧が3.14kg/c
4 absであるから、主冷媒は周囲の熱を奪って蒸発
するのに対し、フロン−113のそれは0.153 k
g/czj absであるため蒸発せずに液のまま冷却
されて蒸発器5を出て圧縮機1へ戻って来る。この圧m
atにおいては、吸入行程において、過熱ガス状態の主
冷媒と共に液状態の補助冷媒が冷媒人口19、低圧室1
7及び吸入孔20を通って圧縮室14に入る。そして、
圧縮室14の容積が徐々に減少していくと主冷媒が圧縮
される一方、補助冷媒が蒸発する。このときの温度は7
0〜80℃、圧力は2〜3 kg / cl absで
ある。
Next, this liquefied refrigerant passes through the liquid receiver 3, the expansion valve 4, and enters the evaporator 5. Here, if the evaporation temperature is 0°C, the saturated evaporation pressure of Freon-12 is 3.14kg/c
4 ABS, the main refrigerant absorbs the surrounding heat and evaporates, whereas that of Freon-113 is 0.153 k
g/czj abs, it is not evaporated but is cooled as a liquid, exits the evaporator 5, and returns to the compressor 1. This pressure m
In AT, during the suction stroke, the main refrigerant in the superheated gas state and the auxiliary refrigerant in the liquid state enter the refrigerant population 19 and the low pressure chamber 1.
7 and enters the compression chamber 14 through the suction hole 20. and,
As the volume of the compression chamber 14 gradually decreases, the main refrigerant is compressed, while the auxiliary refrigerant evaporates. The temperature at this time is 7
0-80℃, pressure is 2-3 kg/cl abs.

したがって、補助冷媒の蒸発による主冷媒の熱を32〜
33kcal/kg奪うので、吐出ガス温度を低下させ
ることができる。
Therefore, the heat of the main refrigerant due to the evaporation of the auxiliary refrigerant is
Since 33 kcal/kg is taken away, the temperature of the discharged gas can be lowered.

第1図において、補助冷媒を混合することによる吐出ガ
ス温度の低下がどの程度であるかを実験した結果が示さ
れている。ここで、圧縮機の回転数を180 Or、p
、m、と400 Or、p、n+、とにし、吸入ガス圧
力P、と吐出ガス圧力P4との比を20対1.0とした
。これによれば、フロン−113の割合を増加させるに
従って最初は急激に吐出ガス温度が低下し、徐々にその
低下割合が下がって10重景%混合すると吐出ガス温度
は10℃程度低下するが、それ以上フロン−113の割
合を増加させても吐出ガス温度の低下は見られなかった
FIG. 1 shows the results of an experiment to determine how much the discharge gas temperature is reduced by mixing an auxiliary refrigerant. Here, the rotation speed of the compressor is 180 Or, p
, m, and 400 Or, p, n+, and the ratio of the suction gas pressure P to the discharge gas pressure P4 was 20:1.0. According to this, as the proportion of Freon-113 increases, the temperature of the discharged gas decreases rapidly at first, and the rate of decrease gradually decreases until 10% of the mixture is mixed, and the temperature of the discharged gas decreases by about 10℃. Even if the proportion of Freon-113 was increased further, no decrease in the discharged gas temperature was observed.

また、第4図においては、フロン−113の割合を増加
させた場合に冷凍能力と体積効率とがどのように変化す
るかを調べた実験結果が示されている。これによれば、
体積効率は、フロン−113の割合を増加させるに従っ
て徐々に低下するが、冷凍能力の低下はそれ程ではない
。これは、蒸発器内部をフロン−113が液状態で冷凍
機油と共に流れて冷凍機油が蒸発器に停滞するのを防止
するので、蒸発器の熱交換効率が増加するためと考えら
れる。このことから逆に、高粘度の冷凍機油を使用して
も蒸発器の熱交換効率を損なうことがないので、性能が
良い高粘度冷凍機を使用して圧縮機の効率を高めること
もできるのである。
Furthermore, FIG. 4 shows the results of an experiment to examine how the refrigerating capacity and volumetric efficiency change when the proportion of Freon-113 is increased. According to this,
Although the volumetric efficiency gradually decreases as the proportion of Freon-113 increases, the decrease in the refrigerating capacity is not so great. This is thought to be because the Freon-113 flows in a liquid state together with the refrigerating machine oil inside the evaporator, preventing the refrigerating machine oil from stagnating in the evaporator, thereby increasing the heat exchange efficiency of the evaporator. From this, conversely, even if high viscosity refrigerating machine oil is used, it will not impair the heat exchange efficiency of the evaporator, so it is also possible to increase the efficiency of the compressor by using a high viscosity refrigerating machine with good performance. be.

尚、上記実施例においては、主冷媒をフロン−12、補
助冷媒をフロン−113としたが、これに限定するもの
ではなく、フロン−12を主冷媒とした場合には、0℃
、3.14kg/co! absの状態で液状態にあり
、且つ圧縮機において蒸発するものを補助冷媒とするこ
とができ、例えばフロン−11、フロン−21、フロン
−114等が含まれる。また、主冷媒をフロン−22等
にしてもよいものである。
In the above example, the main refrigerant was Freon-12 and the auxiliary refrigerant was Freon-113, but the invention is not limited to this. When Freon-12 is used as the main refrigerant, the temperature is 0°C.
, 3.14kg/co! The auxiliary refrigerant can be one that is in a liquid state in the ABS state and evaporates in the compressor, and includes, for example, Freon-11, Freon-21, Freon-114, and the like. Further, the main refrigerant may be Freon-22 or the like.

(発明の効果) 以上述べたように、本発明によれば、主冷媒と比較して
沸点が高く圧縮機において蒸発する補助冷媒を前記主冷
媒に対して1oii量%以下混合して冷媒を構成したの
で、補助冷媒の圧縮機における蒸発により吐出ガス温度
を低下させることができ、焼付き等を防止することがで
きる。また、補助冷媒が液状態で蒸発器を通過するので
、冷凍機油の流動性を良くし、蒸発器における熱交換効
率又は圧縮機の効率を向上させることがでる。このよう
な効果は特に回転式の圧縮機を冷凍機に用いた場合に顕
著である。
(Effects of the Invention) As described above, according to the present invention, the refrigerant is constituted by mixing the auxiliary refrigerant, which has a higher boiling point than the main refrigerant and evaporates in the compressor, to the main refrigerant in an amount of 1 oii or less. Therefore, the temperature of the discharged gas can be lowered by evaporation of the auxiliary refrigerant in the compressor, and seizure and the like can be prevented. Furthermore, since the auxiliary refrigerant passes through the evaporator in a liquid state, the fluidity of the refrigerating machine oil can be improved, and the heat exchange efficiency in the evaporator or the efficiency of the compressor can be improved. Such an effect is particularly noticeable when a rotary compressor is used in a refrigerator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による吐出ガス温度の低下を
示す特性線図、第2図は本発明を適用した冷凍機の構成
図、第3図は同上に用いた圧′4r6機を示す断面図、
第4図は本発明の一実施例による冷凍能力と体積効率の
変化を示す特性線図である。 1・・・圧縮機、2・・・凝縮器、4・・・膨張弁、5
・・・蒸発器。 第1図 R12に対するR1】3の混合比(S)(1量)→第2
図 第3図
Fig. 1 is a characteristic diagram showing the reduction in discharge gas temperature according to an embodiment of the present invention, Fig. 2 is a configuration diagram of a refrigerator to which the present invention is applied, and Fig. 3 is a diagram showing a pressure 4r6 machine used in the above. A sectional view showing,
FIG. 4 is a characteristic diagram showing changes in refrigerating capacity and volumetric efficiency according to an embodiment of the present invention. 1... Compressor, 2... Condenser, 4... Expansion valve, 5
···Evaporator. Figure 1 Mixing ratio (S) of R1 to R12 of 3 (1 amount) → 2nd
Figure 3

Claims (1)

【特許請求の範囲】 1、主冷媒と比較して沸点が高く圧縮機において蒸発す
る補助冷媒を前記主冷媒に対して10重量%以下混合し
たことを特徴とする冷媒。 2、少なくとも回転式圧縮機、凝縮器、膨張弁及び蒸発
器を順次配管結合して冷凍サイクルを構成した冷凍機に
おいて、主冷媒と比較して沸点が高く前記圧縮機におい
て蒸発する補助冷媒を前記主冷媒に対して10重量%以
下混合して冷媒を構成し、この冷媒を前記冷凍サイクル
に封入したことを特徴とする冷凍機。
[Scope of Claims] 1. A refrigerant characterized in that an auxiliary refrigerant that has a higher boiling point than the main refrigerant and evaporates in the compressor is mixed with the main refrigerant in an amount of 10% by weight or less. 2. In a refrigerator in which a refrigeration cycle is constructed by sequentially connecting at least a rotary compressor, a condenser, an expansion valve, and an evaporator, an auxiliary refrigerant that has a higher boiling point than the main refrigerant and evaporates in the compressor is used as described above. A refrigerating machine characterized in that a refrigerant is formed by mixing 10% by weight or less with a main refrigerant, and the refrigerant is sealed in the refrigeration cycle.
JP59179652A 1984-08-29 1984-08-29 Refrigerant and refrigerator Pending JPS6157678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59179652A JPS6157678A (en) 1984-08-29 1984-08-29 Refrigerant and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59179652A JPS6157678A (en) 1984-08-29 1984-08-29 Refrigerant and refrigerator

Publications (1)

Publication Number Publication Date
JPS6157678A true JPS6157678A (en) 1986-03-24

Family

ID=16069517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59179652A Pending JPS6157678A (en) 1984-08-29 1984-08-29 Refrigerant and refrigerator

Country Status (1)

Country Link
JP (1) JPS6157678A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116776A (en) * 1980-01-21 1981-09-12 Inst Francais Du Petrole Heat generation by heat pump using specific fluid mixture as actuation fluid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116776A (en) * 1980-01-21 1981-09-12 Inst Francais Du Petrole Heat generation by heat pump using specific fluid mixture as actuation fluid

Similar Documents

Publication Publication Date Title
US6009715A (en) Refrigerating apparatus, refrigerator, air-cooled type condensor unit for refrigerating apparatus and compressor unit
KR100285665B1 (en) refrigeration unit
US3710590A (en) Refrigerant cooled oil system for a rotary screw compressor
JPH10325622A (en) Refrigerating cycle device
JP2005016874A (en) Freezing and refrigerating unit and refrigerator
US6385995B1 (en) Apparatus having a refrigeration circuit
EP0011971B1 (en) Refrigerant mixture
JPS6157678A (en) Refrigerant and refrigerator
JP4427675B2 (en) Refrigeration cycle
Hickman et al. Implications of cooling rotary sliding vane heat-pump compressors
Straub Alternative Refrigerants For Household Refrigerators
JPS6053264B2 (en) Heat saving refrigeration system
KR100309011B1 (en) Refrigeration cycle
KR20030041380A (en) Refrigeration system
CN214307710U (en) Single-system double-temperature secondary throttling technology
JP2001074325A (en) Two-stage compression type freezing and refrigerating system
CN107011865A (en) The mix refrigerant of ultra-high temperature air conditioner
JPH0113969Y2 (en)
JPS6135754Y2 (en)
JPH11223397A (en) Freezer refrigerator
Wu et al. Development of a high-efficiency domestic refrigerator using CFC substitutes
Dhar et al. An investigation into the use of R12, R12 mixtures in air conditioners
KR200267159Y1 (en) refrigeration system
KR100360905B1 (en) refrigerating cycle of air conditioner
JP2001194014A (en) Freezing cycle apparatus and freezing refrigerator