JPS6157549B2 - - Google Patents

Info

Publication number
JPS6157549B2
JPS6157549B2 JP59063557A JP6355784A JPS6157549B2 JP S6157549 B2 JPS6157549 B2 JP S6157549B2 JP 59063557 A JP59063557 A JP 59063557A JP 6355784 A JP6355784 A JP 6355784A JP S6157549 B2 JPS6157549 B2 JP S6157549B2
Authority
JP
Japan
Prior art keywords
helium
oil
gas
compressors
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59063557A
Other languages
Japanese (ja)
Other versions
JPS60207888A (en
Inventor
Kyoji Nakada
Koji Ishizuka
Ryuichi Hakamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59063557A priority Critical patent/JPS60207888A/en
Publication of JPS60207888A publication Critical patent/JPS60207888A/en
Publication of JPS6157549B2 publication Critical patent/JPS6157549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ヘリウム液化装置に係り、特に、長
期に亙つて安定した運転ができるようにした液化
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a helium liquefaction device, and particularly to a liquefaction device that can operate stably over a long period of time.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知のように、超電導装置を安定に動作させる
には、冷媒である液体ヘリウムを安定に供給する
必要がある。
As is well known, in order to operate a superconducting device stably, it is necessary to stably supply liquid helium, which is a refrigerant.

このように液体ヘリウムを安定に得る手段、す
なわち、ヘリウム液化装置は、通常、ヘリウムガ
スを圧縮する圧縮機と、熱交換器タイプのヘリウ
ム液化機と、液体ヘリウム容器とを閉ループ的に
接続した構成となつている。そして、最近では、
数年間の連続運転の要望に対処して、特に、可動
要素である圧縮機を細分化、つまり小形の圧縮機
を所望台数並列に接続し、これによつて圧縮機の
全面的な停止といつた事態の発生を回避できるよ
うにしている。
A means for stably obtaining liquid helium, that is, a helium liquefaction device, usually has a structure in which a compressor for compressing helium gas, a heat exchanger type helium liquefaction machine, and a liquid helium container are connected in a closed loop. It is becoming. And recently,
In order to cope with the desire for continuous operation for several years, in particular the moving element of the compressor is subdivided, i.e. the desired number of small compressors are connected in parallel, thereby making it possible to completely shut down the compressor and at any time. This allows us to avoid such situations from occurring.

ところで、圧縮機には可動部が存在しているの
で、これら可動部には通常、潤滑油が供給され
る。もし、このような潤滑油でヘリウムガスが汚
染されると、ヘリウム液化機の性能を極端に低下
させ、装置としての機能を発揮しなくなる。この
ため、一般には、各圧縮機内に油除去フイルタを
設けるようにしている。
By the way, since a compressor has movable parts, lubricating oil is usually supplied to these movable parts. If the helium gas is contaminated with such lubricating oil, the performance of the helium liquefaction machine will be extremely reduced and the device will no longer function properly. For this reason, an oil removal filter is generally provided within each compressor.

しかし、数年間という長期間に亙つて連続運転
させた場合、内蔵のフイルタが故障しないとはか
ぎらない。もし、故障すると、油の付着によつて
ヘリウム液化機の性能が低下し、また、ヘリウム
液化機の復帰作業には長時間と多大の費用を必要
とする。そこで、このような問題に対処して、各
圧縮機のガス吐出口に油が混入しているか否かを
検出する手段を設け、この手段で油の漏れを監視
し、油の漏れた圧縮機だけを切り離して修理ある
いは交換することが考えられる。
However, there is no guarantee that the built-in filter will not break down if it is operated continuously for a long period of time, such as several years. If it breaks down, the performance of the helium liquefier will deteriorate due to oil adhesion, and it will take a long time and cost a lot of money to restore the helium liquefier. Therefore, in order to deal with this problem, we have provided a means to detect whether or not oil is mixed in the gas discharge port of each compressor, and with this means we can monitor oil leaks and identify compressors with oil leaks. It is conceivable to separate only one part and repair or replace it.

しかし、油の漏れを検出するには、圧縮機から
吐出したヘリウムガスを少量ではあるが連続的に
大気中あるいは別容器に放出し、この放出路に検
出用のフイルタを介在させる必要があるので、圧
縮機の台数が多いとヘリウムガスの損失が多く、
経済的な不利を免れ得ないものとなる。
However, in order to detect oil leaks, it is necessary to continuously release a small amount of helium gas discharged from the compressor into the atmosphere or into a separate container, and to insert a detection filter into this release path. , the more compressors there are, the more helium gas is lost.
Economic disadvantages cannot be avoided.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、運転中にヘリウ
ムガスの損失を最少限に抑えた状態で、かつヘリ
ウム液化機の油汚染を招くことなく複数の圧縮機
の内のどの圧縮機が油漏れを起こしているかを特
定でき、運転を継続しながら特定された圧縮機の
交換あるいは修理等を行なえるヘリウム液化装置
を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to minimize the loss of helium gas during operation and without causing oil contamination of the helium liquefaction machine. To provide a helium liquefaction device capable of specifying which compressor among a plurality of compressors is causing an oil leak and replacing or repairing the specified compressor while continuing operation.

〔発明の概要〕[Summary of the invention]

本発明に係るヘリウム液化装置は、並列接続さ
れた複数台のヘリウムガス用の圧縮機と、ヘリウ
ム液化機と、液体ヘリウム容器と、並列接続され
た前記複数台の圧縮機のガス吐出口を前記ヘリウ
ム液化機および前記液体ヘリウム容器を経由させ
て上記複数台の圧縮機のガス吸入口に接続して閉
ループを構成する配管と、前記並列接続された複
数台の圧縮機のガス吐出口と前記ヘリウム液化機
との間の前記配管に介挿されるとともにそれぞれ
が並列接続されてなる複数の不純物除去フイルタ
と、これら不純物除去フイルタのガス流入路とガ
ス流出路とにそれぞれ介挿され各不純物除去フイ
ルタを前記閉ループへ選択的に介挿させるととも
に選択的に分離させるためのフイルタ接続用バル
ブと、前記各圧縮機のガス吸入路およびガス吐出
路にそれぞれ介挿され上記各圧縮機を前記閉ルー
プへ選択に介挿させるとともに選択的に分離させ
るための圧縮機接続用バルブと、前記並列接続さ
れた複数台の圧縮機の前記吐出路側に設けられた
前記圧縮機接続用バルブと前記並列接続された複
数の不純物除去用フイルタの前記ガス流入路側に
設けられた前記フイルタ接続用バルブとの間に位
置する前記配管に接続され外部から視認可能な油
フイルタを介して常時、ヘリウムガスの一部を放
出させる監視用の油検出器と、前記各圧縮機のガ
ス吐出口にそれぞれ接続され外部から視認可能な
油フイルタを介して選択的にヘリウムガスを放出
させる油漏れ圧縮機特定用の油検出器とを備えて
いる。
The helium liquefaction device according to the present invention includes a plurality of compressors for helium gas connected in parallel, a helium liquefaction machine, a liquid helium container, and a gas discharge port of the plurality of compressors connected in parallel. Piping that connects to the gas inlets of the plurality of compressors via the helium liquefier and the liquid helium container to form a closed loop, and the gas discharge ports of the plurality of compressors connected in parallel and the helium A plurality of impurity removal filters are inserted in the piping between the liquefier and connected in parallel, and each impurity removal filter is inserted in the gas inflow path and the gas outflow path of these impurity removal filters. A filter connection valve for selectively inserting into the closed loop and selectively separating the filter, and a filter connecting valve for selectively inserting the filter into the closed loop and selectively separating the compressor from the closed loop; a compressor connection valve for insertion and selective separation; a compressor connection valve provided on the discharge path side of the plurality of parallel-connected compressors; monitoring to constantly release a portion of the helium gas through an oil filter that is connected to the piping and is visible from the outside and is located between the impurity removal filter and the filter connection valve provided on the gas inflow path side; and an oil detector for identifying an oil leaking compressor that selectively releases helium gas through an oil filter that is connected to the gas discharge port of each compressor and is visible from the outside. ing.

〔発明の効果〕〔Effect of the invention〕

上述した液化装置であると、まず、複数の圧縮
機とヘリウム液化機との間に不純物除去フイルタ
を介在させているので、万一、ある圧縮機が油漏
れを起こしても、この漏れた油がヘリウム液化機
まで移行することがない。したがつて、圧縮機の
潤滑油によつてヘリウム液化機が汚染されるのを
防止することができる。また、上記不純物除去フ
イルタに流入するヘリウムガス中に油が混入して
いるか否かを常に監視し、油の漏れが検出された
時点で各圧縮器から吐出されるヘリウムガス中の
油を順次検出してどの圧縮機が油漏れを起こして
いるかを調べることができるので、たとえ圧縮機
の台数が多い場合であつても油の混入を検出する
ために消費されるヘリウムガス量を大幅に少なく
できる。したがつて、本発明装置によれば、ヘリ
ウム液化機を汚染させることなく、しかも経済的
に圧縮機の油漏れを知ることができ、この結果、
ヘリウム液化装置の長時間に亙る安定運転の実現
を寄与することができる。
In the liquefaction equipment described above, impurity removal filters are interposed between the multiple compressors and the helium liquefaction machine, so even if one compressor leaks oil, this leaked oil will be removed. does not migrate to the helium liquefaction machine. Therefore, it is possible to prevent the helium liquefier from being contaminated by the lubricating oil of the compressor. In addition, we constantly monitor whether oil is mixed in the helium gas flowing into the impurity removal filter, and when an oil leak is detected, we sequentially detect oil in the helium gas discharged from each compressor. Since it is possible to check which compressor is causing an oil leak, the amount of helium gas consumed to detect oil contamination can be significantly reduced even if there are a large number of compressors. . Therefore, according to the device of the present invention, oil leakage from the compressor can be detected economically without contaminating the helium liquefaction machine, and as a result,
This can contribute to realizing stable operation of the helium liquefaction device over a long period of time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照しながら
説明する。
An embodiment of the present invention will be described below with reference to the drawings.

図において、1a,1b,1cおよび1dは、
圧縮機を示している。これら圧縮機1a…1dの
ガス吸入口は、それぞれバルブ2a…2dを介し
て配管3に共通に接続されている。また、圧縮機
1a…1dのガス吐出口は、バルブ4a…4dを
介して配管5に共通に接続されている。
In the figure, 1a, 1b, 1c and 1d are
A compressor is shown. The gas inlets of these compressors 1a...1d are commonly connected to a pipe 3 via valves 2a...2d, respectively. Further, gas discharge ports of the compressors 1a...1d are commonly connected to a pipe 5 via valves 4a...4d.

配管5は、バルブ6a,6bを介して油、水
分、酸素等を除去する不純物除去フイルタ7a,
7bの入口に接続され、この不純物除去フイルタ
7a,7bの出口は、バルブ8a,8bを介して
ヘリウム液化機9の高圧ヘリウムガス導入口に接
続されている。ヘリウム液化機9の液体ヘリウム
排出口は、配管10を介して液体ヘリウム容器1
1の導入口に接続されている。また、液体ヘリウ
ム容器11のヘリウムガス排出口は、配管12を
介してヘリウム液化機9の熱交換用ヘリウムガス
導入口に接続され、さらに、ヘリウム液化機9の
熱交換用ヘリウムガス排出口は、配管13を介し
て前記配管3に接続されている。
The piping 5 is equipped with an impurity removal filter 7a that removes oil, moisture, oxygen, etc. via valves 6a and 6b.
The outlet of impurity removal filters 7a, 7b is connected to the high pressure helium gas inlet of helium liquefier 9 via valves 8a, 8b. The liquid helium discharge port of the helium liquefier 9 is connected to the liquid helium container 1 via piping 10.
It is connected to the inlet of 1. Further, the helium gas outlet of the liquid helium container 11 is connected to the helium gas inlet for heat exchange of the helium liquefier 9 via the pipe 12, and the helium gas outlet for heat exchange of the helium liquefier 9 is connected to It is connected to the pipe 3 via a pipe 13.

しかして、前記配管5と前記バルブ6a,6b
との間にはバルブ14を介して油検出器15が接
続されている。この油検出器15は、ヘリウムガ
スを大気中あるいは別容器へ放出する小径の放出
管と、この放出管内に挿設された油フイルタとで
構成されており、上記油フイルタを外部から視認
できるように構成されている。一方、各圧縮機1
a…1dのガス吐出口には、それぞれバルブ16
a…16dを介して前記油検出器と同様に構成さ
れた油検出器17a…17dが接続されている。
Therefore, the piping 5 and the valves 6a, 6b
An oil detector 15 is connected through a valve 14 between the two. This oil detector 15 is composed of a small-diameter discharge pipe that discharges helium gas into the atmosphere or into another container, and an oil filter inserted into this discharge pipe.The oil filter is made visible from the outside. It is composed of On the other hand, each compressor 1
A valve 16 is installed at each gas discharge port of a...1d.
Oil detectors 17a...17d configured similarly to the oil detector described above are connected via a...16d.

しかして、本発明によれば、上記のように構成
されたヘリウム液化装置は次のようにして運転さ
れる。まず、バルブ1a,1b…1d、バルブ4
a,4b…4d、バルブ6a,8aおよびバルブ
14が開に制御され、また、バルブ16a,16
b…16d、バルブ6b,8bが閉に制御され
る。
According to the present invention, the helium liquefaction apparatus configured as described above is operated as follows. First, valves 1a, 1b...1d, valve 4
a, 4b...4d, valves 6a, 8a and valve 14 are controlled to be open, and valves 16a, 16
b...16d, the valves 6b and 8b are controlled to be closed.

このような状態で圧縮機1a,1b…1dの動
作を開始させる。これら圧縮機1a,1b…1d
で圧縮されて形成された高圧のヘリウムガスは、
配管5、不純物除去フイルタ7aを通つてヘリウ
ム液化機9内に導入される。導入されたヘリウム
ガスは、ヘリウム液化機9内において液化された
後、配管10を介して液体ヘリウム容器11内に
導入される。そして、液体ヘリウム容器11内で
蒸発によつて形成されたヘリウムガスは、配管1
2を介してヘリウム液化機9内を通つて冷却用に
供された後、配管13を介して配管3にもどされ
る。したがつて、ここに完全な閉ループ構成のヘ
リウム液化装置の機能が発揮される。
In this state, the compressors 1a, 1b, . . . , 1d are started to operate. These compressors 1a, 1b...1d
The high-pressure helium gas formed by compression is
It is introduced into the helium liquefier 9 through the pipe 5 and the impurity removal filter 7a. The introduced helium gas is liquefied in the helium liquefier 9 and then introduced into the liquid helium container 11 via the pipe 10. Then, the helium gas formed by evaporation in the liquid helium container 11 is transferred to the pipe 1
After passing through the helium liquefier 9 through the helium liquefier 2 and being used for cooling, it is returned to the piping 3 through the piping 13. Therefore, the function of a completely closed-loop helium liquefier is demonstrated here.

しかして、上記のように運転状態に入ると、バ
ルブ14が開に設定されていることからして、高
圧ヘリウムガスの一部は常に、油検出器15を介
して大気中あるいは特別の図示しない容器内へと
放出される。したがつて、もし、いずれかの圧縮
機から油が漏れていると油検出器15によつて必
ず検出されることになる。なお、油漏れが生じて
も、この油は不純物除去フイルタ7aにトラツプ
され、ヘリウム液化機9まで移行するようなこと
はない。上記のように油検出器15によつて油の
混入が検出された時点で、バルブ14を閉じ、こ
んどはバルブ16a,16b…16dを順次開に
制御する。このような制御を行なうと、油の漏れ
ている圧縮機に接続されている油検出器に必ず油
漏れ反応が現われる。したがつて、油漏れを起こ
している圧縮機を直ちに知ることができるので、
装置全体の運転を継続させながら油漏れを起こし
ている圧縮機を切り離し、修理あるいは交換を行
なえばよいことになる。
Therefore, when the operating state is entered as described above, since the valve 14 is set to be open, a portion of the high pressure helium gas is always passed through the oil detector 15 into the atmosphere or into a special container (not shown). released into the container. Therefore, if oil is leaking from any of the compressors, the oil detector 15 will definitely detect it. Note that even if oil leaks, this oil will be trapped in the impurity removal filter 7a and will not migrate to the helium liquefier 9. As mentioned above, when the oil detector 15 detects the presence of oil, the valve 14 is closed, and the valves 16a, 16b, . . . , 16d are sequentially opened. If such control is performed, an oil leakage reaction will always appear in the oil detector connected to the compressor that is leaking oil. Therefore, you can immediately know which compressor is leaking oil.
This means that while the entire system continues to operate, the compressor that is leaking oil can be isolated and repaired or replaced.

このように、不純物除去フイルタ7a,7bの
入口に設けられた油検出器15で油漏れが発生し
ているか否か検出し、漏れているときには、各圧
縮機1a,1b…1dのガス吐出口に設けられた
油検出器17a,17b…17dを順次動作させ
てどの圧縮機が油漏れを起こしているか調べるこ
とができるようにしている。したがつて、油漏れ
を検出するために消費されるヘリウムガスの量
は、1つの油検出器を通流するだけの量に抑えら
れることになる。このため、ヘリウムガスの消費
量の少ない状態で、かつヘリウム液化機9に油が
移行しない状態で各圧縮機1a,1b…1dの状
態を監視できることになり、結局、前述した効果
が得られることになる。また、不純物除去フイル
タを2個並列的に設けておくと、運転を継続しな
がらいずれか一方の交換や修理等を行なうことが
できる。
In this way, the oil detector 15 installed at the inlet of the impurity removal filters 7a, 7b detects whether or not oil leaks. The oil detectors 17a, 17b, . . . , 17d provided in the compressors are sequentially operated to make it possible to check which compressor is causing an oil leak. Therefore, the amount of helium gas consumed to detect oil leaks is limited to the amount required to flow through one oil detector. Therefore, the status of each compressor 1a, 1b...1d can be monitored while the amount of helium gas consumed is small and no oil is transferred to the helium liquefier 9, and the above-mentioned effects can be obtained. become. Further, by providing two impurity removal filters in parallel, it is possible to replace or repair one of them while continuing operation.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例に係るヘリウム液化装置
のブロツク的構成図である。 1a,1b…1d……圧縮機、7a,7b……
不純物除去フイルタ、9……ヘリウム液化機、1
1……液体ヘリウム容器、15,17a,17b
…17d……油検出器。
The figure is a block diagram of a helium liquefier according to an embodiment of the present invention. 1a, 1b...1d...compressor, 7a, 7b...
Impurity removal filter, 9... Helium liquefaction machine, 1
1...Liquid helium container, 15, 17a, 17b
...17d...Oil detector.

Claims (1)

【特許請求の範囲】[Claims] 1 並列接続された複数台のヘリウムガス用の圧
縮機と、ヘリウム液化機と、液体ヘリウム容器
と、並列接続された前記複数台の圧縮機のガス吐
出口を前記ヘリウム液化機および前記液体ヘリウ
ム容器を経由させて上記複数台の圧縮機のガス吸
入口に接続して閉ループを構成する配管と、前記
並列接続された複数台の圧縮機のガス吐出口と前
記ヘリウム液化機との間の前記配管に介挿される
とともにそれぞれが並列接続されてなる複数の不
純物除去フイルタと、これら不純物除去フイルタ
のガス流入路とガス流出路とにそれぞれ介挿され
各不純物除去フイルタを前記閉ループへ選択的に
介挿させるとともに選択的に分離させるためのフ
イルタ接続用バルブと、前記各圧縮機のガス吸入
路およびガス吐出路にそれぞれ介挿され上記各圧
縮機を前記閉ループへ選択的に介挿させるととも
に選択的に分離させるための圧縮機接続用バルブ
と、前記並列接続された複数台の圧縮機の前記ガ
ス吐出路側に設けられた前記圧縮機接続用バルブ
と前記並列接続された複数の不純物除去用フイル
タの前記ガス流入路側に設けられた前記フイルタ
接続用バルブとの間に位置する前記配管に接続さ
れ外部から視認可能な油フイルタを介して常時、
ヘリウムガスの一部を放出させる監視用の油検出
器と、前記各圧縮機のガス吐出口にそれぞれ接続
され外部から視認可能な油フイルタを介して選択
的にヘリウムガスを放出させる油漏れ圧縮機特定
用の油検出器とを具備してなることを特徴とする
ヘリウム液化装置。
1 A plurality of compressors for helium gas connected in parallel, a helium liquefier, a liquid helium container, and a gas discharge port of the plurality of compressors connected in parallel to the helium liquefier and the liquid helium container. piping that connects to the gas inlets of the plurality of compressors to form a closed loop, and the piping between the gas discharge ports of the plurality of compressors connected in parallel and the helium liquefier. A plurality of impurity removal filters are inserted into the closed loop and each impurity removal filter is connected in parallel, and each impurity removal filter is inserted into the gas inflow path and the gas outflow path of these impurity removal filters and selectively inserted into the closed loop. a filter connection valve for selectively separating the compressors from the closed loop; A compressor connection valve for separating the compressors, the compressor connection valve provided on the gas discharge path side of the plurality of parallel-connected compressors, and the plurality of parallel-connected impurity removal filters. At all times, through an oil filter that is connected to the piping and is visible from the outside and is located between the filter connection valve provided on the gas inflow path side,
An oil leakage compressor that selectively releases helium gas through a monitoring oil detector that releases a portion of helium gas and an oil filter that is connected to the gas discharge port of each compressor and is visible from the outside. A helium liquefaction device characterized by comprising a specific oil detector.
JP59063557A 1984-03-31 1984-03-31 Method of operating helium liquefier Granted JPS60207888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063557A JPS60207888A (en) 1984-03-31 1984-03-31 Method of operating helium liquefier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063557A JPS60207888A (en) 1984-03-31 1984-03-31 Method of operating helium liquefier

Publications (2)

Publication Number Publication Date
JPS60207888A JPS60207888A (en) 1985-10-19
JPS6157549B2 true JPS6157549B2 (en) 1986-12-08

Family

ID=13232632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063557A Granted JPS60207888A (en) 1984-03-31 1984-03-31 Method of operating helium liquefier

Country Status (1)

Country Link
JP (1) JPS60207888A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2375390B1 (en) * 2009-10-26 2013-02-11 Consejo Superior De Investigaciones Científicas (Csic) HELIO RECOVERY PLANT.
JP5782065B2 (en) * 2013-05-02 2015-09-24 株式会社前川製作所 Refrigeration system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267701A (en) * 1979-11-09 1981-05-19 Helix Technology Corporation Helium liquefaction plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267701A (en) * 1979-11-09 1981-05-19 Helix Technology Corporation Helium liquefaction plant

Also Published As

Publication number Publication date
JPS60207888A (en) 1985-10-19

Similar Documents

Publication Publication Date Title
KR100878819B1 (en) Air conditioner and control method for the same
US4110998A (en) Apparatus for detecting and removing contaminants from a refrigeration system
US5353603A (en) Dual refrigerant recovery apparatus with single vacuum pump and control means
US5127239A (en) Refrigerant handling system with facility for clearing system components of refrigerant
US4644973A (en) Valve unit for air-conditioner piping
US7017358B2 (en) Apparatus and method for controlling the temperature of an electronic device
US5396774A (en) By-pass manifold valve for charging, repairing and/or testing refrigerant systems
CN100520233C (en) Refrigeration circuit
CN108291757A (en) The by-passing valve leak judgement control method of refrigerating circulatory device and refrigerating circulatory device
CN104343664A (en) Compressor and cooling system
US5379605A (en) Method for cleaning air conditioning system
JPS6157549B2 (en)
US5345774A (en) Method and apparatus for zero emissions testing of a refrigerant in a closed system
JPS5952314B2 (en) Automatic shutoff device in case of rupture of natural gas, etc. transportation pipes
CN109869952A (en) A kind of air-conditioning system and its blowdown control method
US3066497A (en) Reversible refrigeration system
KR930005667B1 (en) Method and arrangement for pumping refrigerants
US3751936A (en) Oil separator apparatus and method for low miscibility refrigerant systems
JPH0648287Y2 (en) Gas compression unit
JP2000274852A (en) Method and apparatus for controlling helium liquefying device
CN219449812U (en) Multistage autoclave elephant trunk auto-change over device
JPH11264636A (en) Method for refrigerant recovery and refrigerant recovery device
JP3341189B2 (en) Strainer with built-in valve member
JPH0643644Y2 (en) Helium compressor
KR100588841B1 (en) Air conditioner, and method of withdrawing refrigerant automatically