JPS6157328B2 - - Google Patents

Info

Publication number
JPS6157328B2
JPS6157328B2 JP5175777A JP5175777A JPS6157328B2 JP S6157328 B2 JPS6157328 B2 JP S6157328B2 JP 5175777 A JP5175777 A JP 5175777A JP 5175777 A JP5175777 A JP 5175777A JP S6157328 B2 JPS6157328 B2 JP S6157328B2
Authority
JP
Japan
Prior art keywords
parts
water
acid
reaction
mthpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5175777A
Other languages
Japanese (ja)
Other versions
JPS53137295A (en
Inventor
Hidenori Ishikawa
Toyomi Hashizume
Masuyuki Sunada
Minoru Pponma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP5175777A priority Critical patent/JPS53137295A/en
Publication of JPS53137295A publication Critical patent/JPS53137295A/en
Publication of JPS6157328B2 publication Critical patent/JPS6157328B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、硬化性に優れた水に完全に溶解する
塗料用ポリエステル樹脂の製法に関するものであ
る。 多価カルボン酸と多価アルコールとの縮合物を
アンモニア、アミン等の塩基で処理することによ
り水に完全に溶解するポリエステル樹脂(以下、
水溶性樹脂という。)が得られることは周知であ
る。その際縮合物の酸価が高すぎると、縮合度が
低いために生成塗膜の物理的性能が余り期待でき
ないし、また高酸価に基因して生成塗膜の耐水性
等が劣る欠点がある。そのため縮合度を高めるた
めに分岐度の高い樹脂設計をする一方、水溶化が
可能な限り酸価を低くすることが必要である。し
かし分岐度の高い樹脂設計の場合、縮合反応の進
行に供い反応系の変化が著るしいので、目的とす
る縮合物を得ることが極めて困難であるため、通
常は安息香酸、ラウリルアルコール等の化合物を
使用して反応系の官能基数を下げることにより反
応の制御が行なわれているが、得られる縮合物の
水稀釈性、硬化性、生成塗膜の性能等の総合的観
点から満足できるものではなかつた。 しかるに本発明者等は、3−メチルテトラヒド
ロ無水フタル酸(以後MTHPAと略称する)をカ
ルボン酸原料として使用することにより従来の欠
点が改善できることに着目して本発明に到つたの
である。すなわち、本発明は、MTHPAを5〜75
当量%含むカルボン酸原料とアルコール原料との
縮合物を塩基処理する水溶性樹脂の製法にある。 本発明により従来の欠点が改善できることにつ
いては、次のように考えられる。MTHPAが有す
る2つのカルボキシル基のうち、2位のカルボキ
シル基は3位のメチル基による立体障害を受ける
ので多価アルコールとの反応性がある程度抑制さ
れるのに対し、1位のカルボキシル基は多価アル
コールとの反応性が抑制されないので、MTHPA
は一塩基酸と二塩基酸の中間的な性質を有してい
ると言うことができる。そのため塗膜の性能上分
岐度の高い樹脂設計をした縮合反応の制御が容易
に行なえるし、また縮合反応後も未反応のまま残
存し易い2位のカルボキシル基が水溶化のための
酸価を維持することになる。またメチル基と同一
炭素に結合した水素が著るしく活性であるため、
空気硬化促進ドライヤーを添加する常乾塗料では
乾燥性が高いし、メラミン樹脂等を併用する焼付
塗料では特に硬度の高い塗膜を得ることができ
る。更にMTHPAのシクロヘキセン環が樹脂構造
中に導入されることにより、塗膜の機械的性質と
構造的硬さのバランスが良好になると共に、強靭
性が向上する。 本発明でいうMTHPAには4種類の立体構造異
性体がある。そのうち最も好ましいのはシス・シ
ス構造の異性体であるが、容易に入手できる4種
類の異性体混合物を本発明で使用できることは言
う迄もない。 MTHPAの使用量は、全カルボン酸原料の5〜
75当量%、好ましくは7〜70当量%の範囲であ
る。そして、MTHPAの使用量が5当量%未満或
いは75当量%を越すと、本発明の効果が充分達成
され得ないため不適当である。MTHPAと併用で
きるカルボン酸原料の例にはオルソフタル酸、イ
ソフタル酸、ピロメリツト酸、コハク酸、マレイ
ン酸、グルタル酸、アジピン酸、トリメリツト
酸、セバシン酸、ダイマー酸等の他に、脂肪酸変
性のためのアマニ油脂肪酸、大豆油脂肪酸、サフ
ラワー油脂肪酸、桐油脂肪酸、脱水ヒマシ油脂肪
酸、トール油脂肪酸等がある。そして脂肪酸変性
のための脂肪酸に代えて、脂肪酸のトリグリセラ
イドであるアマニ油、大豆油等の乾性油、半乾性
油を利用できることは言う迄もない。またアルコ
ール原料の例にはエチレングリコール、プロピレ
ングリコール、1・6−ヘキサンジオール、ネオ
ペンチルグリコール、グリセリン、ペンタエリス
リトール、トリメチロールプロパン、これらアル
コールのアルキレンオキサイド付加物、ビスフエ
ノールのメチルグリシジルエーテル等がある。こ
れら原料の一部に代つて、安息香酸、ラウリルア
ルコール等の化合物を本発明の効果が損なわれな
い範囲で使用することができる。 カルボン酸原料とアルコール原料との使用比
は、周知の如く水酸基量がカルボキシル基量より
多目になるようにする。縮合反応には何等特殊な
装置及び操作を要しない。反応温度としては200
℃以下、好ましくは140〜180℃が適当である。縮
合反応は、水溶化の点から固形分酸価が通常は20
〜100、好ましくは30〜70になるまで続ける。 かくして得られる縮合物を塩基で中和すること
により水溶化する。使用できる塩基の例には、ア
ンモニア、トリエチルアミン、ジエタノールアミ
ン、アミノメチルプロパノール、モルホリン等が
ある。塩基処理の前またはそれ以外の適当な時
に、エタノール、イソプロパノール、ブチルセロ
ソルブ等の如き水混和性有機溶剤を樹脂に加え、
水溶性樹脂を水に溶解した際の安定性を向上し、
粘度を低下させることができる。 本発明による水溶性樹脂に金属ドライヤーを少
量添加したものは常温で乾燥硬化させることがで
きる。またメラミン樹脂、ベンゾグアナミン樹脂
等のアミノ樹脂、ブロツクイソシアネート化合
物、エポキシ樹脂等の水溶性或いは水分散性共反
応成分を配合したものは焼付硬化させることがで
きる。共反応成分の配合量は固形分比で樹脂100
重量部(以後部で示す)に対して5〜40部が適当
である。 塗料化は、周知の如く顔料、その他の添加剤を
加え混合することにより達成できる。塗装方法と
してはスプレー法、デイツプ法、シヤワー法、ロ
ール法、電着法等が可能である。 以下に本発明を実施例に従つて説明する。 実施例 1 サフラワー油191部と水酸化リチウム0.026部と
を230℃に加熱しトリメチロールエタン59部を加
えてアルコリシス反応させてから180℃に降温
し、トリメチロールエタン65部、トリメリツト酸
34部、MTHPA200部を加えて酸価55になる迄縮
合反応を続けた。次にイソプロパノール250部で
稀釈し、25%アンモニア水35部で中和してから水
215部を加えて、不揮発分50%、ガードナー粘度
S、PH8.9の水溶性樹脂溶液を得た。これは水で
無限に稀釈できた。それに固形分比で同量のチタ
ン白を配合し、また樹脂固形分に対して3%の金
属ドライヤーを添加したものは、乾燥性に優れて
おり、優れた塗膜を形成した。 実施例 2 脱水ヒマシ油脂肪酸185部、グリセリン65部、
トリメリツト酸34部、無水フタル酸157部及び
MTHPA23部を180℃に加熱し酸価が65になる迄
反応を続けた。次にイソプロパノール250部で稀
釈してから、25%アンモニア水で中和後水を加え
て不揮発分50%、粘度W、PH8.5の水溶性樹脂溶
液を得た。 実施例 3 トリメチロールプロパン214.6部、イソフタル
酸263.8部、1・6−ヘキサンジオール96.9部を
200℃で酸価が10になる迄反応させてから180℃に
降温し、MTHPA125部を加え酸価40になる迄反
を続けた。次にブチルセロソルブ360部で稀釈し
トリエチルアミン41部で中和して不揮発分60%、
粘度X−Y、PH8.8の水溶性樹脂溶液を得た。 実施例 4 トリメチロールプロパン250部、MTHPA300
部、イソフタル酸139部、プロピレングリコール
65部を180℃に加熱し酸価が50になる迄反応を続
けた。次にブチルセロソルブ250部で稀釈しトリ
エチルアミン55部で中和して不揮発分70%、粘度
Y、PH8.8の水溶性樹脂溶液を得た。 比較例 1 実施例1においてMTHPA200部の代りにテト
ラヒドロ無水フタル酸185部を使用した以外は実
施例1と同様にして反応させたところ、酸価60の
近くでゲル化した。 比較例 2 比較例1において酸価65で反応を止めた。次に
イソプロパノール250部で稀釈し25%アンモニア
水40部で中和してから水210部を加えて、不揮発
分50%、粘度W、PH8.5の比較樹脂溶液を得た。 比較例 3 実施例2においてMTHPA23部を全量無水フタ
ル酸に置換して使用し以後実施例2と同様にして
酸価65になる迄反応させた。次にイソプロパノー
ルで稀釈し25%アンモニア水で中和し、水を加え
て不揮発分50%、粘度W−X、PH8.6の比較樹脂
溶液を得た。 比較例 4 実施例3においてMTHPA125部に代えてアジ
ピン酸110部を使用した以外は実施例3と同様に
して反応させたところ、180℃の温度では反応が
速いのでコントロールがむづかしく、目標酸価も
少し越えてしまつた。その縮合物を実施例3と同
様に塩基処理して不揮発分60%、粘度Z6、PH9.0
の比較樹脂溶液を得た。 実施例1及び2ならびに比較例2及び3で得ら
れた各樹脂溶液の固形分100部に対して各々ナフ
テン酸コバルトと20%ナフテン酸鉛との同量混合
物の3部を添加した。次いで、スプレー塗装粘度
になるまで水で希釈してから鋼板にスプレー塗装
したものについて20℃における乾燥硬化性、なら
びに20℃に5日間放置させたのちの塗膜性能の結
果を第1表にまとめて示す。 ただし、各性能の評価要領および評価判定基準
は下記の通りである。 塗面状態…………目視判定による。 ◎:60度反射光沢値が90以上であつて、かつレ
ベリングも良好の場合 〇:光沢保持率が80〜89%なる範囲内であつ
て、かつレベリングも良好の場合 (以下、省略) 耐衝撃性…………デユポン式(500g×50cm) ◎:50cmを越える場合(つまり、50cmでは異状
ない場合) 〇:40cmでは異状がなく、50cmで異状が認めら
れる場合 △:30cmでは異状がなく、40cmで異状が認めら
れる場合 (以下、省略) 耐水性…………40℃の水に48時間浸漬後の塗面状
態ならびにブリスターの発生状況を目視により
判定した。 ◎:ブリスターの発生も光沢の変化も共にない
場合 〇:ブリスターの発生はないが、光沢の変化が
ある場合 △:小さなブリスターが部分的に発生し、しか
も光沢の変化がある場合 ×:小さなブリスターが全面に発生し、しかも
光沢の変化がある場合 ××:大きなブリスターが発生し、しかも光沢
がない場合 耐塩水性…………切り込みを入れた検体に塩水を
48時間に亘つて噴霧したのち、この切り込み部
にセロフアンテープを貼着して勢いよく剥がし
たさいの塗膜の剥離幅を以て表示した。 耐アルカリ性…………5%NaOH水溶液に常温で
24時間浸漬したのちの塗面状態を目視により判
定した。 ◎:全く変化なし 〇:やや変色あり 〇〜△:わずかに膨潤 △:膨潤が顕著である場合 ×:塗膜が浮いた状態で剥離寸前の場合 ××:剥離して溶出した場合
The present invention relates to a method for producing a polyester resin for paint that has excellent curability and is completely soluble in water. A polyester resin (hereinafter referred to as
It is called water-soluble resin. ) is well known. At this time, if the acid value of the condensate is too high, the physical performance of the resulting paint film cannot be expected because the degree of condensation is low, and the resulting paint film has the disadvantage of poor water resistance etc. due to the high acid value. be. Therefore, while designing a resin with a high degree of branching to increase the degree of condensation, it is necessary to lower the acid value as much as possible to make it water-soluble. However, when designing resins with a high degree of branching, the reaction system undergoes significant changes as the condensation reaction progresses, making it extremely difficult to obtain the desired condensate. The reaction is controlled by lowering the number of functional groups in the reaction system using a compound, but it is satisfactory from an overall perspective such as the water dilutability of the resulting condensate, the curability, and the performance of the resulting coating film. It wasn't something. However, the present inventors have arrived at the present invention by noting that the conventional drawbacks can be improved by using 3-methyltetrahydrophthalic anhydride (hereinafter abbreviated as MTHPA) as a carboxylic acid raw material. That is, the present invention provides MTHPA of 5 to 75
The present invention relates to a method for producing a water-soluble resin in which a condensate of a carboxylic acid raw material and an alcohol raw material containing an equivalent amount of % is treated with a base. The present invention can improve the conventional drawbacks for the following reasons. Of the two carboxyl groups that MTHPA has, the carboxyl group at position 2 is sterically hindered by the methyl group at position 3, so its reactivity with polyhydric alcohols is suppressed to some extent, whereas the carboxyl group at position 1 is MTHPA because its reactivity with alcohols is not inhibited.
can be said to have intermediate properties between monobasic acids and dibasic acids. Therefore, the condensation reaction can be easily controlled by designing a resin with a high degree of branching in terms of coating performance, and the carboxyl group at the 2-position, which tends to remain unreacted even after the condensation reaction, has an acid value for water solubilization. will be maintained. Also, since hydrogen bonded to the same carbon as the methyl group is extremely active,
Air-drying paints with the addition of an air-hardening accelerating dryer have high drying properties, and baking paints that use melamine resin or the like in combination can provide coatings with particularly high hardness. Furthermore, by introducing the cyclohexene ring of MTHPA into the resin structure, the coating film has a good balance between mechanical properties and structural hardness, and its toughness is improved. MTHPA as used in the present invention has four types of steric structural isomers. Of these, isomers with a cis-cis structure are most preferred, but it goes without saying that easily available mixtures of the four isomers can be used in the present invention. The amount of MTHPA used is 5 to 50% of the total carboxylic acid raw materials.
75 equivalent %, preferably in the range of 7 to 70 equivalent %. If the amount of MTHPA used is less than 5 equivalent % or more than 75 equivalent %, the effects of the present invention cannot be fully achieved, which is inappropriate. Examples of carboxylic acid raw materials that can be used in combination with MTHPA include orthophthalic acid, isophthalic acid, pyromellitic acid, succinic acid, maleic acid, glutaric acid, adipic acid, trimellitic acid, sebacic acid, dimer acid, etc. These include linseed oil fatty acids, soybean oil fatty acids, safflower oil fatty acids, tung oil fatty acids, dehydrated castor oil fatty acids, and tall oil fatty acids. It goes without saying that in place of fatty acids for fatty acid modification, drying oils and semi-drying oils such as triglycerides of fatty acids such as linseed oil and soybean oil can be used. Examples of alcohol raw materials include ethylene glycol, propylene glycol, 1,6-hexanediol, neopentyl glycol, glycerin, pentaerythritol, trimethylolpropane, alkylene oxide adducts of these alcohols, and methyl glycidyl ether of bisphenol. . In place of some of these raw materials, compounds such as benzoic acid and lauryl alcohol can be used as long as the effects of the present invention are not impaired. As is well known, the ratio of the carboxylic acid raw material to the alcohol raw material is such that the amount of hydroxyl groups is greater than the amount of carboxyl groups. The condensation reaction does not require any special equipment or operation. The reaction temperature is 200
C or lower, preferably 140 to 180C. In the condensation reaction, the acid value of the solid content is usually 20 from the viewpoint of water solubilization.
Continue until it reaches ~100, preferably 30-70. The condensate thus obtained is made water-soluble by neutralizing it with a base. Examples of bases that can be used include ammonia, triethylamine, diethanolamine, aminomethylpropanol, morpholine, and the like. Adding a water-miscible organic solvent such as ethanol, isopropanol, butyl cellosolve, etc. to the resin before base treatment or at any other suitable time;
Improves stability when water-soluble resin is dissolved in water,
Can reduce viscosity. The water-soluble resin according to the present invention to which a small amount of metal dryer is added can be dried and cured at room temperature. Further, those containing water-soluble or water-dispersible co-reacting components such as amino resins such as melamine resins and benzoguanamine resins, blocked isocyanate compounds, and epoxy resins can be cured by baking. The amount of co-reacting components is 100% resin in terms of solid content.
A suitable amount is 5 to 40 parts by weight (as shown below). Formation into a paint can be achieved by adding and mixing pigments and other additives, as is well known. Possible coating methods include spray method, dip method, shower method, roll method, and electrodeposition method. The present invention will be explained below based on examples. Example 1 191 parts of safflower oil and 0.026 parts of lithium hydroxide were heated to 230°C, 59 parts of trimethylolethane was added to cause an alcoholysis reaction, the temperature was lowered to 180°C, and 65 parts of trimethylolethane and trimellitic acid were added.
34 parts and 200 parts of MTHPA were added, and the condensation reaction was continued until the acid value reached 55. Next, dilute with 250 parts of isopropanol, neutralize with 35 parts of 25% ammonia water, and then dilute with 250 parts of isopropanol.
215 parts were added to obtain a water-soluble resin solution having a nonvolatile content of 50%, a Gardner viscosity S, and a pH of 8.9. This could be diluted infinitely with water. The one in which the same amount of titanium white was blended with the solid content ratio and a metal dryer was added in an amount of 3% based on the resin solid content had excellent drying properties and formed an excellent coating film. Example 2 185 parts of dehydrated castor oil fatty acid, 65 parts of glycerin,
34 parts of trimellitic acid, 157 parts of phthalic anhydride and
23 parts of MTHPA was heated to 180°C and the reaction was continued until the acid value reached 65. Next, the mixture was diluted with 250 parts of isopropanol, neutralized with 25% aqueous ammonia, and water was added to obtain a water-soluble resin solution having a nonvolatile content of 50%, a viscosity W, and a pH of 8.5. Example 3 214.6 parts of trimethylolpropane, 263.8 parts of isophthalic acid, and 96.9 parts of 1,6-hexanediol
The reaction was carried out at 200°C until the acid value reached 10, then the temperature was lowered to 180°C, 125 parts of MTHPA was added, and the reaction was continued until the acid value reached 40. Next, dilute with 360 parts of butyl cellosolve and neutralize with 41 parts of triethylamine to make the non-volatile content 60%.
A water-soluble resin solution having a viscosity of XY and a pH of 8.8 was obtained. Example 4 250 parts of trimethylolpropane, MTHPA300
parts, isophthalic acid 139 parts, propylene glycol
65 parts were heated to 180°C and the reaction was continued until the acid value reached 50. Next, the mixture was diluted with 250 parts of butyl cellosolve and neutralized with 55 parts of triethylamine to obtain a water-soluble resin solution having a nonvolatile content of 70%, a viscosity of Y, and a pH of 8.8. Comparative Example 1 A reaction was carried out in the same manner as in Example 1 except that 185 parts of tetrahydrophthalic anhydride was used instead of 200 parts of MTHPA in Example 1, and gelation occurred at an acid value of around 60. Comparative Example 2 In Comparative Example 1, the reaction was stopped at an acid value of 65. Next, the mixture was diluted with 250 parts of isopropanol, neutralized with 40 parts of 25% aqueous ammonia, and then 210 parts of water was added to obtain a comparative resin solution having a nonvolatile content of 50%, a viscosity W, and a pH of 8.5. Comparative Example 3 In Example 2, all 23 parts of MTHPA was replaced with phthalic anhydride, and the reaction was carried out in the same manner as in Example 2 until the acid value reached 65. Next, it was diluted with isopropanol, neutralized with 25% aqueous ammonia, and water was added to obtain a comparative resin solution having a nonvolatile content of 50%, a viscosity of W-X, and a pH of 8.6. Comparative Example 4 A reaction was carried out in the same manner as in Example 3 except that 110 parts of adipic acid was used in place of 125 parts of MTHPA in Example 3. However, the reaction was difficult to control at a temperature of 180°C, and the target acid The price was a little over the top. The condensate was treated with a base in the same manner as in Example 3, resulting in a non-volatile content of 60%, a viscosity of Z6, and a pH of 9.0.
A comparative resin solution was obtained. To 100 parts of the solid content of each resin solution obtained in Examples 1 and 2 and Comparative Examples 2 and 3, 3 parts of a mixture of equal amounts of cobalt naphthenate and 20% lead naphthenate was added. Table 1 summarizes the results of dry curing properties at 20°C and coating film performance after being left at 20°C for 5 days after diluting with water to the spray coating viscosity and then spray painting on a steel plate. Shown. However, the evaluation procedure and evaluation criteria for each performance are as follows. Painted surface condition: Based on visual judgment. ◎: When the 60 degree reflection gloss value is 90 or more and the leveling is good. 〇: When the gloss retention rate is within the range of 80 to 89% and the leveling is also good (hereinafter omitted) Impact resistance Gender: Dupont type (500g x 50cm) ◎: If it exceeds 50cm (that is, there is no abnormality at 50cm) ○: If there is no abnormality at 40cm, but there is an abnormality at 50cm △: There is no abnormality at 30cm, If abnormalities are observed at 40 cm (hereinafter omitted) Water resistance: The condition of the painted surface and the occurrence of blisters after immersion in 40°C water for 48 hours were visually judged. ◎: When neither blisters occur nor a change in gloss ○: When no blisters occur but there is a change in gloss △: When small blisters occur partially and there is a change in gloss ×: Small blisters If blisters occur on the entire surface and there is a change in gloss ××: If large blisters occur and there is no gloss Salt water resistance……Spray salt water on the specimen with a cut.
After spraying for 48 hours, a cellophane tape was attached to the cut and peeled off vigorously, and the peeling width of the coating film was expressed as the value. Alkali resistance: 5% NaOH aqueous solution at room temperature
After 24 hours of immersion, the condition of the coated surface was visually determined. ◎: No change at all 〇: Slight discoloration 〇~△: Slight swelling △: When swelling is noticeable ×: When the coating film is floating and on the verge of peeling ××: When it peels off and is eluted

【表】 また、実施例3、4および比較例4の各樹脂溶
液にメラミン樹脂を固形分比85/15の割合にそれ
ぞれ配合した。次いでスプレー粘度になる迄水で
稀釈してから鋼板にスプレー塗装し、150℃20分
間焼付して得た各塗膜の性能を第2表に示す。
[Table] In addition, melamine resin was added to each of the resin solutions of Examples 3 and 4 and Comparative Example 4 at a solid content ratio of 85/15. Table 2 shows the performance of each coating film obtained by diluting it with water until it reaches a spray viscosity, spray painting it on a steel plate, and baking it at 150°C for 20 minutes.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 3−メチルテトラヒドロ無水フタル酸を5〜
75当量%含むカルボン酸原料とアルコール原料と
の縮合物を塩基処理することを特徴とする、水に
完全に溶解するポリエステル樹脂の製法。
1 3-methyltetrahydrophthalic anhydride from 5 to
A method for producing a polyester resin completely soluble in water, which is characterized by base-treating a condensate of a carboxylic acid raw material and an alcohol raw material containing 75 equivalent%.
JP5175777A 1977-05-07 1977-05-07 Preparation of water-soluble resin Granted JPS53137295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5175777A JPS53137295A (en) 1977-05-07 1977-05-07 Preparation of water-soluble resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5175777A JPS53137295A (en) 1977-05-07 1977-05-07 Preparation of water-soluble resin

Publications (2)

Publication Number Publication Date
JPS53137295A JPS53137295A (en) 1978-11-30
JPS6157328B2 true JPS6157328B2 (en) 1986-12-06

Family

ID=12895805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5175777A Granted JPS53137295A (en) 1977-05-07 1977-05-07 Preparation of water-soluble resin

Country Status (1)

Country Link
JP (1) JPS53137295A (en)

Also Published As

Publication number Publication date
JPS53137295A (en) 1978-11-30

Similar Documents

Publication Publication Date Title
US4332711A (en) Thermosetting resinous binder compositions, their preparation and use as coating materials
EP0060505B1 (en) Water-thinnable polyester, process for its preparation and its use
US3789044A (en) Novel cured compositions prepared from the reaction of a polyisocyanate and a hydroxybenzoic acid capped epoxide-containing material
US2759901A (en) Partial esters of epoxide resins
EP0134691A2 (en) Compositions curable at ambient or slightly elevated temperatures comprising a polyhxdroxy compound together with a specified epoxide/carboxylic anhydride crosslinking system
EP0753532B1 (en) Glycidyl ether containing amorphous and/or semicrystalline copolyester
EP0330887B1 (en) Coatings based on polycondensation and/or polyaddition products containing carboxylic and amino groups, and their use
EP0383601B1 (en) Coating powder composition
US4740566A (en) High gloss color keyed guide coat
US4423167A (en) Resinous compositions curable through a transesterification curing mechanism
US3031434A (en) Method of curing epoxy components and heat-curable epoxy compositions
US4423169A (en) Resinous compositions curable through a transesterification curing mechanism
US4489182A (en) Resinous compositions curable through a transesterification curing mechanism
CN116535622A (en) Self-drying/baking dual-purpose hydrolysis-resistant alkyd resin and preparation method thereof
US4440612A (en) Resinous compositions curable through a transesterification curing mechanism
JPS6157328B2 (en)
DE19544930C2 (en) Process for the production of powder coatings and use of the powder coating produced in accordance with the process
US6075099A (en) Epoxidized polyester-based powder coating compositions
US4485199A (en) Thermosetting coating composition comprising polymeric catalyst
US4195004A (en) Process for preparing water-dispersible resins
JP2002542370A (en) Coating agent used for multi-layer lacquer coating
US4511447A (en) Electrodeposition of resinous compositions curable through a transesterification curing mechanism
JPS62260871A (en) Resin composition for powder coating
JPH04359075A (en) Thermosetting aqueous coating compound composition
EP0123796B1 (en) Method of producing epoxy esters