JPS6157081A - Detector of head transporting position - Google Patents

Detector of head transporting position

Info

Publication number
JPS6157081A
JPS6157081A JP17784284A JP17784284A JPS6157081A JP S6157081 A JPS6157081 A JP S6157081A JP 17784284 A JP17784284 A JP 17784284A JP 17784284 A JP17784284 A JP 17784284A JP S6157081 A JPS6157081 A JP S6157081A
Authority
JP
Japan
Prior art keywords
light
optical head
head
light receiving
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17784284A
Other languages
Japanese (ja)
Inventor
Akio Yamakawa
明郎 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17784284A priority Critical patent/JPS6157081A/en
Publication of JPS6157081A publication Critical patent/JPS6157081A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection

Abstract

PURPOSE:To detect the transporting position of a head with simple structure and non-contact system by synchronizing relatively light-emitting element and photodetector and a mask with a head so as to shift it, changing the light receiving state with the aid of the photodetector and detecting the transporting position of the head due to the change in light receiving state. CONSTITUTION:When an optical head 4 is transported in the direction of an arrow (a) between the outer-most peripheral position P1 and inner-most peripheral position P2 of a disk 1, a light-emitting element 14 and photodetector 15 are synchronized with the optical head 4 and transported in the arrow (a) direction with respect to a mask 16. At this time, since a light shielding edge 16a of the mask 16 tilts by an angle theta with respect to the transporting direction (the arrow (a) direction), the light receiving state of the photodetector 15, where light is made incident from the light emitting element 14, is changed along with the transportation of the optical head 4. When the optical head 4 is transported, the light receiving quantity of one solar battery A of the photodetector 15 changes gradually, whereas that of the other solar battery B is always constant. Consequently the transporting position of the optical head 4 can be detected by the detection output caused by the difference of the light receiving amounts of two-divided solar batteries A and B.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は1例えば光学式ディスクプレーヤにおける光学
ヘッドの如き記録及び/又は再生用のヘッドの移送位置
検出装置に関するものである。 〔従来技術〕 従来から、光学式ディスクブレニヤでは光学ヘッドEデ
ィスクの半径方向に移送させてディスクの記録及び/又
は再生ケ行っているが、その際、見込みサーチ等を行う
上で、光学ヘッドの移送位置の検出は重要モある。なお
見込みサーチとは、□ディスクに対する光学ヘッドの半
径方向の位置(番地]を予め記憶しておき、光学ヘッド
の飛ばしたい位置(番地)を′換算して読出して光学ベ
ッドを大まかに飛ばすことであり、この見込みす」チン
行った後に細かいアクセスン行って光学ヘッドを正しも
・位置C番地ノに位置出しする。  □そして従来実□
施されていた光学ヘッドの移送位置検出装置としでは、
例えばポテンショメータを使用した有接触方式や多数の
スリットヲ有するスリット板に沿ってフォトカプラを移
動させてパルスを発生させるようにした光検出による無
接触方式等がある。 〔発明が解決しようとする問題点〕 しかしながら、従来の有接触方式では、寿命の問題があ
ったり、検出出力の直線性が悪い欠陥があり、また従莱
の光検出による無接触方式では、構造及び回路が複雑で
高価であったり、応答が遅い欠陥があった。 本発明は、ヘッドの移送位置を無接触方式で、しかも非
常に簡単な構造で検出することが出来るよ5[jるもの
である。 〔問題点を解決する為の手段〕 本発明は、発光素子と受光素子との間にヘッドの移送方
向に対して傾斜された遮光用のマスクを配置さゼ1発光
素子及び受光素子とマスクとを相対的にヘッドに同期さ
せて移動させることにより受光素子での受光状態を変化
させ、この受光状態の変化によりヘッドの移送位置ケ検
出するように構成したヘッドの移送位置検出装置である
。 〔作 用〕 本発明は、ヘッドがディスクの半径方向に移送される際
に、マスクを固定しておいて発光素子及び受光素子をヘ
ッドに同期して移動させるか又はその逆に発光素子を固
定しておいて発光素子及び;+  5HY;F−PYz
y)”KnXIlllflg−v6J:°1成したもの
であり、その際マスクがヘッドの移送方向に対して傾斜
されていることにより、ヘッドの移送に伴い発光素子か
ら受光素子へ照射されている光の遮光状態ケ変化させて
、受光素子での受光状態を変化させるように構成し、そ
の受光状態の変化によりヘッドの移送位置を検出するよ
うに構成したものである。従って、ヘッドの移送位置を
無接触方式で検出することが出来る上に、検出出力の直
線性が良い。しかも発光素子及び受光素子とマスクとを
相対的にヘッドに同期させて移動さぜるだけであるから
、構造が非常に簡単で、しかも回路も非常に簡単になる
ばかりか、ヘッドの移送に対して非常に応答の速(゛検
出を行える。 〔実施例〕 以下、本発明を光学式ディスクプレーヤにおける光学ヘ
ッドの移送位置横用装置rvc適用した実施例を図面に
基づき説明する。 先ず、第1図及び第2図において、ディスク1はターン
テーブル2上に水平に装着され、ターンテーブル2が駆
動モータ(図示せず〕によって回「 転駆動されることによってそのターンテーブル2によっ
てディスク1が水平に回転駆動される。また対物レンズ
3等を有する光学ヘッド4は固定のデツキ5に水平に架
設された平行な2本のガイド軸6に沿ってディスク10
半径方向、に水平に移動自在に構成されている。そして
例えばデツキ5に取付けられた駆動モータ7により回転
駆動されるピニオン8が光学ヘッド4に固着されたラッ
ク9を駆動するようなヘッド送り機構10によって光学
ヘッド4がディスクlの半径方向である第1図で矢印a
方向に移送されるように構成されている。 即ち、ディスク1を水平に回転駆動しながら光学ヘッド
4を矢印a方向に水平移送することによって、ディスク
1の所望の記録又は再生が行われる。。 次に、矢印a方向における光学ヘッド4の移送位置検出
装置13ば、第2図に示す如(発光ダイオード等からな
る発光素子14と、2分割太陽電池A1B等からなる受
光素子15と、これら発光素子14と受光素子15との
間に水平に配置された遮光用のマスク16とによって構
成されている。 そしてマスク16の遮光縁16aは、第1図に示す如く
光学ヘッド4め移送方向であるディスク1゜の半径方向
[Industrial Field of Application] The present invention relates to a device for detecting the movement position of a recording and/or reproducing head, such as an optical head in an optical disc player. [Prior Art] Conventionally, in optical disc blenders, recording and/or playback of the disc has been carried out by moving the optical head E in the radial direction of the disc. Detection of the transfer position is important. Prospective search means □ Memorizing the radial position (address) of the optical head relative to the disk in advance, converting the desired position (address) of the optical head to '' and reading it out to roughly fly the optical bed. Yes, this is expected. After performing a detailed access check, the optical head is correctly positioned at address C. □ And the conventional practice □
As an optical head transfer position detection device,
For example, there are a contact type using a potentiometer and a non-contact type using photodetection in which a photocoupler is moved along a slit plate having a large number of slits to generate pulses. [Problems to be solved by the invention] However, the conventional contact type has problems with its lifespan and defects in the linearity of the detection output. Also, the circuit was complicated and expensive, and the response was slow. The present invention is capable of detecting the transfer position of the head in a non-contact manner and with a very simple structure. [Means for Solving the Problems] The present invention provides a structure in which a light-shielding mask is disposed between the light-emitting element and the light-receiving element, and is inclined with respect to the direction of movement of the head. This is a head transfer position detecting device configured to change the light reception state of the light receiving element by moving the head in synchronization with the head relative to the head, and to detect the head transfer position based on the change in the light reception state. [Function] When the head is moved in the radial direction of the disk, the mask is fixed and the light-emitting element and the light-receiving element are moved in synchronization with the head, or vice versa, the light-emitting element is fixed. and the light emitting element and ;+5HY;F-PYz
y)"Kn The device is configured to change the light blocking state to change the light receiving state at the light receiving element, and detect the head transfer position based on the change in the light receiving state. In addition to being able to detect by contact method, the linearity of the detection output is good.Furthermore, since the light emitting element, light receiving element, and mask are moved relative to each other in synchronization with the head, the structure is very simple. Not only is it simple and the circuit is very simple, but it can also detect the movement of the head very quickly. An embodiment in which a horizontal device RVC is applied will be described based on the drawings. First, in FIGS. 1 and 2, a disk 1 is mounted horizontally on a turntable 2, and the turntable 2 is connected to a drive motor (not shown). The disk 1 is driven to rotate horizontally by the turntable 2.The optical head 4, which has an objective lens 3, etc., is mounted horizontally on a fixed deck 5. Disk 10 along guide shaft 6
It is configured to be movable both radially and horizontally. For example, a pinion 8 rotatably driven by a drive motor 7 attached to the deck 5 drives a rack 9 fixed to the optical head 4. A head feeding mechanism 10 moves the optical head 4 in the radial direction of the disk l. Arrow a in figure 1
and is configured to be transported in the direction. That is, by horizontally moving the optical head 4 in the direction of arrow a while rotating the disk 1 horizontally, desired recording or reproduction of the disk 1 is performed. . Next, the transfer position detecting device 13 of the optical head 4 in the direction of arrow a, as shown in FIG. It is composed of a light-shielding mask 16 disposed horizontally between the element 14 and the light-receiving element 15.The light-shielding edge 16a of the mask 16 is in the optical head 4 transport direction as shown in FIG. Radial direction of disk 1°

【矢印a方向)K対して角度θに傾斜されている。 なおこの実施例では1発光素子14と受光素子15とを
保持部材17によって光学ヘッド4に取付けて、これら
発光素子14と受光素子15.と娶光学ヘッド4と一体
に矢印a方向に移送させる一方、マスク16はデツキ5
に固着して定位置に固定させた。しかしこの逆に、マス
ク16ン光字ヘッド4に取付けてその光学ヘッド4と一
体に移送さぜるー、方、発光素子14と受光、素子15
とをデツキ5に固着して定位置に固定させても良い。 以上の如く構成された光学ヘッド4の移送位置検出装置
13によれば、光学ヘッド4が第1.図に実線で示した
ディスク1の最外周位置P1と1点鎖線で示した最内周
位置P2との間で矢印a方向に移送される際、発光素子
14と受光素子15とが光学ヘッド4に同期してマスク
16に対して、矢印a方向に移送されるが、マスク16
の遮光縁16aがその移送方向(矢印a方向〕に対して
角度θに傾斜されている為に、発光素子14から照射さ
れた光の受光素子15での受光状態がその光学ヘッド4
の移送に伴って変化される。 即ちこの実施例では、光学ヘッド4が例えばディスク1
の最外周位置PIK位置されている時には、第3A図に
円形で示した受光素子15上での受光領域18の如く発
光素子14から発光された全光量が受光素子1502分
割太陽電池A、Bに均等に照射されていて、これら2分
割太陽電池A1Bの受光量は均等となって(・る。次に
光学ヘッド4が例えばディスク1の最内周位置P2に向
けて移送されるに従って、第3B図に示す如くマスク1
6の遮光縁16aの角度θの傾斜に伴って受光素子15
の一方の太陽電池Aで受光される光が次第に遮光されて
、その太陽電池A側の受光量が次第に減少される。そし
て光学ヘッド4が例えばディスク1の最内周位置P2に
−fF!した時には、MaS   0図に示す如(一方
の太陽電池Aで受光される光11    がマスク16
によってはソ完全に遮光される。なおこの光学ヘッド4
の移送中において受光素子15の他方の太陽電池Bで受
光される光はマスク16によって何等遮光されることが
ないので、その太陽電池B側の受光量は第3A図〜M3
0図に示す如(終始一定となる。 従ってこの実施例では、光学ヘッド4がディスク1の最
外周位置P1と最内周位置P2との間で移送される際V
c1受光素子15の一方の太陽電池Aの受光量が次第に
変化するのに対して他方の太陽電池Bの受光量は終始一
定となるように変化され、その2分割太陽電池A、Bの
受光量の差による検出出力によって光学ヘッド4の移送
位置が検出されるよ5に、構成されている。 な宸、第4図はマスク16に2分割太1場電池A。 Bに対応する2本のスリン)19.20y設け、一方の
スリット19は光学ヘッド4の移送方向(矢印a方向)
に対して開口面積が次第に変化するほぼクサビ状等に形
成し、他方のスリット20は同開口面積を一定にした変
形例を示したものである。   1まだ、第5図はマス
ク16に光学ヘッド4の移送方向(矢印a方向)tL対
して開口面積が次第に変化するはyクサビ状等の大きな
スリン)21Y設け、他方の太陽電池Bをそのスリット
21の透過面積内に配置させた変形例を示したものであ
る。 この第4図及び第5図の変形例によっても、前述同様に
、2分割太陽電池A、Bの平光量の差による検出出力が
得られるものであるが、特K、この第4図及び第5図の
変形例によれば、光学ヘッド4の移送方向である矢印a
方向に対して直角な方向である矢印す方向【第2図参照
】一対するガタッキがあっても、2分割太陽電池A、B
の総合受光量は変化しないので、より一層正確な検出出
力を得ることが出来る。 また、第6図はマスク16に光学ヘッド4の移送方向に
対して角度θ咥傾斜されたスリット22ケ形成した変形
例ケ示したものである。、なおこの場合は、光学ヘッド
4の移送に伴って2分割太陽電池A、Bの受光量が可逆
的に増、減されるように変化され、その比較出力差によ
って光学ヘッド4の移送位置ン検出出来るように構成し
たものである。 ところで、以上述べた光学ヘッド4の移送位置検出装置
13において、受光素子15からの検出出力のより高−
・直線性?考慮する上で、発光素子14から発光される
光の強圧分布ン無視′1−ることが出来ない。 即ち、安価な発光ダイオード等ン発元素子14に用いた
場合には、その発光素子14から発光された光の強度分
布は、第7図に示す如(中央部24aで最も強く、外周
部24bに遠の(に従って次第に弱くなる強度分布24
となる。従って、第8図に示す如(受光素子15上での
受光領域18中の光強度は中央部18aで最も強(、外
周部18bに遠のくに従って次第に弱< 7:cる。 従って、第9図に示す如く前述した光学ヘッド4のディ
スク1の最外周位置P1から最内周位置P2への移送に
伴ってマスク16の遮光縁16aが受光領域18をその
外周部18bから中央部18aに向けて次第に遮光して
行(際、例えば最外周位置P1と中間位置P3との間で
は、マスク16の遮光縁16aは受光領域18の光強度
の弱い外周部18b部分を次第に遮光1−ることになり
、遮光面積の増大量に比べて、受光素子15で受光する
光量の減少率は小さい。これに対して例えば中間位置P
3と最内周位置P2との間では、マスク16の遮光線1
6aは受光領域18の光強度の強い中央部18a部分を
次第に遮光することになり、遮光面積の増大量に比べて
、受光素子15で受光する光量の減少率は大きくなる。 以上は、光学ヘッド4の移送に伴(・マスク16による
受光領域18の遮光面積が直線的に変化するのに対して
、受光素子15で受光する光量が高い直線性ンもって変
化しないことを示すものであり、この結果、光学ヘッド
4の移送に伴い受光素子15から得られる検出出力が高
い直線性をもって変化しないことになる。 そこで、光学ヘッド4の移送に伴い受光i子15で受光
する光量を高い直線性をもって変化さS、    ぜる
ようにする実施例を順次説明する。 先ず、第10図は、マスク16が受光領域18の光強度
の弱い外周部18b部分を遮光する時には、受光素子1
5の受光mstが大きく変化し、fたマスク16が受光
領域18の光強度の強い中央部18a部分を遮光する時
には、受光素子15の受光面積が小さく変化するように
、発光素子14から発光される光の強度分布24に対応
させて、受光素子15の形状(パターン]に変化ケもた
せて、光学ヘッド4の移送に伴い受光素子15で受光す
る光量ケ高い直線性をもって変化させるよう   −1
にしたものである。 次に、第11図は、マスク16が受光領域18の光強度
の弱い外周部18b部分を遮光する時には、その遮光面
積が太き(変化し、またマスク16が受光領域18の光
強度の強い中央部18a部分ケ遮光する時には、その遮
光面積が小さく変化するように、発光素子14から発光
される光の強度分布24に対応させて、マスク16の遮
光線16aの形状〔パターン]に変化乞もたせて、同様
に受光素子15で受光する光量を高い直線性をもって変
化させるようにしたものである。 次に、第12図は、発光素子14とマスク16との間に
フイぷター25を配置し、このフィルター25の濃度
[Direction of arrow a] It is inclined at an angle θ with respect to K. In this embodiment, one light-emitting element 14 and one light-receiving element 15 are attached to the optical head 4 by a holding member 17, and these light-emitting element 14 and one light-receiving element 15. While the mask 16 is transferred together with the optical head 4 in the direction of arrow a, the mask 16 is transferred to the deck 5.
It was fixed to the fixed position. However, on the contrary, if the mask 16 is attached to the optical head 4 and transferred together with the optical head 4, the light emitting element 14 and the light receiving element 15 are transferred together.
and may be fixed to the deck 5 in a fixed position. According to the transfer position detecting device 13 for the optical head 4 configured as described above, the optical head 4 is moved to the first position. When the disk 1 is transferred in the direction of arrow a between the outermost circumferential position P1 shown by a solid line in the figure and the innermost circumferential position P2 shown by a dashed-dotted line, the light emitting element 14 and the light receiving element 15 are transferred to the optical head 4. The mask 16 is moved in the direction of the arrow a in synchronization with the mask 16.
Since the light-shielding edge 16a of the optical head 4 is inclined at an angle θ with respect to the transport direction (arrow a direction), the light receiving state of the light emitted from the light emitting element 14 at the light receiving element 15 is the same as that of the optical head 4.
It changes with the transport of. That is, in this embodiment, the optical head 4, for example,
When the outermost circumferential position PIK is located, the total amount of light emitted from the light emitting element 14 is transmitted to the light receiving element 1502 and the divided solar cells A and B, as shown in the light receiving area 18 on the light receiving element 15 shown in a circle in FIG. 3A. The light is evenly irradiated, and the amount of light received by these two-split solar cells A1B is equal.Next, as the optical head 4 is moved toward, for example, the innermost position P2 of the disk 1, the third B Mask 1 as shown in the figure
According to the inclination of the angle θ of the light-shielding edge 16a of
The light received by one solar cell A is gradually blocked, and the amount of light received by that solar cell A is gradually reduced. Then, the optical head 4 moves, for example, to the innermost circumferential position P2 of the disk 1 -fF! At this time, the light 11 received by one solar cell A is
In some cases, the light is completely blocked. Furthermore, this optical head 4
Since the light received by the other solar cell B of the light-receiving element 15 is not blocked by the mask 16 during the transfer, the amount of light received by the solar cell B side is as shown in FIGS. 3A to M3.
As shown in FIG.
While the amount of light received by one solar cell A of the c1 light-receiving element 15 gradually changes, the amount of light received by the other solar cell B is changed to remain constant throughout, and the amount of light received by the two divided solar cells A and B is The transfer position of the optical head 4 is detected based on the detection output based on the difference between the two. Figure 4 shows a mask 16 and a two-part battery A. Two slits 19 and 20y corresponding to B are provided, and one slit 19 is in the transport direction of the optical head 4 (direction of arrow a).
This shows a modification example in which the opening area of the slit 20 is approximately wedge-shaped, and the opening area of the other slit 20 is constant. 1. Still, in FIG. 5, a large slit (such as a wedge-shaped slit) 21Y is provided in the mask 16, and the opening area gradually changes with respect to the transport direction (direction of arrow a) tL of the optical head 4, and the other solar cell B is attached to the slit 21Y. 21 shows a modification example in which the filter is arranged within the transmission area of No. 21. 4 and 5, it is possible to obtain a detection output based on the difference in the amount of normal light between the two-split solar cells A and B, as described above. According to the modification shown in FIG.
Direction perpendicular to the direction indicated by the arrow [See Figure 2] Even if there is a backlash in the pair, the two-part solar cells A and B
Since the total amount of light received does not change, even more accurate detection output can be obtained. Further, FIG. 6 shows a modification in which 22 slits are formed in the mask 16 at an angle θ with respect to the transport direction of the optical head 4. As shown in FIG. In this case, as the optical head 4 is moved, the amount of light received by the two-split solar cells A and B is changed to increase or decrease reversibly, and the transfer position of the optical head 4 is changed based on the comparative output difference. It is configured so that it can be detected. By the way, in the transfer position detection device 13 of the optical head 4 described above, the detection output from the light receiving element 15 is higher.
・Linearity? In consideration of this, the strong pressure distribution of light emitted from the light emitting element 14 cannot be ignored. That is, when an inexpensive light emitting diode or the like is used as the light emitting element 14, the intensity distribution of the light emitted from the light emitting element 14 is as shown in FIG. Intensity distribution 24 that gradually weakens in the distance (according to
becomes. Therefore, as shown in FIG. 8, the light intensity in the light-receiving area 18 on the light-receiving element 15 is strongest at the center part 18a (and gradually becomes weaker as it moves away from the outer peripheral part 18b. Therefore, as shown in FIG. As shown in FIG. 2, as the optical head 4 is moved from the outermost circumferential position P1 to the innermost circumferential position P2 of the disk 1, the light-shielding edge 16a of the mask 16 directs the light-receiving area 18 from the outer circumferential part 18b to the central part 18a. The light is gradually blocked (for example, between the outermost position P1 and the middle position P3, the light-shielding edge 16a of the mask 16 gradually blocks the outer peripheral part 18b of the light-receiving area 18 where the light intensity is weak. , the rate of decrease in the amount of light received by the light receiving element 15 is small compared to the amount of increase in the light shielding area.On the other hand, for example, at the intermediate position P
3 and the innermost circumferential position P2, the light shielding line 1 of the mask 16
6a gradually blocks light from the central portion 18a of the light-receiving region 18 where the light intensity is strong, and the rate of decrease in the amount of light received by the light-receiving element 15 becomes greater than the amount of increase in the light-blocking area. The above shows that while the light shielding area of the light receiving area 18 by the mask 16 changes linearly as the optical head 4 is moved, the amount of light received by the light receiving element 15 does not change with high linearity. As a result, the detection output obtained from the light receiving element 15 does not change with high linearity as the optical head 4 is moved. Therefore, the amount of light received by the light receiving element 15 as the optical head 4 moves Embodiments in which S is changed with high linearity will be explained one by one. First, FIG. 1
When the light receiving area mst of the light receiving element 15 changes greatly and the mask 16 blocks light from the central part 18a of the light receiving area 18 where the light intensity is strong, light is emitted from the light emitting element 14 so that the light receiving area of the light receiving element 15 changes small. The shape (pattern) of the light receiving element 15 is changed in accordance with the intensity distribution 24 of the light, so that the amount of light received by the light receiving element 15 is changed with high linearity as the optical head 4 is moved.
This is what I did. Next, FIG. 11 shows that when the mask 16 blocks light from the outer peripheral part 18b of the light receiving area 18 where the light intensity is low, the light blocking area becomes large (changes) and the mask 16 When the central portion 18a is light-shielded, the shape (pattern) of the light-shielding line 16a of the mask 16 is changed in accordance with the intensity distribution 24 of the light emitted from the light-emitting element 14 so that the light-shielding area changes small. Similarly, the amount of light received by the light receiving element 15 is changed with high linearity.Next, FIG. And the concentration of this filter 25

〔発明の効果〕〔Effect of the invention〕

本発明は、ヘッドの移送位置を無接触方式で検出するこ
とが出来るので、従来の有接触方式に比べて寿命が非常
に長く信頼性が非常に高い上に。 検出出力の直線性が良い。しかも従来の光検出による無
接触方式に比べて構造及び回路が非常に簡単で非常に安
価となる上に、ヘッドの移送に対して非常に応答の速−
・検出を行える。
Since the present invention can detect the transfer position of the head in a non-contact manner, it has a much longer lifespan and is extremely reliable compared to conventional contact methods. Good linearity of detection output. Furthermore, compared to the conventional non-contact method using photodetection, the structure and circuit are extremely simple and inexpensive, and the response to head movement is extremely fast.
・Can perform detection.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を光学式ディスクプレーヤにおけ、、ヵ、
へ7)”Oつ2−−やつ、−一部。 例を示したものであって、第1図は一部切欠き平面図、
第2図は要部の拡大断面図、第3A図〜第30図は光学
ヘッドの移送に伴う受光素子での受光状態の変化状況ン
説明する要部の拡大平面図、第4図〜第6図はマスクの
変形例ン示した平面図、第7図は発光素子の光の強度分
布を示した側面図、第8図は受光素子による受光領域に
おける光の強度を示した平面図、第9図は受光素子の検
出出力の非直線性を説明する平面図、第10図〜第12
図は受光素子の検出出力の高い直線性ケ得るための実施
例を示した図面である。 また図面に用いられた符号にお(1て、4・・・・・・
・・・・光学ヘッド 13・・・・・・・・移送位置検出装置14・・・・・
・・・発光素子 15・・・・・・・・受光素子 16・・・・・・・・マスク である。
The drawings illustrate the present invention in an optical disc player.
7) "Otsu2--one,-part. Figure 1 shows an example, and Figure 1 is a partially cutaway plan view.
Figure 2 is an enlarged sectional view of the main part, Figures 3A to 30 are enlarged plan views of the main part to explain changes in the light receiving state of the light receiving element as the optical head is moved, and Figures 4 to 6 are The figure is a plan view showing a modified example of the mask, FIG. 7 is a side view showing the light intensity distribution of the light emitting element, FIG. 8 is a plan view showing the light intensity in the light receiving area of the light receiving element, and FIG. The figure is a plan view explaining the non-linearity of the detection output of the light receiving element, Figures 10 to 12.
The figure shows an embodiment for obtaining high linearity of the detection output of the light receiving element. Also, the symbols used in the drawings (1, 4...
...Optical head 13...Transfer position detection device 14...
. . . Light emitting element 15 . . . Light receiving element 16 . . . Mask.

Claims (1)

【特許請求の範囲】[Claims] 発光素子と受光素子との間にヘッドの移送方向に対して
傾斜された遮光用のマスクを配置させ、発光素子及び受
光素子とマスクとを相対的にヘッドに同期させて移動さ
せることにより受光素子での受光状態を変化させ、この
受光状態の変化によりヘッドの移送位置を検出するよう
に構成したヘッドの移送位置検出装置。
A light-shielding mask tilted with respect to the moving direction of the head is placed between the light emitting element and the light receiving element, and the light emitting element, the light receiving element, and the mask are moved relative to each other in synchronization with the head. A head transfer position detecting device configured to change a light reception state at the head and detect a head transfer position based on a change in the light reception state.
JP17784284A 1984-08-27 1984-08-27 Detector of head transporting position Pending JPS6157081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17784284A JPS6157081A (en) 1984-08-27 1984-08-27 Detector of head transporting position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17784284A JPS6157081A (en) 1984-08-27 1984-08-27 Detector of head transporting position

Publications (1)

Publication Number Publication Date
JPS6157081A true JPS6157081A (en) 1986-03-22

Family

ID=16038066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17784284A Pending JPS6157081A (en) 1984-08-27 1984-08-27 Detector of head transporting position

Country Status (1)

Country Link
JP (1) JPS6157081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732054A (en) * 1995-03-28 1998-03-24 Eastman Kodak Company Combined tracking position and tilt sensor for optical recording actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732054A (en) * 1995-03-28 1998-03-24 Eastman Kodak Company Combined tracking position and tilt sensor for optical recording actuator

Similar Documents

Publication Publication Date Title
KR0182992B1 (en) Compact disc changer
US3518442A (en) Video playback assembly wherein the record disc has optical recordings on both sides
EP0052454B1 (en) Recording and/or reproducing equipment including a recording member
JPH0345456B2 (en)
JPH01102749A (en) Optical disk reproducing device
JPS6273429A (en) Position detector for optical pickup
JPS6157081A (en) Detector of head transporting position
JPS62125567A (en) Method for correcting angle displacement of optical recording medium
JPH10162474A (en) Disk exchanger
GB2156069A (en) Apparatus for reproducing recorded information
CN100524478C (en) Information processing device
JPS62126376A (en) Reflection type optical coupling element
JPS5640A (en) Optical information reproducing unit
JPS62241142A (en) Optical detection head
JPH0781852B2 (en) Tilt detector for disk-shaped recording medium
JPH0519857Y2 (en)
JPS6383929A (en) Disk variation state detector
JP2541977B2 (en) Optical head
JPS60236130A (en) Device for detecting disk slanting angle of recorded information reproducing device
KR930008066B1 (en) Optical disk
JPH0750531B2 (en) Optical information reproducing device
JPS61177650A (en) Optical pick-up
KR950006909Y1 (en) Double side laser disk player
JPH08335361A (en) Disk detecting mechanism
JPH03150729A (en) Optical axis correcting device for optical pickup