JPS6156959A - Linear air/fuel ratio detector - Google Patents

Linear air/fuel ratio detector

Info

Publication number
JPS6156959A
JPS6156959A JP59178993A JP17899384A JPS6156959A JP S6156959 A JPS6156959 A JP S6156959A JP 59178993 A JP59178993 A JP 59178993A JP 17899384 A JP17899384 A JP 17899384A JP S6156959 A JPS6156959 A JP S6156959A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
oxygen
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59178993A
Other languages
Japanese (ja)
Other versions
JPH0552458B2 (en
Inventor
Satoshi Kume
粂 智
Takanao Yokoyama
横山 高尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP59178993A priority Critical patent/JPS6156959A/en
Publication of JPS6156959A publication Critical patent/JPS6156959A/en
Publication of JPH0552458B2 publication Critical patent/JPH0552458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To measure the air/fuel ratio accurately, by determining the difference between the first current value from a measuring circuit with respect to the air/ fuel ratio before the alteration and the second current value from the measuring circuit with respect to the air/fuel ratio after the alteration with a linear air/fuel (A/F) sensor. CONSTITUTION:A linear air/fuel ratio A/F sensor 9 which is interposed in an exhaust tube 7 of the engine for a vehicle is made up of an oxygen partial pressure ratio detection cell 20, an oxygen pump cell 21 and a diffusion clearance 29 as slit about 0.1mm. wide between the cells 20 and 21. Electrodes 30 and 30' are attached to the clearance 29 side surface of the cell 21 and the downstream side surface of an exhaust pipe 7 respectively. Moreover, electrodes 31 and 31' are attached to the upstream side surface of the exhaust pipe 7 of the cell 20 and the clearance 29 side surface respectively. When the electrodes 30 and 30' are controlled so that the electromotive force Vs detected between the electrodes 31 and 31' will become constant, for example, at 40mV, it is possible to obtain a characteristic of having the pump current Ip zero in the theoretical air/ fuel ratio. Therefore, the characteristic of the current Ip being zero also can be obtained in the theoretical air/fuel ratio by controlling the current so that the electromotive force Vs will become constant, for example, at 200mV.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リニア空燃比(Δ/F)検出装iP/に関し
、特に、車両用エンジンにそなえて好適の2素子タイプ
で検出セルの基準と1,て損気〃ス雰囲気を使用する酸
素ポンプ式リーンセンサを用いた空燃比検出装1dに関
する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a linear air-fuel ratio (Δ/F) detection device iP/, and in particular, a two-element type detection cell standard suitable for use in vehicle engines. and 1, relates to an air-fuel ratio detection device 1d using an oxygen pump type lean sensor that uses a lean gas atmosphere.

〔従来の技術〕[Conventional technology]

従来、車両用エンジンの抽気管中に、リニア空燃比(A
/F)センサをそなえたものがJIM案さねてぃて、こ
のリニアA/Fセンサは、ジルコニア(Z r O2)
等からなる酸素イオン透過性固体電解質によって構成さ
れた酸素分圧比検出セルと、同じく酸素イオン透過性固
体電解質によって構成された酸素ポンプセルと、これら
の酸素分圧比検出セルと酸素ポンプセルとの間に0.+
mn+程度のスリットとしての拡散隙間(セ;、散律速
体)とから形成されでいる(第4図参照)。
Conventionally, a linear air-fuel ratio (A
/F) sensor is proposed by JIM, and this linear A/F sensor is made of zirconia (Z r O2).
An oxygen partial pressure ratio detection cell composed of an oxygen ion permeable solid electrolyte consisting of the like, an oxygen pump cell also composed of an oxygen ion permeable solid electrolyte, and a zero .. +
It is formed from a diffusion gap (slit) of about mn+ (see Fig. 4).

そして、酸素ポンプセルの拡散隙間側表面および4I+
気管下流側表面に、白金等からなる電極がそれぞれ付設
されていて、拡散隙間側の電極におい  、では、次の
第1式の反応が行なわれ、排気管下流側の電極においで
は次の第2式の反応が行なわれる。
Then, the diffusion gap side surface of the oxygen pump cell and 4I+
Electrodes made of platinum or the like are attached to the surface of the downstream side of the trachea, and at the electrode on the diffusion gap side, the following reaction of the first equation takes place, and at the electrode on the downstream side of the exhaust pipe, the following reaction occurs: The reaction of Eq.

(1/2)02+2e−→02−   ・・(1)02
−→(1/2 )02 +2e−・・(2):+   
   FLlrElt11!、1%−1= 7kfl*
%1mff1lhti’ffi″”1“JN、故隙間側
表面にも、白金等からなる電極がそれぞれイ・1設され
でいる。
(1/2)02+2e-→02-...(1)02
-→(1/2)02 +2e-...(2):+
FLlrElt11! , 1%-1= 7kfl*
%1mff1lhti'ffi""1"JN, one electrode made of platinum or the like is also provided on the surface of the gap side, respectively.

この電極間において検出される起電力Vsが、第5図中
の符号Iで示されるイ1近(例えば4.(LmV)で一
定となるように、電極間に流れるポンプ電流Ipを制御
すると、1556図中の実線で示されるJ:うに、理想
空燃比(ストイキオ)においてポンプ電流Tpがゼロと
なるV形特性が得られる。
If the pump current Ip flowing between the electrodes is controlled so that the electromotive force Vs detected between the electrodes becomes constant at around 1 (for example, 4. (LmV)) indicated by the symbol I in FIG. 1556, a V-shaped characteristic in which the pump current Tp becomes zero at an ideal air-fuel ratio (stoichiometry) is obtained.

そして、起電力Vsが第5図中の符号■で示される付近
(例えば20(1mV)で一定となるように、ポンプ電
流T11を制御すると、第6図中の鎖線で示されるよう
に、理想空燃比(ストイキオ)においでポンプ電流Tp
がゼロとなるZ形材性が得られる。
Then, if the pump current T11 is controlled so that the electromotive force Vs becomes constant around the symbol ■ in FIG. 5 (for example, 20 (1 mV)), as shown by the chain line in FIG. Pump current Tp at air-fuel ratio (stoichiometry)
A Z-shaped material property in which the is zero is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかl、なから、このような従来のりニア空燃比検出装
置では、リニアA/Fセンサの酸素分圧比検出セルの起
電力\lSを小さい値となるようにポンプ電流■pを制
御した場合には、ポンプ電流−空燃化性f1:が\ll
時特性なって、空燃比とポンプ         1電
流Tpとが1対1に対応せず、すなわち、第6図中の符
号(’、 、 r)に示すように、検出されたポンプ電
流1p、に対しで、リッチ側の空燃比A/F(R)とリ
ーン側の空燃比A 7F (L、 )との2つの空燃比
が対応するので、空燃比を一意的に定めることができな
いという問題点があり、このため、リーン側なのかリッ
チ側なのかを区別して判断することもできない。
However, in such a conventional linear air-fuel ratio detection device, when the pump current ■p is controlled so that the electromotive force \lS of the oxygen partial pressure ratio detection cell of the linear A/F sensor becomes a small value, is pump current-air combustibility f1: is\ll
In terms of time characteristics, the air-fuel ratio and the pump current Tp do not correspond one-to-one; in other words, as shown by the symbols (', , r) in FIG. Since the two air-fuel ratios correspond to the rich side air-fuel ratio A/F (R) and the lean side air-fuel ratio A/F (L, ), there is a problem that the air-fuel ratio cannot be uniquely determined. Therefore, it is not possible to distinguish between the lean side and the rich side.

一方、リニアA/Fセンサの酸素分圧比検出セルの・起
電力Vsを大きな値となるようにポンプ電流1pを制御
した場合には、ポンプ電流−空燃比特性がZ形材性とな
って、リーン側なのかリッチ側なのかの判断は限定され
た範囲においで一応可能となるが、極端なリーンはリッ
チと区別できないという問題点がある。
On the other hand, when the pump current 1p is controlled so that the electromotive force Vs of the oxygen partial pressure ratio detection cell of the linear A/F sensor becomes a large value, the pump current-air-fuel ratio characteristic becomes Z-shaped, Although it is possible to determine whether it is on the lean side or the rich side within a limited range, there is a problem that extreme lean cannot be distinguished from rich.

さらに、Z形材性においで、耐久上の問題からリッチ側
でのリニアA/Fセンサの長時間の使用は行なえず、リ
ーン側においても大電流を流すのは望ましくない。
Furthermore, due to the Z-shaped material, it is not possible to use the linear A/F sensor for a long time on the rich side due to durability problems, and it is undesirable to flow a large current even on the lean side.

本発明は、このような問題点を解決しようとするもので
、リーン側からリッチ側まで、空燃比を正確に検出する
ことができるようにした、リニア空燃比検出装置を提供
することを目的とする。
The present invention aims to solve these problems, and aims to provide a linear air-fuel ratio detection device that can accurately detect the air-fuel ratio from the lean side to the rich side. do.

〔問題点を解決するための手段〕[Means for solving problems]

このため本発明のリニア空燃比検出装置Flは、エンジ
ンへ供給される燃fil ltjと空気す、とのiリリ
介を調整しうる空燃比調整手段と、1−記エン;メンの
υ1気系からの4j1がスをスリット内へ導入する11
1がス専入用隙間を有するセンサ本体をそなえるどとC
言、:、同センザ本体の壁部を形成l−て1°、記スリ
ット内へ排ガス側から酸素イオンを透過導入する酸素イ
オン透過性固体電解質製導入用酸素分圧比検出セルと、
同導入用酸素分圧比検出セルに付設された一1〕記スリ
ット側の電極とや[〃ス側電極との間の電圧を検出する
起電力検出回路と、−1;記センサ本体の壁部を形成し
てに記スリットからの酸素イオンを透8排出する酸素□
イオン透過性固体電解質製排出用酸素ポンプセルと、上
記起電力検出回路からの検出電圧を設定電圧にすべく上
記排出用酸素ポンプセルに付設された。L記スリット側
の電極と排出側電極との間に印加される電圧を調整する
調整回路と、これらの電極間に流れる電流を測定する測
定回路とをそなえ、上記空燃比調整手段によって調整さ
れる空燃比を変更しうる空燃比変更手段と、変更前の空
燃比に対する−1;記測定回路からの第1の電流値と1
:配字燃比変更手段により変更された変り!後の空燃比
に対する上記測定回路からの第2の電流値とを受けてl
−記エンジンへ供給される混合気の空燃比を測定する空
燃比測定手段とが設けら11たことを1−¥徴としてい
る。
Therefore, the linear air-fuel ratio detection device Fl of the present invention includes an air-fuel ratio adjusting means capable of adjusting the relationship between the fuel filtj and the air supplied to the engine, and 4j1 from 11 introduces the slit into the slit
1 is equipped with a sensor body with a dedicated gap for
An oxygen partial pressure ratio detection cell made of an oxygen ion permeable solid electrolyte for permeating and introducing oxygen ions into the slit from the exhaust gas side, forming the wall of the sensor body;
1) An electromotive force detection circuit for detecting the voltage between the slit-side electrode and the slit-side electrode attached to the introduction oxygen partial pressure ratio detection cell, and -1; the wall of the sensor body; Oxygen □ is formed and the oxygen ions are discharged from the slit.
A discharge oxygen pump cell made of an ion-permeable solid electrolyte was attached to the discharge oxygen pump cell in order to set the detection voltage from the electromotive force detection circuit to the set voltage. It is equipped with an adjustment circuit that adjusts the voltage applied between the L slit side electrode and the discharge side electrode, and a measurement circuit that measures the current flowing between these electrodes, which is adjusted by the air-fuel ratio adjustment means. an air-fuel ratio changing means capable of changing the air-fuel ratio; a first current value from the measuring circuit;
: Changes made by the arrangement fuel ratio changing means! a second current value from the measuring circuit for the subsequent air-fuel ratio;
- An air-fuel ratio measuring means for measuring the air-fuel ratio of the air-fuel mixture supplied to the engine is provided.

〔作用〕[Effect]

1−述の本発明のりニア空燃比検出装置では、調整回路
お、1:び測定回路により、変更前の空燃比における起
電力検出回路からの検出電圧を設定電圧に1.た際の第
1の電流値を測定するとともに、空燃比変更手段によっ
て変更された変更後の空燃比となるように上記検出電圧
を調整した際の第2の電流値を測定し、これらの第1お
よび第2の電流値ニ基づき、−1〕記エンジンへ供給さ
れる混合気の1.        空燃比を空燃比測定
手段において測定する。
In the linear air-fuel ratio detection device of the present invention described in 1-1, the adjustment circuit and the measuring circuit adjust the detected voltage from the electromotive force detection circuit at the air-fuel ratio before change to the set voltage. At the same time as measuring the first current value when the air-fuel ratio is changed by the air-fuel ratio changing means, the second current value is measured when the detection voltage is adjusted so as to obtain the air-fuel ratio after changing by the air-fuel ratio changing means. 1 and 2 of the air-fuel mixture supplied to the engine. The air-fuel ratio is measured by an air-fuel ratio measuring means.

〔実施例〕〔Example〕

以下、図面により本発明の実施例について説明すると、
第1〜6図は本発明の一実施例としてのリニア空燃比検
出装置を示すもので、第1図はその制御要領を示す70
−チャート、第2図はその作用を説明するためのグラフ
、tlS3図はその全体構成図、第4図はそのリニアA
/Fセンサを示す模式図、第5,6図はいずれもその作
用を説明するためのグラフである。
Hereinafter, embodiments of the present invention will be explained with reference to the drawings.
1 to 6 show a linear air-fuel ratio detection device as an embodiment of the present invention, and FIG.
- Chart, Figure 2 is a graph to explain its action, Figure tlS3 is its overall configuration diagram, Figure 4 is its linear A
The schematic diagram showing the /F sensor and FIGS. 5 and 6 are graphs for explaining its operation.

第3〜6図に示すように、エアクリーナ1からの吸気が
、吸気管5を通じでエンジン本体6の図示しない燃焼室
へ供給されるようになっていて、燃焼室からの排気が触
媒10を介装された排気管7を通じて大気へ開放される
ようになっている。
As shown in FIGS. 3 to 6, intake air from an air cleaner 1 is supplied to a combustion chamber (not shown) of an engine body 6 through an intake pipe 5, and exhaust air from the combustion chamber passes through a catalyst 10. It is opened to the atmosphere through an exhaust pipe 7 provided therein.

そして、燃*;1を吸気I!?5へ供給するための空燃
比調整手段を構成するm判(1(給装置2を制御すべく
、空燃比変更手段と空燃比測定手段とを兼ねる制御装置
f?(コンピュータ)11が設けられてす;す、この制
御装置11は、吸気温度を検出する吸気温度センサ39
人ロッ1−ル弁15の開度を検出する入ロットルボノシ
ョンセンサ4.空気流鼠を検出するエア70−センサ8
.後j1ミするリニアΔ/l・゛センサ9.エンジン冷
却水温を検出する水温セン→ツアー 12、エンジン回転数を検出するエンジン回転数センサ
13およびクランク角度を検出するクランク角度センサ
14およびポンプ電流を換算する電圧計28′にそれぞ
れ結線されており、各センサ3.4..8,9.12〜
14からの検出信号を受けで所望の空燃比を実現すべく
、燃料供給装置2へ制御信号を出力する。
Then, inhale *;1! ? A control device (computer) 11 serving as an air-fuel ratio changing means and an air-fuel ratio measuring means is provided to control the air-fuel ratio adjusting means for supplying the air-fuel ratio to the This control device 11 includes an intake air temperature sensor 39 that detects intake air temperature.
Inlet valve opening sensor 4 for detecting the opening degree of the valve 15. Air 70-sensor 8 for detecting airflow
.. Linear Δ/l・゛sensor 9. The water temperature sensor for detecting the engine cooling water temperature is connected to the tour 12, the engine rotation speed sensor 13 for detecting the engine rotation speed, the crank angle sensor 14 for detecting the crank angle, and the voltmeter 28' for converting the pump current. Each sensor 3.4. .. 8,9.12~
In response to the detection signal from 14, a control signal is output to the fuel supply device 2 in order to achieve a desired air-fuel ratio.

また、制御装置11は、基準電圧用電源26の電圧値を
所定値に変えうるように、適宜D−A変換器等を介して
制御信号を出力する。
Further, the control device 11 appropriately outputs a control signal via a DA converter or the like so that the voltage value of the reference voltage power source 26 can be changed to a predetermined value.

なお、電圧計28′を省略して適宜A−r)変換器を設
けてもよい。
Note that the voltmeter 28' may be omitted and an A-r) converter may be provided as appropriate.

リニアA/Fセンサ9は、第4図に示すように、車両用
エンジンの掴・気管7中に介装されており、ジルコニア
(7,r O2)等からなる酸素イオン透過性固体電解
質によって構成された酸素分圧比検出セル20と、同じ
く酸素イオン透過性固体電解質によって構成された酸素
ポンプセル21と、これらの酸素分圧比検出セル20と
酸素ポンプセル21との間に0.Imn+程度のスリッ
トとしての拡散隙間−8= (グ、故律速体)2つとから形成されている。
As shown in FIG. 4, the linear A/F sensor 9 is installed in the grip/trachea 7 of a vehicle engine, and is made of an oxygen ion permeable solid electrolyte made of zirconia (7,rO2) or the like. The oxygen partial pressure ratio detection cell 20 and the oxygen pump cell 21 which are also made of an oxygen ion permeable solid electrolyte, and the 0.0. It is formed from two diffusion gaps as slits of the order of Imn+ -8 = (G, late rate-determining body).

そして、酸素ポンプセル21の拡散隙間29側表面およ
び掴−気管7下流側表面に、白金等からなる電極30.
30’がそれぞれ付設されていて、拡散隙間29側の電
極30においては、次の第1式の反応が行なわれ、排気
管7下流側の電極30′においては次の第2式の反応が
行なわれる。
Electrodes 30 made of platinum or the like are placed on the surface of the oxygen pump cell 21 on the diffusion gap 29 side and on the downstream surface of the gripping trachea 7.
At the electrode 30 on the side of the diffusion gap 29, a reaction according to the following first formula is carried out, and at the electrode 30' on the downstream side of the exhaust pipe 7, a reaction according to the following second formula is carried out. It will be done.

(1/2 )()2 +’2e−→02−    ・・
(1)02−→(1/2)02+2e−・・(2)酸素
分圧比検出セル20の排気管7上流側表面および拡散隙
間29側表面にも、白金等からなる電極31,31’が
それぞれ付設されている。
(1/2) ()2 +'2e-→02-...
(1)02-→(1/2)02+2e-...(2) Electrodes 31, 31' made of platinum or the like are also provided on the upstream surface of the exhaust pipe 7 of the oxygen partial pressure ratio detection cell 20 and the surface on the diffusion gap 29 side. Each is attached.

この電極31.31’間において検出される起電力■s
が、第5図中の符号Iで示される付近(例えば40mV
>で一定とナルヨウニ、電極:’(0,30’間に流れ
るポンプ電流rpを制御すると、第6図中の鎖線で示さ
れるように、理想空燃比(ストイキオ)においてポンプ
電流Tpがゼロとなる■形材性が得られる。
Electromotive force ■s detected between the electrodes 31 and 31'
is around the area indicated by the symbol I in FIG. 5 (for example, 40 mV
When the pump current rp flowing between the electrodes 0 and 30 is controlled, the pump current Tp becomes zero at the ideal air-fuel ratio (stoichiometry), as shown by the chain line in Figure 6. ■Provides shapeability.

そして、起電力Vsが第5図中の符号「で示される(=
I近(例えば200mV)で一定となるように、ポンプ
電流■pを制御すると、第6図中の破線で示されるよう
に、理想空燃比(ストイキオ)においでポンプ電流1p
がゼロとなるZ形材性が得られる。
Then, the electromotive force Vs is indicated by the symbol "(=
If the pump current p is controlled so that it remains constant near I (for example, 200 mV), the pump current p will decrease to 1p at the ideal air-fuel ratio (stoichiometry), as shown by the broken line in Figure 6.
A Z-shaped material property in which the is zero is obtained.

−に述のリニアA/F(02)センサ9は、次の作!l
l+原理に基づいて作動する。
- The linear A/F (02) sensor 9 described in is the next product! l
It operates on the l+ principle.

(1)排ガス流中に素子を置き酸素ポンプセル21に通
電すると、素子電極面にて02ガスをイオン化し、マイ
ナス極がらプラス極へ02−イオンを移動させ、プラス
極より02ガスとして放出する。
(1) When the device is placed in the exhaust gas flow and the oxygen pump cell 21 is energized, 02 gas is ionized on the device electrode surface, 02- ions are moved from the negative electrode to the positive electrode, and are released as 02 gas from the positive electrode.

(2)このとき、スリット内の02ffスの減少により
、〃電流32中の02分圧PAとスリット内の02分圧
Psとに差が生じ、分圧比検出セル2゜に次式のネルン
ストの式に基づき、起電圧Vs:、     ”′“t
″。
(2) At this time, due to the decrease in 02ff in the slit, a difference occurs between the 02 partial pressure PA in the current 32 and the 02 partial pressure Ps in the slit. Based on the formula, the electromotive force Vs:, ”′”t
″.

Vs=(R,T/4F)fn(PA/Ps)   ・・
(3)(3)この起電力Vsを一定にするように、ポン
プ電流I、を供給すれば、ポンプ電流1p1.t#ff
ス流3電流の02分厘P^に比例する。
Vs=(R,T/4F)fn(PA/Ps)...
(3) (3) If the pump current I is supplied so as to keep this electromotive force Vs constant, the pump current 1p1. t#ff
It is proportional to 02 minutes P^ of current.

Tp=(4F/RT)Qll −exp((4P/It
T)V!+lll−・・(4)ただ17、′「:索子環
境温度 F;7アラデ一定数 [<;〃ス定数 Q;素子形状により決まる定数 なお、第4図中の符号22は抵抗):i、23はJ’l
i電力検出回路を構成する増幅器、24けコンデンサ、
25は調整回路を構成するトランジスタ、27はポンプ
セル用電源、28は抵抗器、32は11が電流、33は
無機耐熱性接着層、CIは増幅器23およびコンデンサ
24から構成されるfl’1分回路をそれぞれ示してい
る。
Tp=(4F/RT)Qll-exp((4P/It
T)V! +llll-... (4) Only 17,'": Component environmental temperature F; 7 Arade constant [<; Space constant Q; Constant determined by element shape Note that the symbol 22 in Fig. 4 is resistance): i , 23 is J'l
i Amplifier, 24 capacitor, which constitutes the power detection circuit,
25 is a transistor constituting an adjustment circuit, 27 is a pump cell power supply, 28 is a resistor, 32 is a current at 11, 33 is an inorganic heat-resistant adhesive layer, and CI is an fl'1 circuit consisting of an amplifier 23 and a capacitor 24. are shown respectively.

また、素子環境温度を所定値にコントロールする図示し
ないセラミックヒータが設けられている。
Additionally, a ceramic heater (not shown) is provided to control the element environmental temperature to a predetermined value.

本発明の実施例としでのりニア空燃比検出装置は上述の
ごとく構成されているので、第1図に示       
  、1すように、基準電圧\’refを■形材性が得
られるような低い設定電圧Vref、に固定されている
状態で、ポンプ電流1plを電圧Voに基づいて、電圧
計28′(または抵抗器28を構成する電流計)におい
て検出しくステップa1)、このポンプ電流Iρ1に基
づいて、第2図のA点およびB点に対応する2つの空燃
比A/F(R,)とA / F (’ i−+ )とを
演算(換算)する(ステップa2)。
The near air-fuel ratio detection device as an embodiment of the present invention is constructed as described above, and is shown in FIG.
, 1, while the reference voltage \'ref is fixed at a low set voltage Vref that allows the shapeability to be obtained, the pump current 1 pl is measured by the voltmeter 28' (or In step a1), two air-fuel ratios A/F(R,) and A/F(R,) corresponding to points A and B in FIG. 2 are detected based on this pump current Iρ1. F('i-+) is calculated (converted) (step a2).

ステップa2の終了後直ちに、燃料供給装置2から吸気
管5への供給燃料量を変更するように、制御装置11か
ら燃料供給装置2へ制御信号が送られる(ステップQ2
′)。
Immediately after step a2 is completed, a control signal is sent from the control device 11 to the fuel supply device 2 to change the amount of fuel supplied from the fuel supply device 2 to the intake pipe 5 (step Q2
').

前回に燃料噴射量を増量したかどうかが判定されて(ス
テップ83)、前回に燃料噴射量を減少した場合には、
今回の燃料噴射量を増量すべく、ステップa3からNO
ルートを経てステップa4へ至り、今回の燃料噴射量を
所定量(この量は、後述する空燃比の変化に対応するポ
ンプ電流の変化を十分識別できる量に設定される。)増
量する。
It is determined whether the fuel injection amount was increased last time (step 83), and if the fuel injection amount was decreased last time,
To increase the current fuel injection amount, select NO from step a3.
Step a4 is reached via the route, and the current fuel injection amount is increased by a predetermined amount (this amount is set to an amount that can sufficiently distinguish changes in pump current corresponding to changes in the air-fuel ratio, which will be described later).

この燃料噴射量の増量に伴い、空燃比が変更前の空燃比
から変更後の空燃比へ変更されて、このときのポンプ電
流tp″が検出される(ステップa5)。
With this increase in the fuel injection amount, the air-fuel ratio is changed from the air-fuel ratio before the change to the air-fuel ratio after the change, and the pump current tp'' at this time is detected (step a5).

次に、第1の空燃比A/F、のポンプ電流Tplとpl
S2の空燃比A/F2のポンプ電流■p’ との差Δ1
=lp’  rp+lが演算されで、この差Δがゼロよ
りも大きいかどうが判定される(ステップn6)。
Next, the pump currents Tpl and pl of the first air-fuel ratio A/F,
Difference Δ1 between air-fuel ratio A/F2 of S2 and pump current ■p'
=lp' rp+l is calculated, and it is determined whether this difference Δ is larger than zero (step n6).

そして、差Δがゼロより小さいときには、第2図に示す
B点とB′点との差のポンプ電流Δ(■5)が検出され
たものと判定され、すなわち、B′点のポンプ電流Tl
l3が検出されたものと判定されて、空燃比が、リーン
側であり、A/F(R)およびA/F(L)のうちのA
/F(1−)であると判定される(ステップa7)。
When the difference Δ is smaller than zero, it is determined that the pump current Δ(■5) which is the difference between point B and point B' shown in FIG. 2 has been detected, that is, the pump current Tl at point B'
It is determined that l3 is detected, and the air-fuel ratio is on the lean side, and A of A/F (R) and A/F (L) is detected.
/F(1-) is determined (step a7).

また、差Aがゼロよりも大きいときには、第2図に示す
A点とA′点との差のポンプ電流J(R)が検出された
ものと判定され、すなわち、A′点のポンプ電流Tp2
が検出されたものと判定されて、空燃比が、リッチ側で
あり、A/F(T?)すn:びA/F(T、)のうちの
A/F(R)であると1’l定される(ステップa8)
Further, when the difference A is larger than zero, it is determined that the pump current J(R) of the difference between the point A and the point A' shown in FIG. 2 has been detected, that is, the pump current Tp2 at the point A'
is determined to be detected, and the air-fuel ratio is on the rich side, and if A/F(R) of A/F(T?) and A/F(T, ) is detected, the air-fuel ratio is 1. 'l is determined (step a8)
.

前回に燃料噴射量を増加した場合には、今回の燃料噴射
量を減晴すべく、ステップa3からYESルートを経て
ステップa9へ至り、今回の燃料噴射量を所定1バこの
量は、後述する空燃比の変化に対応するポンプ電流の変
化を十分識別できる咀に設定される。)減量する。
If the fuel injection amount was increased last time, in order to reduce the current fuel injection amount, the process goes from step a3 to step a9 via the YES route, and the current fuel injection amount is set to a predetermined value, which will be described later. It is set to a value that allows sufficient discrimination of changes in pump current corresponding to changes in air-fuel ratio. )reduce weight.

この燃料噴射量の減量に伴い、空燃比が変更前の空燃比
から変更後の空燃比へ変更されて、このときのポンプ電
流Il)”が検出される(ステップa10)。
As the fuel injection amount decreases, the air-fuel ratio is changed from the air-fuel ratio before the change to the air-fuel ratio after the change, and the pump current Il)'' at this time is detected (step a10).

次に、第1の空燃比A / F +のポンプ電流Tpl
とtIS2の空燃比A/F2のポンプ電流Tp″との差
ΔI=Tp”−Tp+lが演算されて、この差Δがゼロ
よりも大きいかどうか判定される(ステップa11)。
Next, the pump current Tpl of the first air-fuel ratio A/F +
The difference ΔI=Tp″−Tp+l between the pump current Tp″ and the air-fuel ratio A/F2 of tIS2 is calculated, and it is determined whether this difference Δ is larger than zero (step a11).

そして、差Δがゼロより大きいと外には、第2図に示す
B点とB ”点との差のポンプ電流Δ(I、)が検出さ
れたものと判定され、すなわち、Fl”点のポンプ電流
11)、が検出されたものと判定されて、空燃比が、リ
ーン側であり、A/F(R,)およびA/F(L)のう
ちのA/F(L)であると判定される一! (ステップa12)。
If the difference Δ is larger than zero, it is determined that a pump current Δ(I,) of the difference between point B and point B'' shown in FIG. 2 has been detected, that is, at point Fl''. It is determined that the pump current 11) is detected, and the air-fuel ratio is on the lean side and is A/F (L) of A/F (R,) and A/F (L). One to be judged! (Step a12).

また、差Δがゼロよりも小さいときには、第2図に示す
A点とA″点との差のポンプ電流Δ(R)が検出された
ものと判定され、すなわち、A″点のポンプ電流■11
5が検出されたものと判定されで、空燃比が、リッチ側
であり、A/F(R)およびA / F (T、、 )
のうちのA/F(R)であると判定される(ステップa
13)。
Further, when the difference Δ is smaller than zero, it is determined that the pump current Δ(R) of the difference between point A and point A″ shown in FIG. 2 has been detected, that is, the pump current at point A″ is 11
5 is detected, the air-fuel ratio is on the rich side, and A/F (R) and A/F (T, , ) are detected.
It is determined that the A/F(R) of
13).

そして、燃料噴射量の増量と減量とを交互に繰り返すこ
とによって、空燃比が所望の空燃比から大幅に変化しな
いようにする。
By alternately repeating increases and decreases in the fuel injection amount, the air-fuel ratio is prevented from changing significantly from the desired air-fuel ratio.

このようにして、空燃比を決定でき、リーン側からりッ
チ側までの全領域における空燃比の検出が可能となる。
In this way, the air-fuel ratio can be determined, and the air-fuel ratio can be detected in the entire range from the lean side to the rich side.

なお、ステップa5とステップa6との間およびステッ
プalOとステップallとの間にステップa2と同様
の操作を行なうようにして、正確な今回の空燃比を検出
するようにしてもよい。
Note that the current air-fuel ratio may be detected accurately by performing the same operation as step a2 between step a5 and step a6 and between step alO and step all.

また、空燃比調整手段としての燃料噴射装置2へ空燃比
変更手段を構成する制御装置11から送       
  1られる制御信号を次のようにしてもよい。
Further, the control device 11 constituting the air-fuel ratio changing means sends information to the fuel injection device 2 serving as the air-fuel ratio adjusting means.
The control signal that is set to 1 may be as follows.

(1)燃料噴射装置2をインジェクタ等で構成した場合
に、燃料噴射の所定回数毎に、すなわち定期的に増量ま
たは減量して、リッチ側であるかリーン側であるか判定
し、これに基づき空燃比を測定する。これにより、空燃
比の大幅な変動を防止することができる。
(1) When the fuel injection device 2 is configured with an injector or the like, it is determined whether the fuel injection is on the rich side or the lean side every predetermined number of times, that is, periodically increases or decreases, and based on this, Measure the air/fuel ratio. This makes it possible to prevent large fluctuations in the air-fuel ratio.

(2)車両用エンジンの加速時にはリッチ側であると判
定してその減速時にはリーン側であると判定して燃料噴
射装置2からの燃料噴射量を見込制御することによって
」−配電1項の判定および測定を禁止して、過減速時に
おけるリーンスパイクおよびリッチスパイクの発生を防
止する。
(2) By determining that the vehicle engine is on the rich side when accelerating, and determining that it is on the lean side when decelerating, and controlling the amount of fuel injected from the fuel injection device 2 in advance.'' - Determination in Power Distribution Item 1 and measurement is prohibited to prevent lean spikes and rich spikes from occurring during over-deceleration.

このような、リニア空燃比検出装置をそなえたエンジン
の空燃比1111整装置では、ストイキオ(入)以上の
任意の空燃比となるように、フィードバック制御により
、燃料供給装置2からの供給燃料量を¥R整することが
でき、これにより、リーン側空燃比となるようにフィー
ドバック制御して、燃費や排ガス志向を選択したり、常
時はリーン側空燃比となるようにフィードバック制御し
ながら高負荷急加速時はリッチ側フィードバック制御を
行なうようにして、出力やドライバビリティ志向を選択
したりすることができる。
Such an air-fuel ratio adjustment device for an engine equipped with a linear air-fuel ratio detection device uses feedback control to adjust the amount of fuel supplied from the fuel supply device 2 so that an arbitrary air-fuel ratio of stoichiometry or higher is achieved. This allows you to perform feedback control to keep the air-fuel ratio on the lean side to select fuel economy and exhaust gas preferences, or to perform feedback control to keep the air-fuel ratio on the lean side at all times while performing high-load sudden changes. During acceleration, rich-side feedback control is performed to select output and drivability.

なお、空燃比調整手段としで、空気量を増量ないL減量
するチョーク弁等を設けてもJ:<、こ第1により空燃
比(燃料量と空気量との割合)を−1°シー・とするよ
うに構成してもよい。
Note that even if a choke valve or the like is provided as an air-fuel ratio adjustment means to reduce the amount of air instead of increasing it, the air-fuel ratio (the ratio of the amount of fuel to the amount of air) can be adjusted by -1° C. It may be configured so that.

〔発明の効果〕〔Effect of the invention〕

以−1−詳述したように、本発明のりニア空燃比検出装
置によれば、エンジンへ(4(給さ11る燃If fi
lと空気量との割合を調整しうる空燃比調整手段と、」
〕記エンジンの損気系からの偵〃スをスリン1内へ導入
する排ガス導入用隙間を有するセンサ本体をそなえると
ともに、同センサ本体の11.1部を形成して上記スリ
ット内へ排ガス側から酸素イオンを透過導入する酸素イ
オン透過性固体電解質製導入用酸素分圧比検出セルと、
同導入用酸素分圧比検出セルに付設された上記スリット
側の電極と排ガス側電極との間の電圧を検出する起電力
検出回路と、上記センサ本体の壁部を形成して−L記ス
スリットらの酸素イオンを透過排出する酸素イオン透過
性固体電解質製排出用酸素ポンプセルと、上記起電力検
出回路からの検出電圧を設定電圧にすべく」コ記排出用
酸素ポンプセルに付設された上記入すツF側の電極と排
出側電極との間に印加される電圧をW4整する調整回路
と、これらの電極間に流れる電流を測定する測定回路と
をそなえ、上記空燃比調整手段によって調整される空風
比を変更しうる空燃比変更手段と、変更前の空燃比に対
するI−記測定回路からの第1の電流値と」−配字燃比
変更f段により変りされた変更後の空燃比に対する十記
測定回路からの第2の電流値とを受けて上記J、ンジン
・\供給される混合気の空燃比を測定する空燃比測定手
段とが設けられるという簡素な構造で、空燃比を圧締に
検出することができる利点があり、エンジンからの排ガ
スを受けて、空燃比をリーン側からリッチ側までの全範
囲において測定することが可能となる。
As described in detail below, according to the linear air-fuel ratio detection device of the present invention, if the fuel supplied to the engine (4) is
an air-fuel ratio adjusting means capable of adjusting the ratio between l and the air amount;
] A sensor body is provided with an exhaust gas introduction gap for introducing reconnaissance from the air loss system of the engine into the surin 1, and a part 11.1 of the sensor body is formed to introduce oxygen into the slit from the exhaust gas side. an oxygen partial pressure ratio detection cell made of an oxygen ion-permeable solid electrolyte that permeates and introduces ions;
An electromotive force detection circuit for detecting the voltage between the electrode on the slit side and the electrode on the exhaust gas side attached to the oxygen partial pressure ratio detection cell for introduction, and the wall part of the sensor main body are formed. A discharge oxygen pump cell made of an oxygen ion-permeable solid electrolyte that permeates and discharges oxygen ions, and the above-mentioned tools attached to the discharge oxygen pump cell in order to set the detection voltage from the electromotive force detection circuit to the set voltage. It is equipped with an adjustment circuit that adjusts the voltage applied between the F-side electrode and the discharge-side electrode, and a measurement circuit that measures the current flowing between these electrodes, and the air-fuel ratio adjusted by the air-fuel ratio adjustment means. an air-fuel ratio changing means capable of changing the wind ratio; The air-fuel ratio is clamped with a simple structure including an air-fuel ratio measuring means that receives the second current value from the measuring circuit and measures the air-fuel ratio of the air-fuel mixture supplied to the engine. It has the advantage of being able to detect the air-fuel ratio in the entire range from the lean side to the rich side by receiving exhaust gas from the engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は本発明の一実施例としてのリニア空燃比検
出装貿を示すもので、第1図はその制御要領を示す70
−チャート、第2図はその作用を説明するためのグラフ
、第3図はその全体構成図、第4図はそのリニアA/F
センサを示す模式図、第5,6図はいずれもその作用を
説明するためのグラフである。 1・・エアクリーナ、2・・空燃比調整手段をMl戊す
る焼判0(給装置、3・・吸気温度センサ、4・・スロ
ットルポジションセンサ、5・・lIl&気管、6・・
エンジン本体、7・・偵気管、8・・エア70−センサ
、9・・リニアA/Fセンザ、10・・触媒、11・・
空燃比変更−F段と空燃比測定手段とを兼ねる制御装置
6(コンピュータ)、12・・水温センサ、13・・エ
ンジン回転数ヤン゛す、14・・クランク角度センサ、
15・・スロッlル弁、20・・酸素分圧比検出セル、
21・・酸素ポンプセル、22・・抵抗器、23・・起
電力検出回路を構成する増幅器、24・・コンデンサ、
25・・調整回路を構成するトランジスタ、26・・基
準電圧用電源、27・・ポンプセル用電源、28・・抵
抗器、28′ ・・測定回路をMl成する電圧計、2つ
・・スリットとしての拡散隙間(拡散律速体)、30.
30’ 、31.31’  ・・電極、32・・排ガス
流、33・・無機耐熱性接着層、C1・・積分回路。 代理人 弁理士 飯 沼 義 彦 第2図 空燃比(A/F)◆ 第3図
1 to 6 show a linear air-fuel ratio detection system as an embodiment of the present invention, and FIG.
-Chart, Figure 2 is a graph to explain its action, Figure 3 is its overall configuration diagram, Figure 4 is its linear A/F
The schematic diagram showing the sensor, FIGS. 5 and 6, are graphs for explaining its operation. 1. Air cleaner, 2. Air-fuel ratio adjustment means Ml control system (supply device, 3. Intake air temperature sensor, 4. Throttle position sensor, 5. IIl & trachea, 6.
Engine body, 7. Air exhaust pipe, 8. Air 70-sensor, 9. Linear A/F sensor, 10. Catalyst, 11.
Air-fuel ratio change - control device 6 (computer) that also serves as F stage and air-fuel ratio measuring means, 12... water temperature sensor, 13... engine rotational speed change, 14... crank angle sensor;
15... Throttle valve, 20... Oxygen partial pressure ratio detection cell,
21...Oxygen pump cell, 22...Resistor, 23...Amplifier constituting the electromotive force detection circuit, 24...Capacitor,
25...Transistor that constitutes the adjustment circuit, 26...Power source for reference voltage, 27...Power source for pump cell, 28...Resistor, 28'...Voltmeter that forms the measuring circuit, two...As slit Diffusion gap (diffusion barrier), 30.
30', 31.31'... Electrode, 32... Exhaust gas flow, 33... Inorganic heat-resistant adhesive layer, C1... Integral circuit. Agent Patent Attorney Yoshihiko Iinuma Figure 2 Air Fuel Ratio (A/F) ◆ Figure 3

Claims (1)

【特許請求の範囲】[Claims] エンジンへ供給される燃料量と空気量との割合を調整し
うる空燃比調整手段と、上記エンジンの排気系からの排
ガスをスリット内へ導入する排ガス導入用隙間を有する
センサ本体をそなえるとともに、同センサ本体の壁部を
形成して上記スリット内へ排ガス側から酸素イオンを透
過導入する酸素イオン透過性固体電解質製導入用酸素分
圧比検出セルと、同導入用酸素分圧比検出セルに付設さ
れた上記スリット側の電極と排ガス側電極との間の電圧
を検出する起電力検出回路と、上記センサ本体の壁部を
形成して上記スリットからの酸素イオンを透過排出する
酸素イオン透過性固体電解質製排出用酸素ポンプセルと
、上記起電力検出回路からの検出電圧を設定電圧にすべ
く上記排出用酸素ポンプセルに付設された上記スリット
側の電極と排出側電極との間に印加される電圧を調整す
る調整回路と、これらの電極間に流れる電流を測定する
測定回路とをそなえ、上記空燃比調整手段によって調整
される空燃比を変更しうる空燃比変更手段と、変更前の
空燃比に対する上記測定回路からの第1の電流値と上記
空燃比変更手段により変更された変更後の空燃比に対す
る上記測定回路からの第2の電流値とを受けて上記エン
ジンへ供給される混合気の空燃比を測定する空燃比測定
手段とが設けられたことを特徴とする、リニア空燃比検
出装置。
The sensor body includes an air-fuel ratio adjusting means that can adjust the ratio between the amount of fuel and the amount of air supplied to the engine, and a sensor body that has an exhaust gas introduction gap that introduces exhaust gas from the exhaust system of the engine into the slit. An oxygen partial pressure ratio detection cell for introduction made of an oxygen ion permeable solid electrolyte that forms the wall of the sensor body and permeates oxygen ions into the slit from the exhaust gas side, and an oxygen partial pressure ratio detection cell for introduction that is attached to the introduction oxygen partial pressure ratio detection cell. An electromotive force detection circuit that detects the voltage between the slit side electrode and the exhaust gas side electrode, and an oxygen ion permeable solid electrolyte that forms the wall of the sensor body and permeates and discharges oxygen ions from the slit. Adjusting the voltage applied between the discharge oxygen pump cell and the discharge side electrode and the slit-side electrode attached to the discharge oxygen pump cell so that the detected voltage from the electromotive force detection circuit is a set voltage. an air-fuel ratio changing means that includes an adjustment circuit and a measuring circuit that measures the current flowing between these electrodes, and is capable of changing the air-fuel ratio adjusted by the air-fuel ratio adjusting means; and the measuring circuit for the air-fuel ratio before the change. and a second current value from the measuring circuit for the changed air-fuel ratio changed by the air-fuel ratio changing means, and measure the air-fuel ratio of the air-fuel mixture supplied to the engine. What is claimed is: 1. A linear air-fuel ratio detection device, characterized in that it is provided with air-fuel ratio measuring means.
JP59178993A 1984-08-28 1984-08-28 Linear air/fuel ratio detector Granted JPS6156959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59178993A JPS6156959A (en) 1984-08-28 1984-08-28 Linear air/fuel ratio detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178993A JPS6156959A (en) 1984-08-28 1984-08-28 Linear air/fuel ratio detector

Publications (2)

Publication Number Publication Date
JPS6156959A true JPS6156959A (en) 1986-03-22
JPH0552458B2 JPH0552458B2 (en) 1993-08-05

Family

ID=16058236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178993A Granted JPS6156959A (en) 1984-08-28 1984-08-28 Linear air/fuel ratio detector

Country Status (1)

Country Link
JP (1) JPS6156959A (en)

Also Published As

Publication number Publication date
JPH0552458B2 (en) 1993-08-05

Similar Documents

Publication Publication Date Title
JP5009597B2 (en) Detection method of gas composition in wideband lambda sonde
US7850833B2 (en) Oxygen sensor and air/fuel ratio control system
EP2442099B1 (en) Gas concentration measuring apparatus designed to compensate for output error
US8354016B2 (en) Dual mode oxygen sensor
US7981265B2 (en) Gas concentration measuring apparatus designed to enhance measurement accuracy in desired range
US4592325A (en) Air/fuel ratio control system
US4580539A (en) Air-fuel ratio control apparatus
JP2009529690A (en) Determination method of gas concentration in measurement gas by gas sensor
EP0152940B1 (en) Apparatus and method for detecting an air-fuel ratio
KR0145087B1 (en) Air-fuel ratio control apparatus for internal combustion engines
US20070222454A1 (en) Method and Device for the Operation of an Exhaust Gas Analyzing Sensor Cell
JPS6156959A (en) Linear air/fuel ratio detector
US11174807B2 (en) Operation control method of vehicle engine and vehicle system
JP4272970B2 (en) Exhaust gas concentration detector
US6209314B1 (en) Air/fuel mixture control in an internal combustion engine
JPH05264501A (en) Measuring apparatus of hydrocarbon concentration
US20070227889A1 (en) Exhaust gas sensor
JPS5934432A (en) Air-fuel ratio controller of internal-combustion engine
JPH01152358A (en) Oxygen sensor
JPS60243316A (en) Secondary air control device of engine
JPS6154441A (en) Linear air fuel ratio detecting device
JPS6154442A (en) Linear air fuel ratio detecting device
JPS6017349A (en) Device for controlling air-fuel ratio
JPS6287846A (en) Apparatus for controlling internal combustion engine
JPH0436341B2 (en)