JPS6156958B2 - - Google Patents

Info

Publication number
JPS6156958B2
JPS6156958B2 JP7396880A JP7396880A JPS6156958B2 JP S6156958 B2 JPS6156958 B2 JP S6156958B2 JP 7396880 A JP7396880 A JP 7396880A JP 7396880 A JP7396880 A JP 7396880A JP S6156958 B2 JPS6156958 B2 JP S6156958B2
Authority
JP
Japan
Prior art keywords
reflector
castor oil
performance evaluation
imaging device
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7396880A
Other languages
Japanese (ja)
Other versions
JPS57567A (en
Inventor
Keiki Yamaguchi
Shinichi Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP7396880A priority Critical patent/JPS57567A/en
Publication of JPS57567A publication Critical patent/JPS57567A/en
Publication of JPS6156958B2 publication Critical patent/JPS6156958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、超音波映像装置の性能を評価する場
合に使用する性能評価装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a performance evaluation device used to evaluate the performance of an ultrasound imaging device.

従来より、超音波映像装置の性能評価の方法と
して、分解能などの音響的特性を測定して評価す
る方法とか実際の生体又はそれの構造模型を使用
して画像から性能を判定する方法がある。しか
し、前者の方法については既にJISなどで一定の
基準が設けれ、一般的になつているが、そこで推
奨されている水中での評価方法は生体の場合と必
ずしも適切な対応を示しているとは言えない。ま
た、後者の方法についても生体に音速、音響イン
ピーダンスが類似しているシリコンゴムを使用し
たものやスポンジを水中に設置したものなどを使
用した各種の方法があるが、これらについても前
述と同様に生体との対応が適切でないため評価方
法として十分とは考えられない。その理由は、生
体との対応上特に重要な点である伝播損失に大き
な差異があり、生体組織の伝播損失はかなり大き
いのに対し水中における伝播損失は生体組織の1/
100程度であつて、伝播損失がもたらすエコー周
波数の低下すなわち指向特性の悪化及び検出信号
の低下などが水中の場合には生体の場合ほど明確
に現われないということにほかならない。
Conventionally, methods for evaluating the performance of ultrasound imaging devices include a method of measuring and evaluating acoustic characteristics such as resolution, and a method of determining performance from images using an actual living body or a structural model thereof. However, although certain standards have already been established for the former method in JIS and other organizations, and it has become common, the underwater evaluation method recommended there does not necessarily correspond appropriately to that of living organisms. I can't say that. Regarding the latter method, there are various methods that use silicone rubber, which has similar sound speed and acoustic impedance to living organisms, and methods that use sponges placed in water, but these methods are similar to those described above. It is not considered to be sufficient as an evaluation method because it does not correspond appropriately to living organisms. The reason for this is that there is a large difference in propagation loss, which is particularly important when dealing with living organisms.While the propagation loss in living tissue is quite large, the propagation loss in water is only 1/2 that of living tissue.
100, which means that the reduction in echo frequency caused by propagation loss, that is, the deterioration of directivity and the reduction in detection signals, do not appear as clearly underwater as they do in living bodies.

本発明は、このような点に鑑み、音響インピー
ダンス、伝播損失等の音響特性が人体組織とよく
類似した条件下で性能を評価し得る超音波映像装
置の性能評価装置を提供することにある。
In view of these points, it is an object of the present invention to provide a performance evaluation device for an ultrasound imaging device that can evaluate the performance under conditions where acoustic characteristics such as acoustic impedance and propagation loss closely resemble those of human tissue.

以下図面を用いて本発明を詳しく説明する。第
1図は本発明に係る性能評価装置の一実施例を示
す構成図で、音響特性上人体に相当する模型など
の対象物にパルス波を発射させ、そのエコーを受
信し得るような構成とした点については従来のも
のとほぼ同じ考えであるが、従来使用していた水
に代えてひまし油を用いた点に特徴がある。すな
わち、容器1にひまし油2を満たし、このひまし
油2の中に反射体3を浸漬し、この反射体3は適
宜の手段によつて容器1に取付けられている。そ
してひまし油2の中で反射体3の表面より距離X
の位置に探触子10の先端部を配置させている。
超音波映像装置本体20より探触子10を駆動
し、ひまし油2を介して反射体3にパルス波を発
射し、そこからのエコーを受信して本体20で画
像表示するようになつている。なお、探触子10
は必ずしも超音波映像装置の本体20と接続し駆
動されるものと限つたものではなく、性能試験の
試験項目によつては第2図に示すようにパルス発
生器21で探触子を駆動する一方、オシロスコー
プ22でパルス波送受信信号を観測するよう構成
してもよい。
The present invention will be explained in detail below using the drawings. FIG. 1 is a configuration diagram showing an embodiment of the performance evaluation device according to the present invention, which has a configuration in which a pulse wave is emitted to an object such as a model that corresponds to a human body in terms of acoustic characteristics, and the echo thereof can be received. The idea is almost the same as the conventional one, but the unique feature is that castor oil is used instead of the water used in the conventional method. That is, a container 1 is filled with castor oil 2, a reflector 3 is immersed in the castor oil 2, and the reflector 3 is attached to the container 1 by appropriate means. And distance X from the surface of reflector 3 in castor oil 2
The tip of the probe 10 is placed at the position.
The probe 10 is driven from the ultrasonic imaging device main body 20 to emit pulse waves to the reflector 3 through the castor oil 2, and the echoes therefrom are received and displayed as images on the main body 20. In addition, the probe 10
The probe is not necessarily driven by being connected to the main body 20 of the ultrasound imaging device, but depending on the test items of the performance test, the probe may be driven by a pulse generator 21 as shown in FIG. On the other hand, the configuration may be such that the pulse wave transmission/reception signal is observed using the oscilloscope 22.

ここで、水とひまし油の音響特性について述べ
る。信頼できる測定結果によれば、音速及び音響
インピーダンスに関しては両者の間にはほとんど
差が認められないが、吸収係数については顕著な
差が認められる。すなわち、ひまし油の吸収係数
は水の吸収係数の102〜103倍の値を有し、探触子
の公称周波数cと吸収係数αの関係は第3図に
示すようにほぼ比例関係を示す。ひまし油の運動
粘性すなわちひまし油の温度と吸収係数の間には
密接な関係があり、一般に温度が上昇すると吸収
係数は減少する。例えば21℃の温度下において、
2MHzで約2dB/cm、5MHzで約5dB/cmとなる。
これは生体の値(約1dB/cm/MHz)とよく近似
している。
Here, we will discuss the acoustic properties of water and castor oil. Reliable measurements show that there is little difference between the two in terms of sound velocity and acoustic impedance, but a significant difference in absorption coefficient. In other words, the absorption coefficient of castor oil is 10 2 to 10 3 times the absorption coefficient of water, and the relationship between the nominal frequency c of the probe and the absorption coefficient α shows a nearly proportional relationship as shown in Figure 3. . There is a close relationship between the kinematic viscosity of castor oil, that is, the temperature of castor oil, and the absorption coefficient, and generally, as the temperature increases, the absorption coefficient decreases. For example, at a temperature of 21℃,
At 2MHz it is approximately 2dB/cm, and at 5MHz it is approximately 5dB/cm.
This closely approximates the biological value (approximately 1 dB/cm/MHz).

第4図は3.5MHzのパルス波を発射する探触子
10を用いて、第1図における距離Xを変化させ
たときの距離Xすなわち減衰吸収量とエコーの中
心周波数eとの関係を示す測定結果である。図
に見られるように、水中の場合はほぼ一定である
が、ひまし油中では距離が大きくなるに従つて
eは大幅に低下する。この現象は人体内部のエコ
ー観測から判明する現象に同じである。
Figure 4 is a measurement showing the relationship between the distance X, that is, the amount of attenuation and absorption, and the center frequency e of the echo when the distance X in Figure 1 is changed using the probe 10 that emits a 3.5MHz pulse wave. This is the result. As seen in the figure, it is almost constant underwater, but as the distance increases in castor oil,
e will drop significantly. This phenomenon is the same as the phenomenon found from echo observations inside the human body.

このように構成した性能評価装置で各種の試験
を行なうことができる。すなわち、 (1) 指向特性試験 第1図に示す反射体3として第5図に示すよう
なJISに準拠したステンレス球51を用いてエコ
ーを観測する。
Various tests can be performed using the performance evaluation apparatus configured in this manner. That is, (1) Directional characteristic test Echoes are observed using a JIS-compliant stainless steel bulb 51 as shown in FIG. 5 as the reflector 3 shown in FIG.

(2) 距離分解能試験 反射体3として第6図イに示すような2枚の側
板61a,61bの間に張られた複数本の金属線
62〜62oよりなる線群62を用い、線間隔
識別を行なう。
(2) Distance resolution test Using a wire group 62 consisting of a plurality of metal wires 62 1 to 62 o stretched between two side plates 61a and 61b as shown in FIG. 6A as the reflector 3, Perform interval identification.

(3) 方位分解能試験 反射体3として第6図ロに示すような2枚の側
板63a,63b(63bは図示されていない)
の間に水平に張られた複数本の金属線64〜6
oよりなる線群64を用い、線間隔識別を行な
う。
(3) Azimuth resolution test As the reflector 3, two side plates 63a and 63b as shown in Figure 6B (63b is not shown) are used.
Multiple metal wires 64 1 to 6 stretched horizontally between
Line interval identification is performed using a line group 64 consisting of 4 o .

(4) 音響インピーダンス差の検出感度試験 ひまし油の音響インピーダンスが温度に依存す
ることから、周知の温度制御手段によつてひまし
油温度を制御し、例えばシリコンゴムなどの反射
体との僅かな音響インピーダンス差を作り、観測
する。
(4) Sensitivity test for detection of acoustic impedance difference Since the acoustic impedance of castor oil depends on temperature, the temperature of castor oil is controlled by a well-known temperature control means to detect a slight acoustic impedance difference with a reflector such as silicone rubber. Create and observe.

(5) 空間分解能試験 反射体としてアクリル等の反射率の大きい物質
を用い、生体内部と同条件を実現して観測する。
(5) Spatial resolution test A material with high reflectivity such as acrylic is used as a reflector to achieve the same conditions as inside a living body for observation.

(6) 伝播損失試験 ひまし油の伝播損失が温度に依存するので、ひ
まし油温度を制御し、生体の各部組織の伝播損失
に応じた伝播損失を実現し、観測する。
(6) Propagation loss test Since the propagation loss of castor oil depends on temperature, the temperature of castor oil is controlled to realize and observe the propagation loss corresponding to the propagation loss of each part tissue of the living body.

以上のような各種評価試験を容易に行なうこと
ができる。なお、反射体としては上述のほかに、
例えば、シリコンゴムのブロツクの中に生体組織
の音響特性にほぼ同じ特性を有する管材等を埋設
し、更に管の中にはひまし油又は適宜の音響特性
を有する物質を充填した人体組織模型を使用する
こともできる。
Various evaluation tests such as those described above can be easily performed. In addition to the above-mentioned reflectors,
For example, a tube material having almost the same acoustic characteristics as a living tissue is buried in a silicone rubber block, and a human tissue model is used in which the tube is filled with castor oil or a substance with appropriate acoustic characteristics. You can also do that.

以上説明したように、本発明によれば、ひまし
油を使用し、人体組織と実質的に同じ音速、音響
インピーダンス、伝播損失等の音響特性を実現で
きるので、従来の評価装置よりもより実用的かつ
効果的な性能評価装置を得ることができる。
As explained above, according to the present invention, it is possible to achieve acoustic properties such as sound velocity, acoustic impedance, and propagation loss that are substantially the same as those of human tissue by using castor oil, which makes it more practical and more effective than conventional evaluation devices. An effective performance evaluation device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る性能評価装置の一実施例
を示す構成図、第2図は本発明の他の実施例を示
す構成図、第3図及び第4図は特性図、第5図及
び第6図は反射体の具体例を示す図である。 1…容器、2…ひまし油、3…反射体、10…
探触子、20…超音波映像装置本体、21…パル
ス発生器、22…オシロスコープ。
Fig. 1 is a block diagram showing one embodiment of the performance evaluation device according to the present invention, Fig. 2 is a block diagram showing another embodiment of the present invention, Figs. 3 and 4 are characteristic diagrams, and Fig. 5 and FIG. 6 are diagrams showing specific examples of reflectors. 1... Container, 2... Castor oil, 3... Reflector, 10...
Probe, 20... Ultrasonic imaging device main body, 21... Pulse generator, 22... Oscilloscope.

Claims (1)

【特許請求の範囲】 1 あらかじめ特性の知られた媒体を介して探触
子から反射体にパルス波を発射し、その反射波を
受信して超音波映像装置の性能を評価する超音波
映像装置の性能評価装置において、容器にひまし
油を入れ温度制御し、温度制御されたひまし油中
に前記反射体を浸し、このひまし油を介して探触
子より反射体にパルス波を送受信するようにした
ことを特徴とする超音波映像装置の性能評価装
置。 2 前記反射体としてステンレス球を用い、探触
子の指向特性を測定し得るようにしたことを特徴
とする特許請求の範囲第1項記載の超音波映像装
置の性能評価装置。 3 前記反射体として2枚の側板の間に張られた
線群を用い、路離分解能及び方位分解能を測定し
得るようにしたことを特徴とする特許請求の範囲
第1項記載の超音波映像装置の性能評価装置。 4 前記反射体としてシリコンゴムを用い、ひま
し油を適宜の温度に制御し音響インピーダンス差
の検出感度を測定し得るようにしたことを特徴と
する特許請求の範囲第1項記載の超音波映像装置
の性能評価装置。 5 前記反射体としてアクリル材又はこれに類似
する反射率の大きい物質を用い、空間分解能を測
定し得るようにしたことを特徴とする特許請求の
範囲第1項記載の超音波映像装置の性能評価装
置。 6 前記ひまし油を適宜の温度に制御し、生体各
部に応じた伝播損失となるようにしたことを特徴
とする特許請求の範囲第1項記載の超音波映像装
置の性能評価装置。
[Claims] 1. An ultrasound imaging device that emits pulse waves from a probe to a reflector through a medium whose characteristics are known in advance, and receives the reflected waves to evaluate the performance of the ultrasound imaging device. In the performance evaluation device, castor oil is placed in a container and the temperature is controlled, the reflector is immersed in the temperature-controlled castor oil, and pulse waves are transmitted and received from the probe to the reflector through the castor oil. Features: Performance evaluation device for ultrasound imaging equipment. 2. The performance evaluation device for an ultrasound imaging device according to claim 1, characterized in that a stainless steel ball is used as the reflector so that the directional characteristics of the probe can be measured. 3. The ultrasonic imaging device according to claim 1, characterized in that a group of lines stretched between two side plates is used as the reflector to measure road separation resolution and azimuth resolution. performance evaluation device. 4. The ultrasonic imaging device according to claim 1, wherein silicone rubber is used as the reflector, and the temperature of castor oil is controlled to an appropriate temperature so that the detection sensitivity of the acoustic impedance difference can be measured. Performance evaluation device. 5. Performance evaluation of the ultrasonic imaging device according to claim 1, characterized in that an acrylic material or a similar material with high reflectance is used as the reflector so that spatial resolution can be measured. Device. 6. The performance evaluation device for an ultrasound imaging device according to claim 1, wherein the temperature of the castor oil is controlled to an appropriate temperature so that the propagation loss corresponds to each part of the living body.
JP7396880A 1980-06-02 1980-06-02 Performance evaluating device of ultrasonic video device Granted JPS57567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7396880A JPS57567A (en) 1980-06-02 1980-06-02 Performance evaluating device of ultrasonic video device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7396880A JPS57567A (en) 1980-06-02 1980-06-02 Performance evaluating device of ultrasonic video device

Publications (2)

Publication Number Publication Date
JPS57567A JPS57567A (en) 1982-01-05
JPS6156958B2 true JPS6156958B2 (en) 1986-12-04

Family

ID=13533379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7396880A Granted JPS57567A (en) 1980-06-02 1980-06-02 Performance evaluating device of ultrasonic video device

Country Status (1)

Country Link
JP (1) JPS57567A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129039A (en) * 1983-12-16 1985-07-10 横河メディカルシステム株式会社 Ultrasonic diagnostic apparatus
JPH08235517A (en) * 1994-05-10 1996-09-13 Mitsubishi Electric Corp Magnetic head and its production
JP5587737B2 (en) * 2010-11-05 2014-09-10 トーイツ株式会社 Sensitivity test equipment for ultrasonic Doppler diagnostic equipment

Also Published As

Publication number Publication date
JPS57567A (en) 1982-01-05

Similar Documents

Publication Publication Date Title
EP0076168B1 (en) Medium characterization system using ultrasonic waves
US6328695B1 (en) Method and an apparatus for investigating material properties of bone using ultrasound
US5426979A (en) Frequency spectrum apparatus for determining mechanical properties
US4653505A (en) System and method for measuring sound velocity of tissue in an object being investigated
US5143072A (en) Apparatus for determining the mechanical properties of a solid
CN107647881B (en) Method for measuring viscoelasticity parameter of human or animal organ
US5247937A (en) Transaxial compression technique for sound velocity estimation
JPH0428375B2 (en)
JPH0136903B2 (en)
EP0139235A2 (en) Ultrasonic measurement method and apparatus therefor
CN101966088A (en) Oral cavity comprehensive detecting method and apparatus based on flexible phase controlled ultrasonic array
US4993416A (en) System for ultrasonic pan focal imaging and axial beam translation
US4475376A (en) Apparatus for testing ultrasonic transducers
JPS62123355A (en) Method and device for scanning body
US4430883A (en) Device for the calibration of an ultrasonic transducer
JPH021273B2 (en)
JPS6156958B2 (en)
Amin Ultrasonic attenuation estimation for tissue characterization
CA2076137A1 (en) Apparatus for determining the mechanical properties of a solid
JPH06109709A (en) Apparatus and method for judging dynamic property of solid material and apparatus and method for judging scanning and dynamic property of solid material
JP2796179B2 (en) Bone ultrasonic diagnostic equipment
JPS6155380B2 (en)
JPS62276456A (en) Coupler for ultrasonic transducer
JPS5943172B2 (en) ultrasonic probe
JPH05228141A (en) Bone diagnostic device by ultrasonic wave