JPS6156942B2 - - Google Patents

Info

Publication number
JPS6156942B2
JPS6156942B2 JP4288280A JP4288280A JPS6156942B2 JP S6156942 B2 JPS6156942 B2 JP S6156942B2 JP 4288280 A JP4288280 A JP 4288280A JP 4288280 A JP4288280 A JP 4288280A JP S6156942 B2 JPS6156942 B2 JP S6156942B2
Authority
JP
Japan
Prior art keywords
specimen
concrete
deterioration
thaw
freeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4288280A
Other languages
Japanese (ja)
Other versions
JPS56140238A (en
Inventor
Hiroshi Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4288280A priority Critical patent/JPS56140238A/en
Publication of JPS56140238A publication Critical patent/JPS56140238A/en
Publication of JPS6156942B2 publication Critical patent/JPS6156942B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はコンクリートの凍結融解に対する耐久
性の検討を迅速に行うこと、ならびに凍結融解作
用によるコンクリート内部の劣化を直接に検知す
ることを目的とする。 従来のコンクリートの凍害、すなわち、凍結融
解作用による劣化の検知は例えばASTM(アメ
リカ材料試験協会規格)の凍結融解試験方法を準
用しているが、これはコンクリートの劣化の進行
状態を、主として動弾性係数の変化を基準とし、
その他、供試体の重量の変化、ならびに供試体の
長さの変化などの測定にもとづいて耐久性の検討
を行うという方法である。しかしながら、この方
法によればコンクリート内部の劣化の進行を間接
に知ることはできるが直接に検討することはでき
ない。又試験に長期間を要し、且つ試験装置が複
雑大型で、極めて高価な試験であつた。 ASTMの試験方法による場合の供試体は10×
10×40cm程度の大きさのものを使用していて大型
の試験装置であり普遍性にとぼしい欠点がある。
また、コンクリートの凍害に関する野外調査の場
合は、隅角部のごとく、外気、または水分にふれ
ることが多い個所に著しい凍害が見られ、全体的
な検知が行えず、また同一条件では部材断面が比
較的小さい場合に劣化の進行が速くなつてしまう
ことが知られている。 本発明は上述した従来のコンクリート劣化検知
方法の欠点を改善したもので、コンクリートの凍
結結融解による劣化すなわち、凍害の状態の迅速
に求めるため、供試体を小さく特に薄片状とする
ことにより、供試体の表面積を大きくして伝熱上
有利とすると共に、小規模な試験装置で短期間の
試験を可能としたものである。また、現場から採
取したコアを薄片状として試験に供することがで
きる利点がある。 次に本発明の一実施例を図に基づいて説明する
と、コンクリートの凍結融解試験用供試体として
一般に用いられている縦、横、高さがそれぞれ10
×10×40cmの供試体Tを図に示すごとく一辺Aを
たとえば1cm〜2cmの厚さに切断してコンクリー
ト内部の劣化の進行を観察などによつて検討する
ことができる供試体とするとともに薄片状として
凍害に対する耐久性を迅速に判定するものであ
る。尚A、H、W、Lは供試体の各辺であり、S
は露出した粗骨材である。 表−1は従来の10×10×40供試体と本発明方法
に基づく薄片状供試体Tとを水中において同時に
凍結融解試融解試験を行つた場合の劣化の状態を
比較したものである。水中凍結融解用水は淡水と
海水を用いた。表−1を参照すると淡水中凍結融
解の場合は、10×10×40cmの従来の供試体の場合
では120サイクル後においては動弾性係数の変化
が測定され劣化が進行していることがわかるが外
見上の変化は認められない。 これに対し、本発明における薄片状供試体Tの
場合は30サイクルでコンクリートの内部において
粗骨材とモルタルとの接触面より劣化しているこ
とがわかり内部の劣化の進行状態を観察すること
ができたとともに、40〜60サイクルでコンクリー
トがバラバラに崩壊し、コンクリートの凍結融解
による劣化を検討するための促進試験用供試体と
しても利用できることがわかつた。 また、海水中においては一層劣化の進行がはげ
しく10×10×40cmの供試体の場合はW/C=70%
と80%の場合は60サイクルで原形をとどめないほ
ど劣化し、120サイクルではバラバラに崩壊し
た。W/C=60%の場合は120サイクルで粗骨材
のハクリが著しい。これに対し本発明にかかる薄
片状供試体Tの場合は15サイクル以内でバラバラ
に崩壊した。以上のことから海水を用いると劣化
の進行が速いため、促進試験にも利用できること
が判明した。
The purpose of the present invention is to quickly examine the durability of concrete against freezing and thawing, and to directly detect deterioration inside concrete due to freezing and thawing action. Conventional methods for detecting concrete freeze damage, that is, deterioration due to freeze-thaw effects, are applied, for example, to the ASTM (American Society for Testing and Materials Standards) freeze-thaw test method. Based on the change in coefficient,
Another method is to examine durability based on measurements such as changes in the weight of the specimen and changes in the length of the specimen. However, according to this method, although it is possible to indirectly know the progress of deterioration inside concrete, it is not possible to directly examine it. Furthermore, the test required a long period of time, and the test equipment was complicated and large, making it an extremely expensive test. When using the ASTM test method, the specimen is 10×
It is a large test device, measuring approximately 10 x 40 cm, and has the disadvantage of being less universal.
In addition, in the case of field surveys regarding frost damage to concrete, significant frost damage is observed in areas that are often exposed to outside air or moisture, such as corners, making it impossible to detect the entire area, and under the same conditions, the cross-section of the member cannot be detected. It is known that the progress of deterioration becomes faster when the size is relatively small. The present invention improves the shortcomings of the conventional concrete deterioration detection method described above.In order to quickly determine the state of deterioration caused by freezing and thawing of concrete, that is, the state of frost damage, the present invention is made by making the specimen small and especially in the form of flakes. In addition to increasing the surface area of the specimen, which is advantageous for heat transfer, it also enables short-term testing with a small-scale testing device. Another advantage is that cores collected from the field can be made into flakes and subjected to testing. Next, one embodiment of the present invention will be explained based on the diagram.
As shown in the figure, a specimen T of × 10 × 40 cm is cut on one side A into a thickness of 1 cm to 2 cm, for example, to obtain a specimen that can examine the progress of deterioration inside the concrete by observation, etc. This test quickly determines the durability against frost damage. Note that A, H, W, and L are each side of the specimen, and S
is exposed coarse aggregate. Table 1 compares the state of deterioration when a conventional 10 x 10 x 40 specimen and a flaky specimen T based on the method of the present invention were simultaneously subjected to freeze-thaw and thaw tests in water. Freshwater and seawater were used for underwater freezing and thawing. Referring to Table 1, in the case of freezing and thawing in fresh water, in the case of a conventional specimen of 10 x 10 x 40 cm, changes in the dynamic elastic modulus were measured after 120 cycles, indicating that deterioration was progressing. No changes in appearance were observed. On the other hand, in the case of the flaky specimen T in the present invention, it was found that the inside of the concrete deteriorated from the contact surface between coarse aggregate and mortar after 30 cycles, making it possible to observe the progress of internal deterioration. It was found that the concrete disintegrated into pieces after 40 to 60 cycles, and that it could also be used as an accelerated test specimen to study the deterioration of concrete due to freezing and thawing. In addition, the deterioration progresses even more rapidly in seawater, and in the case of a 10 x 10 x 40 cm specimen, W/C = 70%.
In 80% of cases, it deteriorated to the point where it could no longer retain its original shape after 60 cycles, and fell apart after 120 cycles. When W/C = 60%, peeling of coarse aggregate is noticeable after 120 cycles. In contrast, the flaky specimen T according to the present invention disintegrated into pieces within 15 cycles. From the above, it was found that seawater can be used for accelerated tests because the deterioration progresses quickly.

【表】 以上のように本発明によれば、従来にないコン
クリートの劣化検知を小規模試験装置で迅速、簡
単かつ正確に行うことができるもので土木建築等
に多大の貢献をもたらすものである。
[Table] As described above, according to the present invention, it is possible to quickly, easily and accurately detect deterioration of concrete using a small-scale test device, which is unprecedented, and it will make a great contribution to civil engineering and construction. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ及びロは本発明の実施例にかかる供試
体を示すものである。 T1,T2…供試体、S…粗骨材。
FIGS. 1A and 1B show specimens according to embodiments of the present invention. T1, T2...specimen, S...coarse aggregate.

Claims (1)

【特許請求の範囲】 1 コンクリートを切断又は研摩して粗骨材、細
骨材を露出させ供試体とすることを特徴とするコ
ンクリートの凍結融解劣化検知方法。 2 前記供試体を薄板状又はこれに類似の小部材
としたことを特徴とする特許請求の範囲第1項記
載のコンクリートの凍結融解劣化検知方法。 3 前記供試体を海水等これに類似の液体中に収
容せしめたことを特徴とする特許請求の範囲第1
項又は第2項記載のコンクリートの凍結融解劣化
検知方法。
[Claims] 1. A method for detecting freeze-thaw deterioration of concrete, which comprises cutting or polishing concrete to expose coarse aggregate and fine aggregate to prepare a specimen. 2. A method for detecting freeze-thaw deterioration of concrete according to claim 1, wherein the specimen is a thin plate-like or similar small member. 3. Claim 1, characterized in that the specimen is contained in a liquid similar to seawater or the like.
2. A method for detecting freeze-thaw deterioration of concrete according to item 1 or 2.
JP4288280A 1980-04-03 1980-04-03 Detecting method for quality deterioration of concrete by freezing and thawing Granted JPS56140238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4288280A JPS56140238A (en) 1980-04-03 1980-04-03 Detecting method for quality deterioration of concrete by freezing and thawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4288280A JPS56140238A (en) 1980-04-03 1980-04-03 Detecting method for quality deterioration of concrete by freezing and thawing

Publications (2)

Publication Number Publication Date
JPS56140238A JPS56140238A (en) 1981-11-02
JPS6156942B2 true JPS6156942B2 (en) 1986-12-04

Family

ID=12648401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4288280A Granted JPS56140238A (en) 1980-04-03 1980-04-03 Detecting method for quality deterioration of concrete by freezing and thawing

Country Status (1)

Country Link
JP (1) JPS56140238A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834719B (en) * 2021-08-20 2024-03-22 浙大宁波理工学院 Cooling device and method for obtaining concrete interface transition area surface sample

Also Published As

Publication number Publication date
JPS56140238A (en) 1981-11-02

Similar Documents

Publication Publication Date Title
Jamshidi et al. Evaluation of the durability of Gerdoee travertine after freeze–thaw cycles in fresh water and sodium sulfate solution by decay function models
Formanek et al. Freeze-thaw and consolidation effects on strength of a wet silt loam
Lin et al. Laboratory assessment of nine methods for nondestructive evaluation of concrete bridge decks with overlays
Inoue et al. Relation between uniaxial compressive strength and elastic wave velocity of soft rock
Prick Critical degree of saturation as a threshold moisture level in frost weathering of limestones
Assouli et al. Detection and identification of concrete cracking during corrosion of reinforced concrete by acoustic emission coupled to the electrochemical techniques
Lee et al. Correlation and correction factor between direct and indirect methods for the ultrasonic measurement of stone samples
Setzer et al. CIF-Test-Capillary suction, internal damage and freeze thaw test: Reference method and alternative methods A and B
JPS6156942B2 (en)
Chung et al. Assessing fire damage of concrete by the ultrasonic pulse technique
Alhawat et al. Evaluation of steel corrosion in concrete structures using impact-echo method
Tang et al. Slab test: Freeze/thaw resistance of concrete—Internal deterioration
Todak et al. Evaluating freeze-thaw damage in concrete with acoustic emissions and ultrasonics
Ghantous et al. Examining the influence of the degree of saturation on length change and freeze-thaw damage
Lu et al. Frequency characteristic analysis on acoustic emission of mortar using cement-based piezoelectric sensors
JP4073283B2 (en) Method and apparatus for inspecting salinity in reinforced concrete structures by electromagnetic waves
Swamy Testing for alkali-silica reaction
Freeseman et al. Quantitative signal analysis of concrete pavements using ultrasonic linear array technology
Capineri et al. Limits and advantages of different techniques for testing moisture content in masonry
Fahey et al. Application of the sonic test to experimental freeze-thaw studies in geomorphic research
Tang et al. Slab test-freeze/Thaw resistance of concrete—Internal deterioration
Komar et al. Pressure-Tension Testing in the Evaluation of Freeze-Thaw Deterioration
JPH05203560A (en) Method for measuring distribution of concrete pore and method for judging deterioration of concrete member
SU966572A1 (en) Method of determining frost resistance of porous bodies
Hu et al. Microwave evaluation of accelerated chloride ingress in mortar