JPS6156937A - Jic fracture toughness testing method - Google Patents

Jic fracture toughness testing method

Info

Publication number
JPS6156937A
JPS6156937A JP17754384A JP17754384A JPS6156937A JP S6156937 A JPS6156937 A JP S6156937A JP 17754384 A JP17754384 A JP 17754384A JP 17754384 A JP17754384 A JP 17754384A JP S6156937 A JPS6156937 A JP S6156937A
Authority
JP
Japan
Prior art keywords
crack
compliance
load
curve
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17754384A
Other languages
Japanese (ja)
Other versions
JPH0342783B2 (en
Inventor
Hiroshi Uno
宇野 博
Kazuhiko Ozawa
一彦 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP17754384A priority Critical patent/JPS6156937A/en
Publication of JPS6156937A publication Critical patent/JPS6156937A/en
Publication of JPH0342783B2 publication Critical patent/JPH0342783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/08Detecting presence of flaws or irregularities

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To obtain an accurate curve, by substituting the amount of shift into the first term Aa of a Saxena's expression, which obtains the length of a crack, when the amount of crack growth DELTAa at the starting point of the R curve, which is obtained by a load removing compliance method, is shifted by DELTAx from the zero value, and correcting the value. CONSTITUTION:A predicted fatigue crack length is set in an operation controller 6. A repeating load is applied to a compact test (CT) piece 1. The load is detected by a load cell 3. The compliance is obtained by an X-Y recorder 4 from a load waveform. The compliance is substituted in a Saxena's expression an= Aa+Baf1(Ks.Cn)+..., where (an) is the length of a crack, n=1,2,3..., Cn is compliance, Aa and Ba are coefficients and Ks is a material constant. Thus the length of a predicted fatigue crack 1b is computed. When the amount of crack growth DELTAa at the starting point of the R curve, which is obtained by a load removing compliance method, is shifted from the zero value, the amount of shift DELTAx is added to or subtracted from the first term Aa in the expression, and the expression is corrected. Thus the accurate R curve is obtained in a short time, and the measuring accuracy can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、亀裂等の欠陥が生じた機械、構造物等がどの
程度の外力まで耐えられるかを知るのに基本となるデー
タを提供する。J +’ (:破壊靭性L’<験方法に
関する4)のであする。 ゛ 〔発明の技術的背景及びその問題La )機械、構造物
等の設給゛に際してば、使用する4A°料の強度特性デ
ータ゛(例えば降伏強度、引張強度、疲労限度等でいず
れも応力により表示される。)′G゛こ基づいて稼動中
に生じる応力がこれらの値を越えないようにしている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides basic data for determining how much external force a machine, structure, etc. that has defects such as cracks can withstand. . J+' (: Fracture toughness L'<4 regarding test method). [Technical background of the invention and its problems La] When installing machines, structures, etc., strength characteristic data of the 4A° material used (for example, yield strength, tensile strength, fatigue limit, etc., all expressed in terms of stress) Based on this, the stress generated during operation is prevented from exceeding these values.

しかし、機械、横薄物の部材にかなり大きな欠陥あるい
は亀裂示すでに存在している場合、その強mlが欠陥あ
るいは亀裂の寸法の増大とともに低下することは経験□
により知られている。このような場合の強度特性は、あ
まり大きな欠陥を含まない平滑試験片を用いて測定した
前記強度特性データと一致しない。例えば、平滑試験片
の引張強度はA鋼の方がB鋼より高かったとしても、そ
れぞれの材料に同じ寸法の亀裂が存在する場合、破壊強
度はB鋼の方がA鋼よりも高くなることがある。
However, experience has shown that when a fairly large defect or crack already exists in a mechanical or transversely thin member, its strength ml decreases as the size of the defect or crack increases.
known by. The strength properties in such a case do not match the strength property data described above measured using a smooth specimen that does not contain very large defects. For example, even if the tensile strength of a smooth specimen is steel A is higher than steel B, if cracks of the same size exist in each material, the fracture strength of steel B will be higher than steel A. There is.

そごで、亀裂等を起点として外力の増加を伴うことなく
破壊が急速に進行する際、すなわち真の亀裂破壊が生じ
る際に材料が示す抵抗値である“破壊靭性値”から亀裂
等の欠陥が生した材料の破壊強度を求める試験方法が提
案されている。
Defects such as cracks can be determined based on the "fracture toughness value", which is the resistance value of the material when fracture starts from a crack and rapidly progresses without an increase in external force, that is, when true crack failure occurs. A test method has been proposed to determine the fracture strength of materials that have developed.

破壊靭性値を“Jic値”により求めるJ1c破壊Wつ
J性試験方法としては、“R曲線法”、“除荷コンプラ
イアンス法”等の方法が知られている。
Methods such as the "R curve method" and the "unloading compliance method" are known as J1c fracture W-J property testing methods for determining the fracture toughness value using the "Jic value."

■?曲線法と除荷コンプライアンス法はともに“9曲線
”を求め、この9曲線と鈍化直線とから“、JHc値”
を求める方法であるが、9曲線の求め方が相違している
■? Both the curve method and the unloading compliance method calculate "9 curves", and from these 9 curves and the blunted straight line, the "JHc value" is obtained.
However, the methods for determining the nine curves are different.

しかし、−に述のR曲線法では、9曲線を求めるのに多
数の試験片を必要とし、手間がかかるが、除荷コンブラ
・イアシス法では、一本の試験片の荷重・変位曲線から
亀裂成長量を間接的に測定して9曲線を求めるため、試
験時間の大幅な短縮を図ることができる。
However, the R-curve method described in - requires a large number of test pieces to obtain nine curves, which is time-consuming, but the unloading Combra-Iasis method calculates cracks from the load/displacement curve of a single test piece. Since the amount of growth is indirectly measured and nine curves are obtained, the test time can be significantly shortened.

除荷コンプライアンス法により“J+c(i*”を求め
るのに、まずコンパクト試験片(以下CT試験片と略記
する。第2図参照)をJ1c破壊靭性試験装置にセット
して“疲労予亀裂”を導入し、CT試験片を試験装置か
ら外すことな(続いて除荷コンプライアンス法を実施す
る方法がある。この方法では、まずCT試験片に第5図
に示すような繰り返し荷重を作用させて疲労予亀裂を導
入する。このとき、CT試験片に作用する荷重波形から
“コンプライアンス”を求め、このコンプライアンスを
“’5axenaの式″(コンプライアンスから亀裂長
さanを算出する式として代表的な式である。) a、n =A、a +B a f I(K 5−Cn)
十−・・・=に代入して疲労予亀裂長さを算出する。こ
のi lvI+値が設定値になったら、CT試験片に静
的荷重を作用さ−14:、次いで該静的荷重をわずかに
除荷する操作を複数回繰返して、一本OCT試験片から
一連のコンプライアンスを求める(第3図参照)。
To determine "J+c(i*") using the unloading compliance method, first, a compact test piece (hereinafter abbreviated as CT test piece, see Figure 2) is set in the J1c fracture toughness test device and a "fatigue pre-crack" is performed. In this method, the CT specimen is first subjected to repeated loading as shown in Figure 5 to reduce fatigue. A pre-crack is introduced. At this time, "compliance" is determined from the load waveform acting on the CT specimen, and this compliance is calculated using the "'5axena formula" (a typical formula for calculating the crack length an from compliance). ) a, n = A, a + B a f I (K 5 - Cn)
Calculate the fatigue pre-crack length by substituting 10-...=. When this i lvI+ value reaches the set value, a static load is applied to the CT specimen, and then the operation of slightly unloading the static load is repeated several times, and a series of compliance (see Figure 3).

そして、このコンプライアンスを同様に5axenaの
式”に代入して亀裂長さanを算出し、この亀裂長さa
nから亀裂成長量△a △a=an−a 。
Then, the crack length an is calculated by similarly substituting this compliance into the formula 5axena, and this crack length a
From n, the amount of crack growth △a △a=an-a.

を算出し、この亀裂成長量△aを基にして9曲線を求め
る。
is calculated, and nine curves are obtained based on this crack growth amount Δa.

しかしながら、求めた9曲線の中にはその起点での亀裂
成長量Δaが零とならず、例えば負の値をとったりして
(第6図に示すR曲線■参照)。
However, among the nine curves obtained, the crack growth amount Δa at the starting point does not become zero, and takes, for example, a negative value (see R curve ■ shown in FIG. 6).

“、ItC値”を求めるデータとして使用できないもの
が生ずる問題があった。
There was a problem in that some data could not be used to determine the "ItC value."

本発明者等はこのような事態が生ずる原因を解明すべく
鋭意研究の結果、疲労予亀裂を導入する際、亀裂先端で
加工硬化、加工軟化を起こしたり、亀裂がアトランダム
な方向に走ったりすることがあり、このため疲労予亀裂
長さの計算値が実際の長さと一致せず、実際の疲労予亀
裂長さが設定値と異なっているのにこれを等しいものと
して取扱って亀裂成長量△aを算出したことが原因であ
ると判明した。
As a result of intensive research to elucidate the cause of this situation, the present inventors have found that when fatigue pre-cracking is introduced, work hardening and work softening occur at the tip of the crack, and cracks run in random directions. Therefore, the calculated value of the fatigue pre-crack length may not match the actual length, and even though the actual fatigue pre-crack length is different from the set value, it is treated as equal and the amount of crack growth is calculated. It turned out that the cause was the calculation of Δa.

そこで、疲労予亀裂の導入時に進展する亀裂を順次実測
し、亀裂長さが設定値になったら繰り返し荷重を停止に
する方法が検討された。この方法ならば、亀裂長さを実
測することから、バ1算植が実際の長さと合致しなくな
るようなjlG 態は41−しない。
Therefore, a method was investigated in which the cracks that develop during fatigue pre-cracking are sequentially measured and the repeated loading is stopped when the crack length reaches a set value. With this method, since the crack length is actually measured, there is no possibility of a jlG condition where the bar calculation does not match the actual length.

しかし、亀裂長さを実測することは手間がかかる上に、
繰り返し荷重の作用中に亀裂長さを実測することができ
ないため、測定の毎に繰り返し荷重を停止させる操作を
設定値になるまで続ける必要があり、このため試験時間
が非常に長くなって実際的ではない。
However, actually measuring the crack length is time-consuming and
Since it is not possible to actually measure the crack length while a cyclic load is applied, it is necessary to stop the cyclic load after each measurement until the set value is reached, which makes the test time extremely long and impractical. isn't it.

〔発明が解決しようとする問題点〕 本発明は上記事情に鑑みてなされたもので、その目的と
するところは、正確な8曲線を短時間で求めることがで
きるJ1c破壊靭性試験方法を提供することである。
[Problems to be solved by the invention] The present invention has been made in view of the above circumstances, and its purpose is to provide a J1c fracture toughness test method that can obtain accurate 8 curves in a short time. That's true.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、試験片に“疲労予亀
裂”を導入し、次いで“除荷コンプライアンス法”によ
って“J+c(i”を求めるJ1c破壊靭性試験方法に
おいて、前記除荷コンプライアンス法で求めた“8曲線
”の起点での亀裂成長量Δaが零値からずれたとき、そ
のずれ量△Xを、“コンプライアンス”から亀裂長さを
算出する式%式% の第1項“Aa”に加算あるいは減算して該計算式を修
正し、この修正された計算式に基づいて8曲線を修正す
ることを特徴としている。
In order to achieve the above object, the present invention introduces a "fatigue pre-crack" into a test piece, and then uses the "unloading compliance method" to determine "J+c(i") in the J1c fracture toughness test method. When the amount of crack growth Δa at the starting point of the obtained “8 curve” deviates from the zero value, the amount of deviation ΔX is calculated as the first term “Aa” of the formula % formula % which calculates the crack length from “compliance”. It is characterized in that the calculation formula is corrected by adding or subtracting from , and the eight curves are corrected based on the corrected calculation formula.

(実施例〕 以下本発明の一実施例を図面を参照して説明する 第1図は本発明の試験方法を実施する装置を示している
。図中符号1はCT試験片、2は変位計、3はロードセ
ル、4はX−Y記録計、5はアクチュエータ、6は演算
制御器。
(Example) An example of the present invention will be explained below with reference to the drawings. Figure 1 shows an apparatus for carrying out the test method of the present invention. In the figure, reference numeral 1 is a CT test piece, and 2 is a displacement meter. , 3 is a load cell, 4 is an X-Y recorder, 5 is an actuator, and 6 is an arithmetic controller.

CT試験片1の一側縁には開口部1aが設けられていて
、この開口部1aには疲労予亀裂1bが導入される。第
1図、第2図では既に疲労予亀裂1bを導入した状態を
示している。なお、CT試験片1の代わりに3点曲げ試
験片を用いてもよい。
An opening 1a is provided at one side edge of the CT test piece 1, and a fatigue pre-crack 1b is introduced into this opening 1a. 1 and 2 show a state in which fatigue pre-crack 1b has already been introduced. Note that a three-point bending test piece may be used instead of the CT test piece 1.

変位計2はCOD (第2図参照)を測定するもので、
例えばクリップゲージからなる。
Displacement meter 2 measures COD (see Figure 2).
For example, it consists of a clip gauge.

ロードセル3はアクチュエータ5によりCT試験片1に
作用する荷重を検出する。
The load cell 3 detects the load acting on the CT test piece 1 by the actuator 5.

X−Y記録計4は変位計2とロードセル3から変位信号
、荷重信号を入力して荷重・変位曲線を記録する。
The X-Y recorder 4 inputs displacement signals and load signals from the displacement meter 2 and load cell 3 and records a load/displacement curve.

演算制御器6は第7図は示すフローチャートに従ってア
クチュエータ5を制御し、演算処理を行う。
The arithmetic controller 6 controls the actuator 5 according to the flowchart shown in FIG. 7 and performs arithmetic processing.

次に」−記装置を使用して本発明の試験方法の一例を説
明する。
Next, an example of the test method of the present invention will be explained using the apparatus described above.

まず、演算制御器6に疲労予亀裂長さの設定値をセット
してから、アクチュエータ5を動作させCT試験片1に
第5図に示すような繰り返し荷重を加える。このとき、
CT試験片1に作用する荷重をロードセル3で検出して
X−Y記録計4で荷重波形を記録し、該荷重波形からコ
ンプライアンスを求める。そして、このコンプライアン
スを“5axenaの式” an=Aa+Ba f+  (Ks−Cn)+・==に
代入して疲労予亀裂1bの長さを算出する。この計算値
が設定値になるまで上述の操作を繰り返す。
First, a set value for the fatigue pre-crack length is set in the arithmetic controller 6, and then the actuator 5 is operated to apply a repeated load to the CT specimen 1 as shown in FIG. At this time,
The load acting on the CT test piece 1 is detected by the load cell 3, the load waveform is recorded by the X-Y recorder 4, and the compliance is determined from the load waveform. Then, the length of the fatigue pre-crack 1b is calculated by substituting this compliance into the "5axena formula" an=Aa+Ba f+ (Ks-Cn)+.==. The above operation is repeated until this calculated value becomes the set value.

設定値になったらアクチュエータ5により試験片1に静
的荷重を作用させ、次いで該静的荷重を10%程度除荷
する操作を複数回繰り返して、一本のCT試験片1から
一連のコンプライアンスを求める(第3図参照)。そし
て、このコンプライアンスを同様に5axenaの式1
に代入して亀裂長さanを算出し、この亀裂長さanか
ら亀裂成長量△a △a=an−a。
When the set value is reached, a static load is applied to the test piece 1 by the actuator 5, and the operation of removing the static load by about 10% is repeated several times to obtain a series of compliances from one CT test piece 1. (See Figure 3). Then, similarly, this compliance can be expressed as 5axena's formula 1
The crack length an is calculated by substituting into the crack length an, and from this crack length an, the crack growth amount Δa Δa=an−a.

を算出する。また、anとAn (Anは第3図の曲線
で囲まれた面積)からJnを算出する。
Calculate. Further, Jn is calculated from an and An (An is the area surrounded by the curve in FIG. 3).

なお、Bbは係数である。Note that Bb is a coefficient.

この後、亀裂成長量ΔaとJ積分との関係をプロットす
ることにより8曲線を求める。
Thereafter, eight curves are obtained by plotting the relationship between the crack growth amount Δa and the J integral.

これまでの操作は従来と同じである。次に本発明の特徴
部分を説明する 上述、のよう・にして求めた8曲線の起点でのAaが零
値か否かを判別する。起点でのAaが零ならば(第6図
に示すR曲線lを参照)、゛鈍化直線(J=2δfs・
Aa、δfsは有効降伏強度である。)を求め、これと
8曲線との交点から“JIC値”を求める(第4図参照
)。
The operations up to now are the same as before. Next, it is determined whether Aa at the starting point of the eight curves obtained as described above, which describes the characteristic portion of the present invention, is a zero value. If Aa at the starting point is zero (see R curve l shown in Figure 6), then the ``slowing straight line (J = 2δfs・
Aa and δfs are effective yield strengths. ) is determined, and the "JIC value" is determined from the intersection of this and the 8th curve (see Figure 4).

起点でのAaが零でないときには(第6図に示すR曲線
■を参照)、零からのず・れ量△Xを算出じ、次いでこ
の△Xが正か負かを判別する。△Xが負のときには、”
5axenaの式”の第1項”Aa″に△Xを加算する
。また、ΔXが正のときには、”5axet+aの式”
の第1項目11Aa″から△Xを減算する。
When Aa at the starting point is not zero (see R curve ■ shown in FIG. 6), the deviation amount ΔX from zero is calculated, and then it is determined whether this ΔX is positive or negative. When △X is negative, “
Add △X to the first term "Aa" of the "5axena formula". Also, when ΔX is positive, add the "5axet + a formula"
ΔX is subtracted from the first item 11Aa″.

このようにして5axenaの式”を修正したら、この
修正された’5axenaの弐”に基づいて8曲線を修
正する。すなわち、第6図においてR゛曲線■を同図の
右側に△Xだけスライドさせる。この後、鈍化直線と修
正された8曲線との交点からJ1c値”を求める。  
   ・なお、上記実施例では、同一の装置で疲労予亀
裂を導入し、除荷コンプライアンス法を実施したが、別
の装置で疲労予亀裂を導入して、これを第1図に示す装
置にセットして除荷コンプライアンス法を実施するよう
にしてもよい。
After modifying the 5axena formula in this way, the 8th curve is modified based on the modified 5axena formula. That is, in FIG. 6, the R' curve ■ is slid to the right side of the figure by ΔX. Thereafter, the J1c value is determined from the intersection of the blunted straight line and the corrected 8 curves.
・In the above example, the fatigue pre-crack was introduced in the same device and the unloading compliance method was carried out, but the fatigue pre-crack was introduced in another device and this was set in the device shown in Figure 1. may also be used to implement unloading compliance laws.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、除荷コンプライア
ンス法で求めた8曲線の起点での亀裂成長量Δaが零値
からずれたとき、そのずれ量△Xを、コンプライアンス
から亀裂長さを算出する式%式% 1項“Aa”に加算あるいは減算して該計算式を修正し
、この修正された計算式に基づいて8曲線を修正するの
で、疲労予亀裂長さが設定値になっているか否かを実測
するようなことをしなくてもすみ、短時間で正確な8曲
線を求めることができ、このため試験時間を大幅に短縮
して精度良く“JIC値”を測定する。ことが可能とな
る。
As explained above, according to the present invention, when the crack growth amount Δa at the starting point of the 8 curves determined by the unloading compliance method deviates from the zero value, the crack length is calculated from the deviation amount ΔX and the compliance. The calculation formula is corrected by adding or subtracting from the first term "Aa", and the 8 curves are corrected based on this corrected calculation formula, so the fatigue pre-crack length becomes the set value. There is no need to actually measure the presence or absence of the 8 curves, and accurate 8 curves can be obtained in a short period of time.Therefore, the test time can be significantly shortened and the "JIC value" can be measured with high accuracy. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置のブロンり9図、
第2図は試験片の拡大斜視図、第3図は荷重・変位・曲
線を示すグラフ、第4図は8曲線と鈍化直線とから“J
tc値”を求める方法を説明するグラフ、第5図は繰り
返し荷重を示すグラフ、第6図は8曲線を示すグラフ、
・第7図は演算制御器の動作内1容を示すフローチャー
トである。 1・・・試験片、■b・・・疲労予電、裂、2・・・変
位計、3・・・ロードセル、4・・・X−Y記録針、5
・・・アクチュエータ、6・・・演算制御器。 特 許 出 願 人  株式会社鷺宮製作所ζ 2 つ1 ((
FIG. 1 is a schematic diagram 9 of an apparatus for carrying out the method of the present invention;
Fig. 2 is an enlarged perspective view of the test piece, Fig. 3 is a graph showing load, displacement, and curves, and Fig. 4 is a graph showing “J” from the 8 curves and the blunted straight line.
A graph explaining the method for determining "tc value", Fig. 5 is a graph showing repeated loads, Fig. 6 is a graph showing 8 curves,
・FIG. 7 is a flowchart showing the contents of the operation of the arithmetic controller. 1... Test piece, ■b... Fatigue preelectricity, crack, 2... Displacement meter, 3... Load cell, 4... X-Y recording needle, 5
...Actuator, 6...Arithmetic controller. Patent applicant: Saginomiya Seisakusho Co., Ltd. ζ 2 1 ((

Claims (1)

【特許請求の範囲】 試験片に“疲労予亀裂”を導入し、次いで“除荷コンプ
ライアンス法”によって“J_1c値”を求めるJ_1
c破壊靭性試験方法において、前記除荷コンプライアン
ス法で求めた“R曲線”の起点での亀裂成長量Δaが零
値からずれたとき、そのずれ量Δxを、“コンプライア
ンス”から亀裂長さを算出する式 an=Aa+Baf_1(Ks・Cn)+……なお、a
nは亀裂長さ n=1、2、3…… Cnはコンプライアンス Aa、Baは係数 Ksは材料定数 の第1項“Aa”に加算あるいは減算して該計算式を修
正し、この修正された計算式に基づいてR曲線を修正す
ることを特徴とするJ_1c破壊靭性試験方法。
[Claims] J_1 Introducing "fatigue pre-crack" into a test piece and then determining "J_1c value" by "unloading compliance method"
c In the fracture toughness test method, when the crack growth amount Δa at the starting point of the "R curve" determined by the unloading compliance method deviates from the zero value, the crack length is calculated from the "compliance" using the deviation Δx. The formula an=Aa+Baf_1(Ks・Cn)+...In addition, a
n is the crack length n = 1, 2, 3...Cn is the compliance Aa, Ba is the coefficient Ks is added or subtracted from the first term "Aa" of the material constant to correct the calculation formula, and this corrected A J_1c fracture toughness test method characterized by modifying the R curve based on a calculation formula.
JP17754384A 1984-08-28 1984-08-28 Jic fracture toughness testing method Granted JPS6156937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17754384A JPS6156937A (en) 1984-08-28 1984-08-28 Jic fracture toughness testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17754384A JPS6156937A (en) 1984-08-28 1984-08-28 Jic fracture toughness testing method

Publications (2)

Publication Number Publication Date
JPS6156937A true JPS6156937A (en) 1986-03-22
JPH0342783B2 JPH0342783B2 (en) 1991-06-28

Family

ID=16032783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17754384A Granted JPS6156937A (en) 1984-08-28 1984-08-28 Jic fracture toughness testing method

Country Status (1)

Country Link
JP (1) JPS6156937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758723A (en) * 2016-02-29 2016-07-13 南京航空航天大学 Test method for crack growth rate of linear gradient material
CN111855405A (en) * 2020-07-20 2020-10-30 暨南大学 Method for predicting FRP-concrete beam interface crack length under variable amplitude fatigue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758723A (en) * 2016-02-29 2016-07-13 南京航空航天大学 Test method for crack growth rate of linear gradient material
CN111855405A (en) * 2020-07-20 2020-10-30 暨南大学 Method for predicting FRP-concrete beam interface crack length under variable amplitude fatigue

Also Published As

Publication number Publication date
JPH0342783B2 (en) 1991-06-28

Similar Documents

Publication Publication Date Title
JPS6156937A (en) Jic fracture toughness testing method
JP4697433B2 (en) Material testing machine
CN113607580A (en) Metal component fatigue test method and residual life prediction method
Kobayashi et al. Evaluation of dynamic crack initiation and growth toughness by computer aided Charpy impact testing system
US3948091A (en) Apparatus for determining the properties of metallic materials
JP3739118B2 (en) Method and apparatus for nondestructive inspection of quench hardened layer depth
JP5093005B2 (en) Material testing equipment
JPS6134440A (en) J1c fracture-toughness testing method
JPH0324979B2 (en)
JPH0618385A (en) Method for testing fracture toughness
Gedney Tensile testing basics, tips and trends
JPH0682353A (en) Method for measurement of fatigue crack propagation lower limit stress expansion coefficient range
JP3858833B2 (en) Material testing machine
JPS61153543A (en) Method for measuring crack length
JPH0682350A (en) Method for introducing fatigue crack into test piece to be evaluated in fracture toughness
JPS6134439A (en) J1c fracture-toughness testing method
Carlsson et al. Some aspects of non-linear fracture mechanics
JPS61155723A (en) Precracking introducer
RU2315971C1 (en) Damage degree of object detecting method
JPH10325787A (en) Material-testing machine
JPS63115046A (en) Damage detecting method for weld zone
JPH063238A (en) Method for calculating tensile elastic modules in extensiometer
CN116086953A (en) Method for detecting pressing in of spherical pressure head with single-axis mechanical property under self-adaptive working condition
SU1744581A1 (en) Method of estimating equivalent damaging impact of cyclic loads
RU1793355C (en) Method of determining material intelligence layer thickness at magnetic-noise testing of articles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees