JPS6156728B2 - - Google Patents
Info
- Publication number
- JPS6156728B2 JPS6156728B2 JP3745479A JP3745479A JPS6156728B2 JP S6156728 B2 JPS6156728 B2 JP S6156728B2 JP 3745479 A JP3745479 A JP 3745479A JP 3745479 A JP3745479 A JP 3745479A JP S6156728 B2 JPS6156728 B2 JP S6156728B2
- Authority
- JP
- Japan
- Prior art keywords
- snow
- speed
- throwing
- load factor
- snow throwing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 16
- 238000010586 diagram Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000005484 gravity Effects 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- FEPMHVLSLDOMQC-UHFFFAOYSA-N virginiamycin-S1 Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O FEPMHVLSLDOMQC-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
Landscapes
- Control Of Velocity Or Acceleration (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はロータリ式除雪車を最適な投雪走行速
度で運転し得るための自動速度制御装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic speed control device for operating a rotary snowplow at an optimal snow-throwing speed.
第6図は周知のロータリ式除雪車の構造を示す
略図であり、1はロータリー除雪車、2はロータ
リ除雪車1を走行させる走行用機関、3は投雪用
の羽根車、4は羽根車3を駆動する機関(以下投
雪用機関と称す)5は積雪をかき寄せるかき寄せ
翼、6はかき寄せ翼5の開閉を行うシリンダであ
る。
FIG. 6 is a schematic diagram showing the structure of a well-known rotary snowplow, in which 1 is a rotary snowplow, 2 is a driving engine for driving the rotary snowplow 1, 3 is an impeller for throwing snow, and 4 is an impeller. 3 (hereinafter referred to as a snow-throwing engine) is a raking blade that scrapes up snow, and 6 is a cylinder that opens and closes the raking blade 5.
ロータリ除雪車1の進行につれ走行路7及びそ
の附近の積雪8はかき寄せ翼5によつて集めら
れ、羽根車3によつて矢印9として示す如く走行
路7の外方へ投雪され除雪作業が行なわれる。 As the rotary snowplow 1 advances, snow 8 on the travel path 7 and its vicinity is collected by the raking blades 5, and is thrown to the outside of the travel path 7 by the impeller 3 as shown by an arrow 9 to complete the snow removal work. It is done.
ロータリ除雪車の除雪能力は投雪用機関4の出
力又は羽根車3の容積及び回転数から決まる投雪
容積のいずれか小さい方で制限され、それ以上の
投雪を行うことはできない。一方ロータリ除雪車
1のかき込み雪の量は走行速度と積雪量に密接に
関連しており、ロータリ除雪車1の投雪能力に見
合つた量の雪をかき寄せながら走行する必要があ
る。投雪能力以上の雪をかき寄せた場合、かき寄
せ翼5から投雪口までの通路がつまり投雪用機関
4が通負荷状態となり投雪能力が低下するのみな
らず、脱線といつた最悪の状態を生ずる危険性が
あるなどの問題があつた。この発明はこういつた
事態を回避すると共に、最大限有効な除雪作業を
行うために最適な走行速度を演算する自動速度制
御装置を得るものである。
The snow removal capacity of the rotary snowplow is limited by the output of the snow-throwing engine 4 or the snow-throwing volume determined from the volume and rotational speed of the impeller 3, whichever is smaller, and cannot throw more snow. On the other hand, the amount of snow shoveled by the rotary snowplow 1 is closely related to the running speed and the amount of snow, and the rotary snowplow 1 needs to drive while shoveling an amount of snow commensurate with its snow throwing ability. If more snow is shoveled than the snow throwing capacity, the path from the shoveling blades 5 to the snow throwing mouth becomes clogged and the snow throwing engine 4 becomes under load, which not only reduces the snow throwing capacity but also leads to derailment, which is the worst situation. There were problems such as the risk of causing The present invention aims to avoid such a situation and to obtain an automatic speed control device that calculates the optimum traveling speed in order to perform snow removal work as effectively as possible.
この発明に係るロータリ除雪車の自動速度制御
装置は投雪用機関の負荷状態を検出する負荷状態
検出手段と、この検出手段で検出された負荷状態
に基づき負荷率を演算する負荷率演算手段と、投
雪用機関の出力による能力限界とロータリ除雪車
としての投雪容積からの能力限界のどちらか小さ
い方を投雪用機関の投雪能力限界とし、この投雪
能力に対応する負荷率を投雪能力限界基準値とし
てメモリーに記憶する基準負荷率データメモリ手
段と、ロータリ除雪車の実速度を検出する速度検
出手段と、上記負荷率、演算手段、基準負荷率デ
ータメモリ手段、速度検出手段に基づいて最適投
雪速度を計算する最適投雪速度演算手段とを備え
る。
The automatic speed control device for a rotary snowplow according to the present invention includes a load state detection means for detecting the load state of a snow-throwing engine, and a load factor calculation means for calculating a load factor based on the load state detected by the detection means. , the smaller of the capacity limit due to the output of the snow-throwing engine and the capacity limit from the snow-throwing volume as a rotary snowplow is the snow-throwing capacity limit of the snow-throwing engine, and the load factor corresponding to this snow-throwing capacity is determined. A reference load factor data memory means for storing in memory as a snow throwing ability limit reference value, a speed detecting means for detecting the actual speed of the rotary snowplow, the load factor, arithmetic means, a reference load factor data memory means, and a speed detecting means. and an optimal snow-throwing speed calculation means for calculating the optimal snow-throwing speed based on the.
負荷率演算手段で演算した投雪機関の負荷状態
に対応する負荷率と基準負荷率データメモリ手段
に記憶されている基準負荷率との比をとり、かつ
実車速に対して修整を行つた結果を最適投雪速度
とし、これを目標速度とすることにより最適な投
雪を行うことができる速度制御を行う。
The result of taking the ratio of the load factor corresponding to the load state of the snow throwing engine calculated by the load factor calculation means and the reference load factor stored in the reference load factor data memory means, and correcting the actual vehicle speed. By setting this as the optimum snow throwing speed and setting this as the target speed, speed control is performed to achieve optimal snow throwing.
以下図を引用し、この発明を構成するための基
本的思想の諸因子間の関係を具体的に述べる。な
おロータリー除雪車は従来と同じ構造である。
Referring to the figures below, the relationship between various factors of the basic idea for constructing this invention will be specifically described. The rotary snowplow has the same structure as the conventional one.
投雪能力を制御する要因として、 (a) 投雪用機関4の馬力による投雪能力の限界。 Factors that control snow throwing ability include: (a) Limit of snow throwing ability due to horsepower of snow throwing engine 4.
(b) 投雪容積からの投雪能力の限界。(b) Limits on snow throwing capacity from snow throwing volume.
の2つがある。これら(a)、(b)の関係は除雪車を水
槽とポンプに例えれば容易に理解される。There are two. The relationship between (a) and (b) can be easily understood by comparing a snowplow to a water tank and a pump.
即ち、第2図において、ポンプ101の排水能
力の限界が、ここでいう投雪用機関4の馬力によ
る投雪能力の限界であり、第2図の破線で囲まれ
た部分のシステム、ようするに排水口102と給
水口103のある水槽104で給水に対し排水が
間にあわず水槽104があふれてしまう点が、こ
こでいう投雪容積からの投雪能力の限界というこ
とができる。以下これらについて説明する。 That is, in FIG. 2, the limit of the drainage capacity of the pump 101 is the limit of the snow-throwing capacity due to the horsepower of the snow-throwing engine 4, and the system surrounded by the broken line in FIG. The fact that the water tank 104 with the mouth 102 and the water supply port 103 cannot be drained in time for the water supply and the water tank 104 overflows can be said to be the limit of the snow throwing capacity based on the snow throwing volume. These will be explained below.
(a) 投雪用機関4の馬力による投雪能力
雪を投げるために投雪用機関4は雪に運動エ
ネルギーを与える必要がある。雪に与える運動
エネルギーは次の(1)式で示される。(a) Snow-throwing capacity based on horsepower of the snow-throwing engine 4 In order to throw snow, the snow-throwing engine 4 needs to give kinetic energy to the snow. The kinetic energy given to snow is expressed by the following equation (1).
75・P・ηa=1/2・W/g・V2 −(1)式
P:投雪用機関馬力 (PS)
ηa:効 率
W:1秒間に処理された雪 (Kg)
g:重力加速度 (m/sec2)
V:投雪初速 (m/sec)
さらに(1)式のW(1秒間に処理された雪)は次
の式で示される。 75・P・ηa=1/2・W/g・V 2 −(1) Formula P: Snow throwing engine horsepower (PS) ηa: Efficiency W: Snow processed per second (Kg) g: Gravity Acceleration (m/sec 2 ) V: Initial speed of snow throwing (m/sec) Furthermore, W (snow processed in 1 second) in equation (1) is expressed by the following equation.
W=1/3.6γVe −(2)式
γ:雪の比重 (ton/m3)
Ve:1時間に処理された雪 (m3/h)
また、(1)式のV(投雪初速)は次の式で示され
る。 W = 1/3.6γVe - (2) γ: Specific gravity of snow (ton/m 3 ) Ve: Snow processed in 1 hour (m 3 /h) Also, V in equation (1) (initial speed of snow throwing ) is expressed by the following formula.
V=πθ/60・n −(3)式
n:羽根車回転数 (rpm)
θ:羽根車平均径 (m)
(3)式のn(羽根車回転数)は、投雪用機関4が
流体継手して羽根車を回転させているため、次
式として与える。 V=πθ/60・n - Equation (3) n: Impeller rotation speed (rpm) θ: Impeller average diameter (m) n (impeller rotation speed) in equation (3) is Since the impeller is rotated by a fluid coupling, it is given as the following formula.
n=K1en0 −(4)式
K1:効 率
e:流体継手を介して駆動した場合の流体継手
出力回転数比
(=出力n2/入力n1)
no:投雪機関の回転数
以上(2)式、(3)式、(4)式を(1)式に代入すること
により次の式を得る。 n=K 1 en 0 − (4) formula K 1 : Efficiency e: Fluid coupling output rotation speed ratio when driven via fluid coupling (=output n 2 /input n 1 ) no: rotation of snow throwing engine By substituting equations (2), (3), and (4) into equation (1), we obtain the following equation.
γVe=K2P・ηa/e2・n0 2 −(5)式
γVe:1時間に処理された雪の量(ton/h)
(K2=75・7.2・g・1/K1 2・(60/πθ)2
=定数)
1時間に処理された雪の量(γVe)は、ロ
ータリ除雪車1が速度Vb(Km/h)で走行し、
ロータリ除雪車1の除雪断面がA(m2)である
場合、1時間にγAVb×103(ton)の雪がロー
タリ除雪車に入り、それがすべて処理されると
考え、
γVe=γAVb×103 −(6)式
よつて(6)式を(5)式に代入することにより次の関
係式が成り立つ。 γVe=K 2 P・ηa/e 2・n 0 2 − (5) Formula γVe: Amount of snow treated in 1 hour (ton/h) (K 2 = 75・7.2・g・1/K 1 2・(60/πθ) 2
= constant) The amount of snow processed in one hour (γVe) is calculated as follows: When rotary snowplow 1 travels at speed Vb (Km/h),
If the snow removal cross section of the rotary snowplow 1 is A (m 2 ), it is assumed that γAVb×10 3 (ton) of snow enters the rotary snowplow in one hour and all of it is processed, and γVe = γAVb×10 3 −(6) Therefore, by substituting equation (6) into equation (5), the following relational expression is established.
γAVb=K3・P・ηa/e2・n0 2 −(7)式
(K3=1/103・K2=定数)
(7)式はデーゼル機関の機関回転数と機関トル
クの出力特性に基づいて変化する。この機関回
転数と機関トルクの出力特性は第3図のように
既に公知であり、(昭和46年2月10日、交友社
発行「概説デーゼル機関車」)これに従い(7)式
は第4図Aのような特性を描く。N1〜N5はノ
ツチの違いを示す。第4図において縦軸は除雪
量、横軸は機関回転数である。(7)式より、特性
は回転数に反比例した双曲線状になることが理
想であるが、第3図より回転数の低い部分では
回転数の変化に比べトルクの変化は小さくなる
ため、第4図Aのような特性となる。(Pはト
ルクに比例する)。 γAVb=K 3・P・ηa/e 2・n 0 2 −Equation (7) (K 3 = 1/10 3・K 2 = constant) Equation (7) is the engine speed and engine torque output of the diesel engine. Varies based on characteristics. This output characteristic of engine speed and engine torque is already known as shown in Figure 3 (February 10, 1970, Koyusha, "Overview of Diesel Locomotives"), and according to this, equation (7) can be expressed as Draw the characteristics as shown in Figure A. N1 to N5 indicate differences in notches. In FIG. 4, the vertical axis is the amount of snow removed, and the horizontal axis is the engine speed. From equation (7), ideally the characteristic should be a hyperbola that is inversely proportional to the rotational speed, but as shown in Figure 3, the change in torque is smaller than the change in rotational speed at low rotational speeds. The characteristics are as shown in Figure A. (P is proportional to torque).
(b) 投雪容積からの投雪能力
前述したように、第2図の破線で囲まれたシ
ステムで水槽の水がこぼれる点が、ここでいう
投雪容積からの投雪能力である。この投雪容積
からの投雪能力は雪の充てん率(雪の質)、羽
根車の有効容積(第2図の水槽の容積に相
等)、羽根車の有効回転数(第2図の排水口の
排水能力に相等)等から決定される。(b) Snow-throwing capacity from the snow-throwing volume As mentioned above, the point at which the water in the tank spills in the system surrounded by the broken line in Figure 2 is the snow-throwing capacity from the snow-throwing volume. The snow-throwing capacity from this snow-throwing volume depends on the snow filling rate (snow quality), the effective volume of the impeller (equivalent to the volume of the water tank in Figure 2), the effective rotation speed of the impeller (the drain opening in Figure 2), (equivalent to the drainage capacity of) etc.
即ち、投雪容積Vcは、下記のように表わさ
れる。 That is, the snow throw volume Vc is expressed as follows.
Vc=Vf・η2・60n(m3/h) −(8)式
η2:羽根車の容積効率 (雪の充てん率)
Vf:羽根車有効容積 (m3)……固有値
n:羽根車回転数 (rpm)
羽根車の回転数は(4)式よりn=K1en0と表わさ
れるからこれを(8)式に代入して次の(9)式のよう
な関係を得る。Vc = Vf・η 2・60n (m 3 /h) − (8) formula η 2 : Impeller volumetric efficiency (snow filling rate) Vf: Impeller effective volume (m 3 )... Eigenvalue n: Impeller Rotation speed (rpm) The rotation speed of the impeller is expressed as n=K 1 en 0 from equation (4), so by substituting this into equation (8), we obtain the following relationship as shown in equation (9).
Vc=K4・Vf・η2・e・n0(m3/h) −(9)式
(K4=60K1)
投雪容積を重量で示すと、(10)式のようになる
γVc=K4・Vf・η2・γ・e・n0(ton/h)
−(10)式
γVcは、1時間に処理された雪の量であり、
前述したようにロータリ除雪車1が速度Vb
(Km/h)で走行し、ロータリ除雪車1の除雪断
面はA(m2)である時、1時間にγAVb×103
(ton)の雪がロータリ除雪車に入りそれがすべ
て処理されると考え、
γVc=γAVb×103 −(11)
よつて(11)式と(10)式より次の関係式が得られる。Vc=K 4・Vf・η 2・e・n 0 (m 3 /h) − Equation (9) (K 4 = 60K 1 ) Expressing the volume of thrown snow in terms of weight, it becomes as shown in Equation (10) γVc =K 4・Vf・η 2・γ・e・n 0 (ton/h)
-Equation (10) γVc is the amount of snow processed in one hour,
As mentioned above, the rotary snowplow 1 has a speed of Vb.
(Km/h) and the snow removal cross section of rotary snowplow 1 is A (m 2 ), γAVb×10 3 per hour
(ton) of snow enters the rotary snowplow and is all processed, γVc = γAVb×10 3 −(11) Therefore, from equations (11) and (10), the following relational expression can be obtained.
γAVb=K5・η2・γ・e・n0(ton/h)
−(12)式
(K5=1/103・K4・Vf)
(12)式は第4図Bのような特性図となる。(12)式よ
り投雪機関の回転数(n0)は除雪量γAVbに比
例しており、右上がりの直線となるが、投雪機
関の回転数には一定の出力特性がある為(第2
図参照)第4図Bのようになる。 γAVb=K 5・η 2・γ・e・n 0 (ton/h)
-(12) formula (K 5 =1/10 3 ·K 4 ·Vf) (12) formula gives a characteristic diagram as shown in FIG. 4B. From equation (12), the rotation speed (n 0 ) of the snow-throwing engine is proportional to the amount of snow removed γAVb, and the straight line slopes upward to the right. However, since the rotation speed of the snow-throwing engine has a certain output characteristic ( 2
(See figure) It will look like Figure 4B.
又、η2・γは、投雪情報と定義され、「η
2」すなわちドラム中の雪のつまり具合と比重
「γ」と乗じた値であるので、これにドラム容
積(羽根車の有効容積)を乗じたものはロータ
リ除雪車のドラム内に1度に収容可能な雪の重
さを意味し、η2・γ=一定という関係がある
つまり、雪比重γが小のときは、さらさら雪の
為容積効率η2が上がり、逆に雪比重γが大き
いときはべた雪の為、容積効率η2が下がる。
このη2・γの値は、かき寄せ翼5の開閉角
度、投雪羽根車3の形状等により変化させるこ
とができる。第4図中、B,Cはη2・γをそ
れぞれK10,K20と変化させたものでK10>K20
である。 In addition, η2・γ is defined as snow throwing information, and “η
In other words, it is the value obtained by multiplying the degree of snow clogging in the drum by the specific gravity "γ", so the product multiplied by the drum volume (effective volume of the impeller) can be accommodated in the drum of a rotary snowplow at once. It refers to the possible weight of snow, and there is a relationship where η 2・γ = constant.In other words, when snow specific gravity γ is small, volumetric efficiency η 2 increases due to smooth snow, and conversely, when snow specific gravity γ is large Volumetric efficiency η 2 decreases because of the snow.
The value of η 2 ·γ can be changed depending on the opening/closing angle of the raking blades 5, the shape of the snow-throwing impeller 3, etc. In Fig. 4, B and C are obtained by changing η 2 and γ to K 10 and K 20 , respectively, and K 10 > K 20
It is.
以上述べたような関係より、ロータリ除雪車1
としての投雪能力の限界は、「投雪用機関の馬力
による投雪能力の限界」と「投雪容積からの投雪
能力の限界の」のうちのどちらか低位、つまり第
4図における交点a〜e(η2・γ=K10の
時)、a′〜e′(η2・γ=K20の時)となる。 Based on the relationships described above, rotary snowplow 1
The limit of snow-throwing capacity is the lower of ``the limit of snow-throwing capacity based on the horsepower of the snow-throwing engine'' and ``the limit of snow-throwing capacity based on the snow-throwing volume'', that is, the intersection point in Figure 4. a to e (when η 2 · γ = K 10 ) and a' to e' (when η 2 · γ = K 20 ).
但し、η2・γ=K16のN5ノツチのみに於いて
は、投雪用機関馬力の投雪能力より投雪容積によ
るものの方が大きい為、投雪用機関馬力の定格負
荷であるa点がロータリ車としての投雪能力の限
界となる。 However, for only the N5 notch with η 2・γ = K 16 , the snow throwing volume is larger than the snow throwing capacity of the snow throwing engine horsepower, so a is the rated load of the snow throwing engine horsepower. This point is the limit of the snow throwing ability of a rotary vehicle.
この様にロータリ除雪車1としての投雪能力の
限界は投雪能力の馬力のみによつて決するとは限
らない。この為この投雪能力限界の交点a〜e又
はa′〜e′を投雪用機関4の負荷率に換算し基準負
荷率S0としてそのデータをデータメモリ手段にあ
らかじめ設定し、投雪走行中の投雪用機関の実際
の負荷率Sと比較し、増速又は減速量を演算し、
最適の投雪速度を指令する。この最適投雪速度と
除雪量との関係を第5図に示す。第1図は本発明
の一実施例を示すブロツク図で、図において10
はロータリ除雪車1の投雪用機関4としての投雪
用原動機の燃料噴射状態に比例するラツク目盛変
位の検出等によつて投雪用機関4の投雪負荷状態
を検出する負荷状態検出装置、11は投雪用機関
のノツチ指令情報、12はη2・γ等基準負荷率
を変更する投雪情報、13は現車両速度を検出す
る速度検出手段である速度発電機、14は負荷状
態検出装置10の出力に基づき負荷率Sを演算す
る負荷率演算手段、15はノツチ指令情報11お
よび投雪情報12に基く投雪能力限界基準値を基
準負荷率S0としてメモリに記憶するデータメモリ
手段、16は実際の負荷率Sと基準負荷率S0の比
(S/S0)を求める比率演算回路、17は比率演算
回路16の出力と速度発電機13の出力より最適
投雪速度Vsを演算する最適投雪速度演算手段、
18は最適投雪速度演算手段17の出力である最
適速度Vsと速度発電機13との出力の差を検出
する検出手段、19はこの検出手段18の出力に
基いた力行、ブレーキ指令を出力する力行、ブレ
ーキ制御装置である。 In this way, the limit of the snow throwing ability of the rotary snowplow 1 is not necessarily determined only by the horsepower of the snow throwing ability. For this reason, the intersection points a to e or a' to e' of the snow throwing capacity limits are converted into the load factor of the snow throwing engine 4, and the data is preset in the data memory means as the standard load factor S0 , and the snow throwing operation is carried out. Compare with the actual load rate S of the snow throwing engine inside, calculate the amount of speed increase or deceleration,
Command the optimal snow throwing speed. FIG. 5 shows the relationship between the optimum snow throwing speed and the amount of snow removed. FIG. 1 is a block diagram showing an embodiment of the present invention.
is a load state detection device that detects the snow throwing load state of the snow throwing engine 4 of the rotary snowplow 1 by detecting the displacement of the easy scale proportional to the fuel injection state of the snow throwing engine 4 of the rotary snow blower 1. , 11 is the notch command information of the snow-throwing engine, 12 is the snow-throwing information that changes the standard load factor such as η 2 and γ, 13 is the speed generator which is a speed detection means for detecting the current vehicle speed, and 14 is the load state A load factor calculating means for calculating the load factor S based on the output of the detection device 10, and a data memory 15 for storing the snow throwing ability limit reference value based on the notch command information 11 and the snow throwing information 12 as the standard load factor S0 . Means 16 is a ratio calculation circuit for calculating the ratio (S/S 0 ) between the actual load factor S and the reference load ratio S 0 , and 17 is a ratio calculation circuit that calculates the optimum snow throwing speed Vs from the output of the ratio calculation circuit 16 and the output of the speed generator 13 Optimal snow throwing speed calculation means for calculating
18 is a detection means for detecting the difference between the optimum speed Vs which is the output of the optimum snow throwing speed calculating means 17 and the output of the speed generator 13; 19 is a means for outputting power running and braking commands based on the output of this detection means 18. It is a power running and brake control device.
このように構成された自動速度制御装置は、負
荷状態検出手段10〜速度発電機13までの入力
情報により最適投雪走行速度が演算されるが、第
4図にあらわす投雪能力限界を投雪用機関の負荷
率に換算し、その値を基準負荷率S0としてデータ
メモリ手段15にあらかじめ設定しておく。負荷
状態検出手段10で検出された負荷状態を負荷率
演算手段14により負荷率Sに変換し、比率演算
回路16でS0/Sを演算し、この出力と速度発電
機13の出力を最適投雪速度を入力しS0/S・
Vaの演算を最適投雪速度演算回路17で行い最
適投雪速度Vsを演算する。この最適投雪速度Vs
は速度発電機13からの出力である実際の速度と
比較し、その出力差を検出する。この出力差を力
行、ブレーキ制御装置19に入力し、ロータリ除
雪車1の速度を制御する。 The automatic speed control device configured as described above calculates the optimum snow throwing speed based on the input information from the load state detection means 10 to the speed generator 13, but it is possible to calculate the optimum snow throwing speed by using the input information from the load state detection means 10 to the speed generator 13. It is converted into the load factor of the engine, and the value is set in advance in the data memory means 15 as the reference load factor S0. The load condition detected by the load condition detection means 10 is converted into a load factor S by the load factor calculation means 14, S 0 /S is calculated by the ratio calculation circuit 16, and this output and the output of the speed generator 13 are optimally set. Enter the snow speed and select S 0 /S・
The optimum snow throwing speed calculation circuit 17 calculates Va and calculates the optimum snow throwing speed Vs. This optimal snow throwing speed Vs
is compared with the actual speed which is the output from the speed generator 13, and the output difference is detected. This output difference is input to the power running and brake control device 19 to control the speed of the rotary snowplow 1.
この発明は以上のように、投雪用機関の負荷状
態などを検出し、さらにロータリ除雪車の実速度
を入力情報とすることにより、最適投雪速度を出
力し速度制御を行なうためロータリ除雪車の速度
制御を従来より正確に行うことができ、除雪車の
操作性と機動性が向上する。
As described above, this invention detects the load condition of the snow-throwing engine, and further uses the actual speed of the rotary snowplow as input information to output the optimum snow-throwing speed and perform speed control. The speed of the snowplow can be controlled more accurately than before, improving the operability and maneuverability of the snowplow.
第1図はこの発明の1実施例である自動速度制
御装置のブロツク図、第2図は投雪用機関馬力
と、投雪容積の説明図、第3図はデイーゼル機関
の機関回転数と機関トルクの特性をあらわす出力
特性図、第4図はロータリ除雪車の投雪能力限界
を示す特性図、第5図は最適除雪速度と除雪量の
関係を示す図、第6図は従来のロータリ除雪車の
概略構成図である。
図において10は負荷状態検出手段、13は速
度検出手段、14は負荷率演算手段、15はデー
タメモリ手段、17は最適投雪速度演算手段であ
る。なお各図中、同一符号は同一または相当部分
を示す。
Fig. 1 is a block diagram of an automatic speed control device that is an embodiment of the present invention, Fig. 2 is an explanatory diagram of snow-throwing engine horsepower and snow-throwing volume, and Fig. 3 is an illustration of diesel engine engine speed and engine speed. Figure 4 is a characteristic diagram showing the snow throwing capacity limit of a rotary snowplow, Figure 5 is a diagram showing the relationship between optimal snow removal speed and snow removal amount, and Figure 6 is a diagram showing the relationship between the optimum snow removal speed and snow removal amount. FIG. 1 is a schematic configuration diagram of a car. In the figure, 10 is a load state detection means, 13 is a speed detection means, 14 is a load factor calculation means, 15 is a data memory means, and 17 is an optimum snow-throwing speed calculation means. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (1)
出する負荷状態検出手段と、この検出手段で検出
される負荷状態に基づき、負荷率を演算する負荷
率演算手段と、上記投雪用機関の出力による能力
限界と上記ロータリ除雪車としての投雪容積から
の能力限界のどちらか小さい方を投雪用機関の投
雪能力限界とし、この投雪能力に対応する負荷率
を投雪能力限界基準値としてメモリーに記憶する
基準負荷率データメモリ手段と、上記ロータリ除
雪車の実速度を検出する速度検出手段と、上記負
荷率演算手段、基準負荷率データメモリ手段及び
速度検出手段の出力に基づいて最適投雪速度を計
算する最適投雪速度演算手段とを備え、上記最適
投雪速度演算手段の出力を目標速度として速度制
御を行う事を特徴とするロータリ除雪車の自動速
度制御装置。1 Load state detection means for detecting the load state of the snow throwing engine of the rotary snowplow; load factor calculation means for calculating the load factor based on the load state detected by the detection means; The smaller of the capacity limit based on the output and the capacity limit based on the snow throwing volume as a rotary snowplow is the snow throwing capacity limit of the snow throwing engine, and the load factor corresponding to this snow throwing capacity is the snow throwing capacity limit standard. Based on the outputs of the reference load factor data memory means for storing the reference load factor data memory means in the memory as a value, the speed detection means for detecting the actual speed of the rotary snowplow, the load factor calculation means, the reference load factor data memory means and the speed detection means. An automatic speed control device for a rotary snowplow, comprising: an optimum snow throwing speed calculating means for calculating an optimum snow throwing speed, and performing speed control using the output of the optimum snow throwing speed calculating means as a target speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3745479A JPS55127226A (en) | 1979-03-26 | 1979-03-26 | Automatic speed control system for rotary snowplow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3745479A JPS55127226A (en) | 1979-03-26 | 1979-03-26 | Automatic speed control system for rotary snowplow |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55127226A JPS55127226A (en) | 1980-10-01 |
JPS6156728B2 true JPS6156728B2 (en) | 1986-12-03 |
Family
ID=12497948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3745479A Granted JPS55127226A (en) | 1979-03-26 | 1979-03-26 | Automatic speed control system for rotary snowplow |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55127226A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2895512B1 (en) * | 2005-12-22 | 2008-02-15 | Renault Sas | METHOD AND DEVICE FOR AUTOMATICALLY MEASURING THE OIL CONSUMPTION OF AN INTERNAL COMBUSTION ENGINE AND DRAINING SAID ENGINE |
-
1979
- 1979-03-26 JP JP3745479A patent/JPS55127226A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55127226A (en) | 1980-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5959574A (en) | Power steering system control method | |
EP1086848A3 (en) | Hybrid vehicle | |
CN104395535B (en) | Working truck | |
US6549832B2 (en) | Control device for controlling front and rear wheel drive vehicle | |
CN101689330B (en) | Travel trace generation method and travel trace generation device | |
CN102459852B (en) | Motor control device for working vehicle | |
CN109154152A (en) | Working truck | |
CN104114442B (en) | For controlling the system and method slided | |
CN101209683A (en) | Electric automobile driving electric motor control method and control system thereof | |
CN110199104A (en) | The control method of working truck and working truck | |
JPS6156728B2 (en) | ||
CN106836083B (en) | Sweeper travel speed control system, method, apparatus and sweeper | |
US7246001B2 (en) | Method for controlling the ground speed of a work machine | |
JPH0721305B2 (en) | Shift control device for continuously variable transmission for vehicle | |
CN205220371U (en) | Loader hydraulic drive traveling system | |
CN206884753U (en) | A kind of automobile CAN speed limit control system | |
SE449718B (en) | PROCEDURE AND DEVICE FOR CONTROL OF A REGENERATIVE HYDROSTATIC DRIVE SYSTEM, SEPARATELY FOR VEHICLES | |
JPS61145315A (en) | Method of cooling engine room in vehicle | |
EP0794083A1 (en) | Improved traction control system and method for a vehicle | |
SE1150780A1 (en) | Engine output control device | |
JP2011163048A (en) | Device and method for controlling drive of construction machine | |
CN209195838U (en) | A kind of Closed Hydraulic traveling control system | |
CN106121651A (en) | Draw the intelligent less important work method and device of bucket shovel | |
JP2587819B2 (en) | Hydraulic control device for construction machinery | |
JP5604884B2 (en) | Work vehicle |