JPS6156332B2 - - Google Patents

Info

Publication number
JPS6156332B2
JPS6156332B2 JP20287683A JP20287683A JPS6156332B2 JP S6156332 B2 JPS6156332 B2 JP S6156332B2 JP 20287683 A JP20287683 A JP 20287683A JP 20287683 A JP20287683 A JP 20287683A JP S6156332 B2 JPS6156332 B2 JP S6156332B2
Authority
JP
Japan
Prior art keywords
yarn
chamber
retention
fluid
crimped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20287683A
Other languages
Japanese (ja)
Other versions
JPS5994633A (en
Inventor
Mikio Oohara
Shigeo Katayama
Koji Tajiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP20287683A priority Critical patent/JPS5994633A/en
Publication of JPS5994633A publication Critical patent/JPS5994633A/en
Publication of JPS6156332B2 publication Critical patent/JPS6156332B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は捲縮加工糸の製造法に関するものであ
る。更に詳しくはベロア調カツトカーペツト用パ
イル糸として好適なマルチフイラメント捲縮加工
糸(BCF)を製造する方法に関するものであ
る。 近年タフトテツドカーペツトはタフトによる生
産性が良いことからこの需要が急速に伸び、一般
にカーペツト用途へと進展している。この一般カ
ーペツト(家庭用)はそのフアツシヨン性が重要
視され、最近は特にベロア調カツトカーペツトが
愛好されている。このようなベロア調カツトカー
ペツトおいては、その性格上幾つかの高度な要求
がなされている。第1には、カツトカーペツトと
してのベロア感を維持する為、パイル糸として捲
縮率の低い捲縮加工糸が要求される。第2にはカ
ツトパイルの耐久性が悪いと、短期間使用におい
て、カツトパイルのヘタリが生じてしまう為、パ
イル糸の堅牢性すなわち捲縮の堅牢度が要求され
る。更にはタフトパイルがカツトされると方向性
が生じること等により染色後の筋斑が目立ち易く
なることから特に染色性の均一な捲縮加工糸が要
求される。 ベロア調カツトカーペツトのパイル糸として要
求される上記諸特性を満足する捲縮加工糸を製造
するため、従来、一旦捲縮加工された糸条を別工
程において、低張力下、或いは無張力下で5〜20
分間のスチーム処理(熱処理)を行なつている。
ところが、このような方法ではベロア調カツトカ
ーペツトに要求される特性についてはほぼ満足さ
れるものの、別工程でスチーム処理を行うことか
ら設備生産性、コストの面から非常に不利という
欠点がある。さらにチヤンバー処理工程が捲縮加
工工程と別工程となり、斑を生じ易くなる欠点を
も有している。 一方、近年の捲縮加工技術の進歩により、捲縮
加工の高速化が可能なことから、紡糸―延伸―捲
縮加工の工程が連結されたいわゆるSDT(Spin
―Draw―Texturing)工程による捲縮加工糸
(BCF)の製造が行われつつある。このような
SDT工程においては、高速加工性に優れた圧縮
加熱流体による押込捲縮加工法が採用されてい
る。かかる流体押込捲縮加工装置としては例えば
特開昭53−45420号公報に記載されているものが
好適である。ところが、このようなSDT工程に
よる得られた捲縮加工糸はベロア調カツトカーペ
ツト用のパイル糸としては不向きである。すなわ
ち、工程連結(SDT化)により染色性の均一化
は達成されるものの、スチーム等による熱処理工
程を連結することが困難で捲縮の堅牢性が低いこ
と、又従来の単純な流体押込加工方法では得られ
た捲縮加工糸の捲縮率が高過ぎることにより、カ
ツトカーペツトの品位が著しく低下してしまう。
(例えば、パイルのヘタリが生じたり、ベロア感
が失なわれる等) 本発明者等は、加熱圧縮流体を利用した押込捲
縮加工、特に高速度での押込捲縮加工において、
ベロア調カツトカーペツト用パイル糸として好適
な捲縮加工糸を安定に製造すべく、鋭意検討の結
果本発明に到達したものである。すなわち、本発
明は、糸条を加熱流体とともにスタフイング室へ
噴出し該スタフイング室内に糸条を圧縮堆積せし
めて該糸条に捲縮を付与すると共に、スタフイン
グ室の下流側に連設した滞留調節室にて圧縮堆積
糸条を解舒して引取ることにより捲縮加工糸を製
造するに際し、 該滞留調節室内へ加熱流体を供給し、該加熱流
体の少なくとも一部を糸条の進行方向と逆方向に
移動せしめて滞留調節室内の解舒されつつある糸
条又は解舒された糸条を加熱流体により熱処理
し、糸条とともにスタフイング室内へ噴出した加
熱流体は該スタフイング室の周面から糸外へ排出
し、一方滞留調節室内へ供給した加熱流体は該滞
留調節室の周面から糸外へ排出すると共に、該滞
留調節室から引取つた捲縮加工糸を、更に0〜20
%のオーバーフイード状態でパイプ状チヤンバー
へ導入し、該チヤンバー内で加熱流体にて後熱処
理することにより、ベロア調カツトカーペツトの
パイル糸として好適な低捲縮性の捲縮加工糸を高
い生産性にて安定に製造するようにしたものであ
る。 以下、図面により本発明を詳細に説明する。 第1図は本発明に用いられる流体押込捲縮加工
装置の一実施態様を示す簡略化した縦断面図であ
る。また第2図は本発明を紡糸―延伸―捲縮加工
を直結したSDT工程に適用した実施態様を示す
直接紡糸延伸捲縮加工装置の概略側面図、第3図
は本発明で使用するパイプ状チヤンバーの一実施
態様を示す縦断面図である。 第1図において、糸条Yは加熱流体噴射ノズル
1に導入され、該ノズル1の加熱流体吹出孔2
a,2bから供給される圧縮加熱流体と共に噴射
され、スタフイング室5へ送られる。このスタフ
イング室5はその中心から外周方向に向つて放射
状に配置した複数枚の羽根板4で囲まれた円柱状
あるいは円錐台状の空間より成つている。なお各
羽根板4は上端がフランジ3a,3bに固定され
ている。このスタフイング室5内で加熱流体は糸
条から分離され、羽根板4の間隙にて形成された
放射状スリツトを通じて系外へ排出され、一方糸
条はすでに堆積している糸条塊に衝突し捲縮が付
与され、自らも座屈堆積して糸条塊を形成する。
続いて該糸条塊は滞留調節室6へ移送され、ここ
で糸条塊は解舒されて引取られる。 本発明では、この滞留調節室6の下流側に流体
吹出孔8a,8bを設け、ここから滞留調節室内
へ糸条熱処理用の加熱流体を吹込み、その少なく
とも一部を滞留調節室内を糸条の進行方向と逆方
向に(即ち上流側に向つて)該加熱流体を移動さ
せて、ここで解舒されつつある糸条或いは解舒さ
れた糸条の熱処理を行う。そして該加熱流体は滞
留調節室6の周面に設けた多数の加熱流体排出孔
7から系外へ排出される。 ここで加熱流体排出孔7を設けず熱処理用加熱
流体の排出を行わない場合は、熱処理用加熱流体
が糸条と共に下流側に噴出するか、或いは堆積糸
条塊の移動に逆らつてスタフイング室5に入り該
室の周面から排出されることになり、堆積糸条塊
の移動(走行)が不安定となるばかりでなく、加
工斑を生じるので好ましくない。 なお、上述の方法において、噴射ノズル1に供
給する捲縮加工用の加熱流体及び吹出孔8a,8
bから滞留調節室6内へ吹込む糸条熱処理用の加
熱流体は、高温(100〜300℃)の空気やスチーム
が用いられる。後者の加熱流体としては熱処理効
率の良いスチームが好ましく、特に、十分な熱処
理効果を達成するには過加熱スチームが最適であ
り、その温度は180〜220℃がよい。 上述の如きスタフイング室5の下流側に滞留調
節室6を連設した流体押込捲縮加工装置は、特開
昭53−45420号公報或いは特開昭54−156846号公
報に記載されているが、これらの公報に示される
如く滞留調節室で冷却空気又は水等で糸条の冷却
を行えば、糸条に捲縮歪が残存し、本発明の目的
とは逆に高捲縮糸しか得られない。ところが、上
述の如く滞留調節室6の下流側から加熱流体を吹
込んで堆積糸条塊から解舒されつつある糸条又は
解舒された糸条を該加熱流体により熱処理するこ
とにより、押込み堆積時に付与された高度の捲縮
及び財存する歪が除去され、捲縮加工糸は捲縮度
の低いものが得られる。しかも、前記加熱流体の
流量、温度等を選定することによつてその捲縮加
工糸の捲縮度を比較的容易に調整することが出来
る。 更に、本発明においては、前記の如く、捲縮加
工及び熱処理を施した糸条を滞留調節室から引取
り、0〜10%のオーバーフイード状態でパイプ状
チヤンバへ導入し、該チヤンバー内で加熱流体に
て後熱処理する。 この際、パイプ状チヤンバーでの後熱処理は、
その効率を高めるため比較的密閉系での熱処理が
望ましく、特に該チヤンバーの糸条導入孔及び排
出孔の内径(dmm)を捲縮加工糸の繊度De(デ
ニール)に応じ適当に選ぶことが好ましい。即
ち、本発明者らの研究によれば、パイプ状チヤン
バーの糸条導入孔及び排出孔の内径(dmm)が
捲縮加工糸の繊度(De)に対し、 0.023√≦d≦0.023√+0.5 但し 400≦De≦6000 を満足するものが好ましく、前記dが、捲縮加工
糸の繊度(De)に対して、小さ過ぎると糸条の
走行が円滑でなくなり、逆に大き過ぎると熱処理
用加熱流体の洩れにより十分な熱処理を行えなく
なる傾向が認められる。 パイプ状チヤンバーの熱処理用加熱流体として
はその熱セツトを向上させる為、スチームを用い
ることが好ましく、ここでは飽和スチームでも過
加熱スチームでも良く、この熱処理効果に大差は
ない。ただし、飽和スチームは発生するドレンの
為の温度・圧力変動による斑の発生が懸念される
ので、過加熱する方が好ましい。該チヤンバー内
での後熱処理時間は短時間(例えば0.01〜0.1秒
程度)で十分である。 また、パイプ状チヤンバーでの後熱処理に際
し、流体押込捲縮加工装置から取り出された捲縮
加工糸を0〜10%のオーバーフイード状態で熱処
理することが必要である。ドラフト状態では熱処
理の均斉性については良好であるが、糸条が歪を
受た状態でセツトする為、その歪が残存してしま
い、例えば得られた捲縮加工糸の沸水収緒が高く
なる等の欠点を生じる。逆に10%以上の高オーバ
ーフイードでは糸条がたるんでしまい、糸が引き
取れなくなつてしまう。望ましいオーバーフイー
ド範囲は1〜5%である。このようなオーバーフ
イード状態で後熱処理すれば押込加工時に生じた
捲縮加工糸の歪を除去することができ、捲縮率が
低下し、寸法安定性の面からも非常に良好であ
る。 このような本発明の方法は、高速で捲縮加工す
る場合に有用であり、その高速加工性を生かす意
味でも、紡糸―延伸―捲縮加工の各工程を直結し
たSDT工程により捲縮加工糸を製造する場合に
適用すると特に有利である。この場合、捲縮加工
速度は2000〜400m/分の高速となるが、糸条に
十分な熱処理効果を与えることが出来、捲縮率が
低くベロア調カツトカーペツト用パイル糸として
好適な捲縮加工糸とすることが可能となる。 第2図は、このようなSDT工程の一例を示す
ものであり、紡出糸条Sはオイリングローラー1
1により油剤処理され、紡糸引取りローラー12
及び分離ローラー12′に数回巻回され引取られ
る。引続き該ローラー12,12′と一対の延伸
ローラー13,13′に数回巻回され、ローラー
12とローラー13,13′との間で3〜5倍の
所定延伸倍率に延伸される。ローラー13,1
3′は糸条を熱処理し且つ捲縮加工の予熱を行う
ため160〜210℃に加熱するのが好ましい。延伸熱
処理に続いて糸条は流体押込捲縮加工装置14へ
15〜40%のオーバーフイード状態で導入され、こ
こで捲縮が付与される。この流体押込捲縮加工装
置14は第1図に示す如く滞留調節室内へ加熱流
体を吹込むようになつており、該装置14で捲縮
付与後に熱処理が行われる。このようにして捲縮
加工された糸条は第1引取ローラ15及び分離ロ
ーラー15′によつて引取られ、次いで該ローラ
ー15,15′と第2引取ローラー17及び分離
ローラー17′との間に設置されたパイプ状チヤ
ンバー16に導入され、ここで加熱流体により後
熱処理(ポスト・ヒートセツト)が施される。こ
の際、ローラー15,15′とローラー17,1
7′との間で0〜10%(好ましくは1〜5%)の
オーバーフイード(弛緩)が与えられ、糸条は若
干の収縮を伴つて後熱処理される。かくして多段
熱処理された糸条は必要に応じ冷却空気、冷却水
等で十分冷却したのち、ワインダー18にて巻取
られる。 第3図は、このようなパイプ状チヤンバー16
の一例を示す縦断面図であり、該チヤンバーは両
端に上述の条件を満たす内径dmmの糸条導入孔
16a及び糸条排出孔16bが設けられ、側面に
加熱流体導入孔16cが設けられている。なお、
このチヤンバー16は糸通し作業を容易にするた
め、縦方向に半分ずつ分割できる半割り構造とす
ることが好ましい。 このような本発明の方法が適用される糸条とし
ては、ポリアミドマルチフイラメント糸、なかで
も捲縮加工後のデニールが400〜6000deとなるも
の、が好ましいが、他の合成繊維マルチフイラメ
ント糸でもよい。また、該マルチフイラメント糸
は、染色性、フイラメント断面形状、デニール等
の相異なる単繊維を含むものでもよい。単繊維は
トライローバル形、三角形、四角形等非円形断面
を有するものが好ましい。 以上の如き本発明によれば、ベロア調カツトカ
ーペツトのパイル糸として好適な捲縮特性をもつ
捲縮加工糸(BCF)を高速で安定に製造するこ
とが出来、従来の長時間熱処理に比べ、大幅なコ
ストダウン、品質の均一化を達成することが出来
る。 次に、本発明を更に詳しく説明するため実施例
及び比較例を示す。ここで「捲縮率」「捲縮堅牢
性」「オーバーフイード率」は次の如く定義され
る値である。 (1) 捲縮率(TC0)、捲縮堅牢性(TC5) 捲縮率TC0及び捲縮堅牢性TC5は次のように
して求めた。すなわち捲縮糸条を一定長とり、
この試料を沸水中で20分間処理を行い乾燥後
0.1g/deの荷重をかけた際の長さをとし、
次いで2mg/deの荷重をかけた際の長さを
とした場合 TC0×100(%) の式より求めた値である。 又TC5は沸水中で20分間の処理を行う場合、
TC1では処理中の糸条に荷重をかけないのに対
して、TC5は5mg/deの荷重をかけた状態で行
なつたものである。 (2) オーバーフイード率 流体押込捲縮加工ノズルへのオーバーフイー
ド率(OF1)は下記の式による値である。 第1図における延伸ローラー13,13′の
速度をRv3とし第1引取りローラー15の速度
をRv5とすると オーバーフイード率(OF1) =Rv3−Rv5/Rv5×100(%) 又、パイプ状チヤンバーでのオーバーフイー
ド率(OF2)は上述と同様に更に下流にある第
2引取りローラー17の速度をRv7とすると オーバーフイード率(OF2) =Rv5−Rv7/Rv7×100(%) で定義した。 実施例 1 第2図の直接紡糸延伸捲縮加工装置を用い、ポ
リ―ε―カプロアミドを紡糸後、紡出糸を延伸速
度2750m/分で延伸を行い、1300de/68filの糸
条となし、引続き第1図の流体押込捲縮加工装置
へ25%のオーバーフイード率で供給し捲縮加工を
行なつた。該装置の滞留調節室6での加熱流体
(スチーム)の圧力は4.0Kg/cm2、温度は200℃であ
つた。続いて第3図のパイプ状チヤンバーへ糸条
を4%のオーバーフイード率で供給し、加熱流体
(スチーム)の圧力3.5Kg/cm2、温度200℃の条件で
ポスト・ヒートセツトを行なつた。得られた捲縮
加工糸の捲縮率はカツトカーペツト用として適正
なものが得られ、捲縮の堅牢性、寸法、安定性共
良好なものであつた。これをタフトして得られた
カツトカーペツトは極めて良好な品位品質のもの
であり、筋斑のないものであつた。得られた捲縮
加工糸(ナイロンBCF)の捲縮率(TC0)、捲縮
堅牢性(TC5)及びカツトカーペツトの評価結果
を第1表に示す。 実施例 2〜4 実施例1とは第1図の装置における滞留調節室
6での加熱流体(スチーム)の温度・圧力を除い
ては全く同じ条件で製糸及び捲縮加工を行なつ
た。その結果を第1表に示す。加熱流体の温度は
飽和温度では熱処理効果が若干低く、得られた捲
縮加工糸の捲縮率が稍高くなつており、カーペツ
ト特性も稍低品質であつた。しかし、過加熱の温
度では捲縮率が十分低くなり又、圧力を変えた効
果も比較的小であつた。 実施例 5〜9 実施例1とはパイプ状チヤンバーのスチーム温
度・圧力を除いては全く同じ条件で製糸及び捲縮
加工を行なつた。その結果を第1表に示す。第1
表より明らかな如くパイプ状チヤンバーのスチー
ム温度は飽和でも、過加熱でもその熱処理効果へ
の寄与は小さい。これに対し、スチームの圧力の
効果は顕著であり、得ようとする捲縮加工糸の特
性により異なるが、ベロア調カツトカーペツト用
捲縮加工糸を得ようとする場合3.5Kg/cm2程度が良
いことが判つた。 比較例 実施例1とは流体押込捲縮加工装置の滞留調節
室で加熱流体を用いなかつた以外は全く同じ製糸
加工条件で行つた。ここで得られた捲縮加工糸は
第1表に示す如く捲縮率が高く、カーペツトの品
質は不良であつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing crimped yarn. More specifically, the present invention relates to a method for producing multifilament crimped yarn (BCF) suitable as pile yarn for velor cut carpet. In recent years, the demand for tufted carpets has increased rapidly due to the good productivity of tufting, and the use of tufted carpets has generally progressed. The fashionability of this general carpet (for home use) is considered important, and velor-like cut carpet has recently become particularly popular. Due to its nature, such velor-like cut carpets are subject to several high requirements. First, in order to maintain the velor feel of a cut carpet, a crimped yarn with a low crimp rate is required as a pile yarn. Secondly, if the durability of the cut pile is poor, the cut pile will sag after being used for a short period of time, so the pile yarn is required to have good robustness, that is, crimp fastness. Furthermore, when the tuft pile is cut, it becomes directional and streaks become noticeable after dyeing, so a crimped yarn with uniform dyeability is particularly required. In order to produce crimped yarn that satisfies the above-mentioned properties required for pile yarn for velour-like cut carpet, conventionally, the crimped yarn is crimped in a separate process under low tension or no tension for 50 minutes. ~20
Steam treatment (heat treatment) is performed for 1 minute.
However, although this method generally satisfies the characteristics required for velor-like cut carpet, it has the disadvantage of being very disadvantageous in terms of equipment productivity and cost because steam treatment is performed in a separate process. Furthermore, the chamber treatment process is a separate process from the crimping process, which has the disadvantage that unevenness is likely to occur. On the other hand, recent advances in crimping technology have made it possible to speed up the crimping process.
The production of crimped yarn (BCF) using the Draw Texturing process is underway. like this
In the SDT process, a press-crimping method using compressed heated fluid is used, which has excellent high-speed processing properties. As such a fluid-pressing crimping device, for example, the one described in Japanese Patent Application Laid-Open No. 53-45420 is suitable. However, the crimped yarn obtained by such an SDT process is not suitable as pile yarn for velor-like cut carpets. In other words, although it is possible to achieve uniform dyeing properties by linking processes (SDT), it is difficult to link heat treatment processes using steam, etc., and the crimp durability is low, and the conventional simple fluid pressing method If the crimp rate of the obtained crimped yarn is too high, the quality of the cut carpet will be significantly reduced.
(For example, the pile may become flattened or the velor feel may be lost.) The present inventors believe that in the case of indentation crimping using heated compressed fluid, especially in indentation crimping at high speeds,
In order to stably produce a crimped yarn suitable as a pile yarn for velor-like cut carpet, the present invention was arrived at as a result of intensive studies. That is, the present invention jets the yarn together with a heated fluid into the stuffing chamber, compresses and deposits the yarn in the stuffing chamber, and imparts crimps to the yarn, and also provides a retention control system connected to the downstream side of the stuffing chamber. When producing crimped yarn by unwinding and taking the compressed piled yarn in the chamber, a heated fluid is supplied into the retention adjustment chamber, and at least a part of the heated fluid is directed in the direction of travel of the yarn. The yarn being moved in the opposite direction and being unwound or unwound in the retention control chamber is heat-treated with a heated fluid, and the heated fluid that is spouted into the stuffing chamber together with the yarn is used to remove the yarn from the circumferential surface of the stuffing chamber. On the other hand, the heated fluid supplied into the retention adjustment chamber is discharged from the circumferential surface of the retention adjustment chamber to the outside of the yarn, and the crimped yarn taken from the retention adjustment chamber is further heated by 0 to 20
% overfeed into a pipe-shaped chamber, and post-heat treatment in the chamber with a heated fluid produces a highly productive crimped yarn with low crimpability suitable as pile yarn for velor-like cut carpets. It is designed to be manufactured stably. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 is a simplified longitudinal cross-sectional view showing one embodiment of the fluid-pressing crimping device used in the present invention. Furthermore, FIG. 2 is a schematic side view of a direct spinning, drawing, and crimping apparatus showing an embodiment in which the present invention is applied to an SDT process in which spinning, drawing, and crimping are directly connected, and FIG. FIG. 3 is a longitudinal cross-sectional view showing one embodiment of the chamber. In FIG. 1, a yarn Y is introduced into a heated fluid injection nozzle 1, and a heated fluid outlet 2 of the nozzle 1 is introduced.
It is injected together with the compressed heating fluid supplied from a and 2b and sent to the stuffing chamber 5. The stuffing chamber 5 is comprised of a cylindrical or truncated conical space surrounded by a plurality of blade plates 4 arranged radially from the center toward the outer circumference. Note that the upper end of each blade plate 4 is fixed to the flanges 3a, 3b. The heated fluid is separated from the yarn in this stuffing chamber 5 and discharged to the outside of the system through radial slits formed in the gaps between the blade plates 4, while the yarn collides with the yarn mass already deposited and winds up. The fibers are compressed and buckled and deposited on their own to form a filament mass.
Subsequently, the yarn mass is transferred to the retention control chamber 6, where it is unwound and taken off. In the present invention, fluid blow-off holes 8a and 8b are provided on the downstream side of the retention adjustment chamber 6, from which a heating fluid for yarn heat treatment is blown into the retention adjustment chamber, and at least a portion of the fluid is supplied to the yarn inside the retention adjustment chamber. The heating fluid is moved in a direction opposite to the traveling direction of the yarn (that is, toward the upstream side) to heat-treat the yarn that is being unwound or the yarn that has been unwound. The heated fluid is then discharged to the outside of the system through a large number of heated fluid discharge holes 7 provided on the circumferential surface of the retention control chamber 6. If the heating fluid discharge hole 7 is not provided and the heating fluid for heat treatment is not discharged, the heating fluid for heat treatment will be ejected downstream together with the yarn, or will flow into the stuffing chamber against the movement of the piled yarn mass. 5 and is discharged from the circumferential surface of the chamber, which is not preferable because it not only makes the movement (running) of the deposited yarn mass unstable, but also causes uneven processing. In addition, in the above-mentioned method, the heating fluid for crimping supplied to the injection nozzle 1 and the blowing holes 8a, 8
The heating fluid for yarn heat treatment that is blown into the retention control chamber 6 from b is high temperature (100 to 300° C.) air or steam. The latter heating fluid is preferably steam, which has good heat treatment efficiency. In particular, superheated steam is most suitable for achieving a sufficient heat treatment effect, and its temperature is preferably 180 to 220°C. The above-mentioned fluid pressing crimping apparatus in which the retention adjustment chamber 6 is connected to the downstream side of the stuffing chamber 5 is described in Japanese Patent Application Laid-Open No. 53-45420 or 1987-156846. If the yarn is cooled with cooling air or water in the retention chamber as shown in these publications, crimp strain remains in the yarn, and only a highly crimped yarn can be obtained, which is contrary to the purpose of the present invention. do not have. However, as described above, by blowing a heated fluid from the downstream side of the retention control chamber 6 and heat-treating the yarn that is being unwound from the piled yarn mass or the unwound yarn with the heated fluid, it is possible to The high degree of crimp imparted and the existing strain are removed, and a crimped yarn with a low degree of crimp is obtained. Moreover, by selecting the flow rate, temperature, etc. of the heating fluid, the degree of crimp of the crimped yarn can be adjusted relatively easily. Further, in the present invention, as described above, the crimped and heat-treated yarn is taken from the retention adjustment chamber, introduced into a pipe-shaped chamber in a state of 0 to 10% overfeed, and heated within the chamber. Post-heat treatment with fluid. At this time, the post-heat treatment in the pipe-shaped chamber is
In order to increase the efficiency, heat treatment in a relatively closed system is preferable, and in particular, it is preferable to appropriately select the inner diameter (dmm) of the yarn introduction hole and discharge hole of the chamber depending on the fineness De (denier) of the crimped yarn. . That is, according to the research of the present inventors, the inner diameter (dmm) of the yarn introduction hole and the discharge hole of the pipe-shaped chamber is 0.023√≦d≦0.023√+0 relative to the fineness (De) of the crimped yarn. 5 However, it is preferable to satisfy 400≦De≦6000; if the above-mentioned d is too small relative to the fineness (De) of the crimped yarn, the yarn will not run smoothly; on the other hand, if it is too large, it will not be suitable for heat treatment. There is a tendency that sufficient heat treatment cannot be performed due to leakage of heating fluid. It is preferable to use steam as the heating fluid for heat treatment of the pipe-shaped chamber in order to improve its heat set. Here, either saturated steam or superheated steam may be used, and there is no significant difference in the heat treatment effect. However, with saturated steam, there is a concern that spots may occur due to temperature and pressure fluctuations caused by the generated condensate, so it is preferable to overheat the steam. A short time (for example, about 0.01 to 0.1 seconds) is sufficient for the post-heat treatment in the chamber. Further, during the post-heat treatment in the pipe-shaped chamber, it is necessary to heat-treat the crimped yarn taken out from the fluid-injection crimping device under an overfeed state of 0 to 10%. In the draft state, the uniformity of heat treatment is good, but since the yarn is set in a strained state, the strain remains and, for example, the resulting crimped yarn has a high boiling water absorption rate. This results in disadvantages such as: On the other hand, with a high overfeed of 10% or more, the yarn becomes slack and cannot be pulled out. A desirable overfeed range is 1-5%. If the post-heat treatment is carried out in such an overfeed state, the distortion of the crimped yarn produced during the pressing process can be removed, the crimp rate is reduced, and the dimensional stability is also very good. The method of the present invention is useful for high-speed crimping, and in order to take advantage of its high-speed processability, crimped yarn can be produced by the SDT process, which directly connects the spinning, drawing, and crimping processes. It is particularly advantageous when applied to the production of. In this case, the crimping speed is high from 2000 to 400 m/min, but it is possible to give sufficient heat treatment effect to the yarn, and the crimped yarn has a low crimp rate and is suitable as pile yarn for velour-like cut carpet. It becomes possible to do this. Figure 2 shows an example of such an SDT process.
1, the spinning take-off roller 12
Then, it is wound around the separation roller 12' several times and taken off. Subsequently, it is wound several times around the rollers 12, 12' and a pair of stretching rollers 13, 13', and stretched to a predetermined stretching ratio of 3 to 5 times between the rollers 12 and 13, 13'. roller 13,1
3' is preferably heated to 160 to 210°C in order to heat-treat the yarn and preheat for crimping. Following the drawing heat treatment, the yarn is transferred to a fluid forced crimping device 14.
It is introduced at an overfeed of 15-40% and crimped at this point. As shown in FIG. 1, this fluid-injection crimping device 14 is designed to blow heated fluid into a retention chamber, and heat treatment is performed in this device 14 after crimping. The yarn thus crimped is taken off by the first take-up roller 15 and separation roller 15', and then between the rollers 15, 15' and the second take-up roller 17 and separation roller 17'. It is introduced into an installed pipe-like chamber 16, where it is subjected to a post-heat treatment (post-heat setting) using a heating fluid. At this time, rollers 15, 15' and rollers 17, 1
7', an overfeed (relaxation) of 0 to 10% (preferably 1 to 5%) is applied, and the yarn is post-heat treated with some shrinkage. The yarn thus subjected to multi-stage heat treatment is sufficiently cooled with cooling air, cooling water, etc. as required, and then wound up in a winder 18. FIG. 3 shows such a pipe-like chamber 16.
This is a longitudinal cross-sectional view showing an example, and the chamber is provided with a yarn introduction hole 16a and a yarn discharge hole 16b having an inner diameter of dmm that satisfies the above-mentioned conditions at both ends, and a heated fluid introduction hole 16c on the side surface. . In addition,
In order to facilitate threading work, this chamber 16 preferably has a half-split structure that can be divided into halves in the longitudinal direction. The yarn to which the method of the present invention is applied is preferably a polyamide multifilament yarn, especially one with a denier of 400 to 6000 de after crimping, but other synthetic fiber multifilament yarns may also be used. . Further, the multifilament yarn may include single fibers having different dyeability, filament cross-sectional shape, denier, etc. It is preferable that the single fiber has a non-circular cross section such as a trilobal shape, a triangular shape, or a quadrangular shape. According to the present invention as described above, it is possible to stably produce crimped yarn (BCF) having crimp characteristics suitable as pile yarn for velour-like cut carpet at high speed. It is possible to achieve significant cost reduction and uniform quality. Next, Examples and Comparative Examples will be shown to explain the present invention in more detail. Here, "crimping rate", "crimping fastness", and "overfeed rate" are values defined as follows. (1) Crimp ratio (TC 0 ), crimp fastness (TC 5 ) The crimp ratio TC 0 and crimp fastness TC 5 were determined as follows. In other words, the crimped yarn has a certain length,
This sample was treated in boiling water for 20 minutes and dried.
The length when a load of 0.1 g/de is applied is 1 ,
Next, the length when applying a load of 2 mg/de is 2
In this case, the value is calculated from the formula: TC 0 = 12 / 1 × 100 (%). In addition, when TC 5 is treated in boiling water for 20 minutes,
In TC 1 , no load was applied to the yarn being processed, whereas in TC 5 , a load of 5 mg/de was applied. (2) Overfeed rate The overfeed rate (OF 1 ) to the fluid forced crimping nozzle is a value based on the following formula. Assuming that the speed of the stretching rollers 13, 13' in FIG. 1 is R v3 and the speed of the first take-up roller 15 is R v5 , the overfeed rate (OF 1 ) = R v3 - R v5 / R v5 × 100 (%) Also, the overfeed rate (OF 2 ) in the pipe-shaped chamber is determined as follows, as described above, assuming that the speed of the second take-up roller 17 located further downstream is R v7 Overfeed rate (OF 2 ) = R v5 − R v7 / Defined as R v7 ×100 (%). Example 1 After spinning poly-ε-caproamide using the direct spinning drawing and crimping apparatus shown in FIG. The material was fed to the fluid pressure crimping device shown in Fig. 1 at an overfeed rate of 25% and crimped. The pressure of the heated fluid (steam) in the retention control chamber 6 of the apparatus was 4.0 Kg/cm 2 and the temperature was 200°C. Subsequently, the yarn was supplied to the pipe-shaped chamber shown in FIG. 3 at an overfeed rate of 4%, and post-heat setting was performed under conditions of a heating fluid (steam) pressure of 3.5 kg/cm 2 and a temperature of 200°C. The crimp rate of the obtained crimped yarn was suitable for use in cut carpets, and the crimp fastness, size, and stability were also good. The cut carpet obtained by tufting this was of extremely good quality and free of streaks. Table 1 shows the evaluation results of the crimp rate (TC 0 ), crimp fastness (TC 5 ), and cut carpet of the obtained crimped yarn (nylon BCF). Examples 2 to 4 Silk spinning and crimping were carried out under exactly the same conditions as in Example 1 except for the temperature and pressure of the heating fluid (steam) in the retention control chamber 6 of the apparatus shown in FIG. The results are shown in Table 1. When the temperature of the heating fluid was saturated, the heat treatment effect was a little low, the crimp rate of the crimped yarn obtained was a little high, and the quality of the carpet properties was also a little low. However, at the superheating temperature, the crimp rate was sufficiently low, and the effect of changing the pressure was also relatively small. Examples 5 to 9 Silk spinning and crimping were carried out under exactly the same conditions as in Example 1 except for the steam temperature and pressure of the pipe-shaped chamber. The results are shown in Table 1. 1st
As is clear from the table, whether the steam temperature of the pipe-shaped chamber is saturated or overheated, its contribution to the heat treatment effect is small. On the other hand, the effect of steam pressure is remarkable, and it varies depending on the characteristics of the crimped yarn you are trying to obtain, but if you are trying to obtain a crimped yarn for velor-like cut carpet, a pressure of about 3.5 kg/cm 2 is recommended. It turned out that. Comparative Example The spinning process was carried out under exactly the same conditions as in Example 1, except that no heating fluid was used in the retention control chamber of the fluid forced crimping apparatus. The crimped yarn obtained here had a high crimp rate as shown in Table 1, and the quality of the carpet was poor. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で使用する流体押込捲縮加工
装置の一例を示す簡略化した縦断面図であり、1
は加熱流体噴射ノズル、5はスタフイング室、6
は滞留調節室、8a,8bは糸条熱処理用加熱流
体吹込孔である。 第2図は、本発明をSDT工程に適用した一例
を示す直接紡糸延伸捲縮加工装置の概略側面図で
あり、13,13′は延伸ローラー、14は流体
押込捲縮加工装置、15は第1引取ローラ、16
はパイプ状チヤンバー、17は第2引取ローラで
ある。 第3図はパイプ状チヤンバーの一例を示す縦断
面図である。
FIG. 1 is a simplified vertical cross-sectional view showing an example of a fluid pressing crimping device used in the present invention.
is a heated fluid injection nozzle; 5 is a stuffing chamber; 6 is a stuffing chamber;
8a and 8b are heating fluid blowing holes for yarn heat treatment. FIG. 2 is a schematic side view of a direct spinning drawing and crimping device showing an example of applying the present invention to the SDT process, in which 13 and 13' are drawing rollers, 14 is a fluid pushing crimping device, and 15 is a 1 take-up roller, 16
1 is a pipe-shaped chamber, and 17 is a second take-up roller. FIG. 3 is a longitudinal sectional view showing an example of a pipe-shaped chamber.

Claims (1)

【特許請求の範囲】 1 糸条を加熱流体とともにスタフイング室へ噴
出し該スタフイング室内に糸条を圧縮堆積せしめ
て該糸条に捲縮を付与すると共に、スタフイング
室の下流側に連設した滞留調節室にて圧縮堆積糸
条を解舒して引取ることにより捲縮加工糸を製造
するに際し、 該滞留調節室内へ加熱流体を供給し、該加熱流
体の少なくとも一部を糸条の進行方向と逆方向に
移動せしめて、滞留調節室内の解舒されつつある
糸条又は解舒された糸条を加熱流体により熱処理
し、糸条とともにスタフイング室内へ噴出した加
熱流体は該スタフイング室の周面から系外へ排出
し、一方滞留調節室内へ供給した加熱流体は該滞
留調節室の周面から系外へ排出すると共に、該滞
留調節室から引取つた捲縮加工糸を、更に0〜10
%のオーバーフイード状態でパイプ状チヤンバー
へ導入し、該チヤンバー内で加熱流体にて後熱処
理することを特徴とする捲縮加工糸の製造法。 2 滞留調節室内へ供給する加熱流体としてスチ
ームを使用する特許請求の範囲第1項記載の製造
法。 3 パイプ状チヤンバーの糸条導入孔及び糸条排
出孔の内径(dmm)を、捲縮加工糸の繊度
(De)に対して、次式を満足する範囲内に調整す
る特許請求の範囲第1項記載の製造法。 0.023√≦d≦0.023√+0.5 〔但し、400≦De≦6000〕
[Scope of Claims] 1. The yarn is ejected together with a heated fluid into the stuffing chamber, and the yarn is compressed and deposited in the stuffing chamber to give a crimp to the yarn, and a retention area is connected to the downstream side of the stuffing chamber. When manufacturing crimped yarn by unwinding and taking the compressed piled yarn in the adjustment chamber, a heating fluid is supplied into the retention adjustment chamber, and at least a part of the heating fluid is directed in the direction of yarn travel. The yarn that is being unwound or the yarn that has been unwound in the retention control chamber is heat-treated by the heated fluid, and the heated fluid that is ejected into the stuffing chamber together with the yarn is heated against the circumferential surface of the stuffing chamber. On the other hand, the heated fluid supplied into the retention adjustment chamber is discharged from the circumferential surface of the retention adjustment chamber to the outside of the system, and the crimped yarn taken from the retention adjustment chamber is further heated by 0 to 10
A method for producing crimped yarn, which comprises introducing the crimped yarn into a pipe-shaped chamber in a state of % overfeed, and post-heat-treating the yarn in the chamber with a heated fluid. 2. The manufacturing method according to claim 1, wherein steam is used as the heating fluid supplied into the retention control chamber. 3. Claim 1 in which the inner diameter (dmm) of the yarn introduction hole and yarn discharge hole of the pipe-shaped chamber is adjusted within a range that satisfies the following formula with respect to the fineness (De) of the crimped yarn. Manufacturing method described in section. 0.023√≦d≦0.023√+0.5 [However, 400≦De≦6000]
JP20287683A 1983-10-31 1983-10-31 Production of crimp processed yarn Granted JPS5994633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20287683A JPS5994633A (en) 1983-10-31 1983-10-31 Production of crimp processed yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20287683A JPS5994633A (en) 1983-10-31 1983-10-31 Production of crimp processed yarn

Publications (2)

Publication Number Publication Date
JPS5994633A JPS5994633A (en) 1984-05-31
JPS6156332B2 true JPS6156332B2 (en) 1986-12-02

Family

ID=16464659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20287683A Granted JPS5994633A (en) 1983-10-31 1983-10-31 Production of crimp processed yarn

Country Status (1)

Country Link
JP (1) JPS5994633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312577A (en) * 1987-06-15 1988-12-21 Aisin Warner Ltd Oil pressure switching device using rotary valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350575A (en) * 1986-08-21 1988-03-03 帝人株式会社 Treatment of polyamide yarn having built-in antibacterial property imparted thereto

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312577A (en) * 1987-06-15 1988-12-21 Aisin Warner Ltd Oil pressure switching device using rotary valve

Also Published As

Publication number Publication date
JPS5994633A (en) 1984-05-31

Similar Documents

Publication Publication Date Title
US2278888A (en) Artificial structure and process for producing same
US4774042A (en) Method for making multi-filament yarn
US3142147A (en) Voluminous yarn from synthetic continuous thermoplastic filaments
US4140844A (en) Polyacrylonitrile filament yarns
US4035464A (en) Process for the production of polyamide-6 filament yarns
CN1063807C (en) Method for producing yarns with low shrinkage
US3188713A (en) Apparatus for processing crosssection yarn
US3975484A (en) Manufacture of crimped polyamide filaments yarn
JP2005535795A (en) Method and apparatus for spinning and texturing multifilament composite yarns
US3967441A (en) Yarns and process for production thereof
CA1053886A (en) Method and apparatus for texturizing yarn
US4157604A (en) Method of high speed yarn texturing
US4004406A (en) Spun type yarn and process for manufacturing the same
US4030169A (en) Method and apparatus for treating yarn
CA1056583A (en) Method and apparatus for texturizing continuous filaments
US3959962A (en) Method of forming a bulked polyester textile yarns
US5142754A (en) Method and apparatus for producing an air textured yarn
SU1438618A3 (en) Method of producing interlaced stretched polyester low-shrinkable yarn
US4054025A (en) Process for the production of filament yarns with statistically distributed, broken individual filaments
JP3836881B2 (en) Manufacturing method of nylon 66 filament yarn with high strength and high shrinkage
JPS6156332B2 (en)
JPS6358937B2 (en)
US4450607A (en) Method for texturizing continuous filaments
US4296535A (en) Apparatus for texturizing continuous filaments
US3167845A (en) Bulk yarn process and apparatus