JPS6156199B2 - - Google Patents

Info

Publication number
JPS6156199B2
JPS6156199B2 JP2927683A JP2927683A JPS6156199B2 JP S6156199 B2 JPS6156199 B2 JP S6156199B2 JP 2927683 A JP2927683 A JP 2927683A JP 2927683 A JP2927683 A JP 2927683A JP S6156199 B2 JPS6156199 B2 JP S6156199B2
Authority
JP
Japan
Prior art keywords
chromium
semi
insulating
introducing
bisbenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2927683A
Other languages
Japanese (ja)
Other versions
JPS59156997A (en
Inventor
Masahiro Akyama
Yoshihiro Kawarada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2927683A priority Critical patent/JPS59156997A/en
Publication of JPS59156997A publication Critical patent/JPS59156997A/en
Publication of JPS6156199B2 publication Critical patent/JPS6156199B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (技術分野) この発明は、GaAsなどの化合物半導体の半絶
縁性エピタキシヤル層を形成する化合物半導体の
エピタキシヤル成長法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a compound semiconductor epitaxial growth method for forming a semi-insulating epitaxial layer of a compound semiconductor such as GaAs.

(従来技術) GaAsなどの化合物半導体の半絶縁性結晶を得
るには、結晶中に深い準位をつくるCr、Fe、
V、Oなどの原子を添加する。半絶縁性のエピタ
キシヤル層を成長させるにもこれらの原子を添加
すればよく、AsCl3またはHClとAsH3を用いた従
来のハライド系のGaAsの気相成長においては、
反応系内の基板の上流にFeやVなどの金属をお
いて、これを塩化物の形で基板まで輸送して添加
したり、CrO2Cl2を系に導入するなどしている。
しかしながら、有機金属を原料に用いる気相成長
法(以下MO−CVD法と記す)による場合は、一
般に系内に塩素を導入しないために、Fe、Vな
どの金属を系内に入れても塩化物となつて基板に
達して添加されることはなく、したがつて、添加
原子は気相の状態で反応系内に導入しなければな
らない。
(Prior art) To obtain semi-insulating crystals of compound semiconductors such as GaAs, Cr, Fe, and
Add atoms such as V and O. These atoms can be added to grow a semi-insulating epitaxial layer, and in conventional vapor phase growth of halide-based GaAs using AsCl 3 or HCl and AsH 3 ,
Metals such as Fe and V are placed upstream of the substrate in the reaction system, and these metals are transported to the substrate in the form of chloride and added, or CrO 2 Cl 2 is introduced into the system.
However, when using a vapor phase growth method (hereinafter referred to as MO-CVD method) that uses organic metals as raw materials, chlorine is generally not introduced into the system, so even if metals such as Fe and V are introduced into the system, chlorination They do not reach the substrate in the form of substances and are therefore added into the reaction system in a gas phase.

MO−CVD法による場合、従来は、ヘキサカー
ボーニールクロミウムを昇華させて系内に導入す
ることにより、GaAsにCrを導入して半絶縁性の
エピタキシヤル層を得ている。しかし、ヘキサカ
ーボニールクロミウムは室温で蒸気圧が2×10-4
気圧と高いために、微少量を精度よく制御して添
加することは困難であつた。そのため、電子濃度
が1015cm-3程度以下の高純度結晶にこの電子濃度
を相殺するだけのCrを添加して高品質の半絶縁
性結晶を得ることは困難であつた。
In the case of the MO-CVD method, conventionally, a semi-insulating epitaxial layer is obtained by introducing Cr into GaAs by sublimating hexacarbonyl chromium and introducing it into the system. However, hexacarbonylchromium has a vapor pressure of 2×10 -4 at room temperature.
Due to the high atmospheric pressure, it was difficult to control and add minute amounts with precision. Therefore, it has been difficult to obtain a high-quality semi-insulating crystal by adding Cr to a high-purity crystal with an electron concentration of about 10 15 cm -3 or less to offset this electron concentration.

(発明の目的・構成) そこで、本発明者はこのような欠点を解決する
ために多数の試験研究を行つた結果、ビスベンゼ
ンクロムを、結晶中に深い準位をつくるCrの原
料として添加することにより、MO−CVD法によ
りGaAsなどの化合物半導体の高品質半絶縁性エ
ピタキシヤル層を作り得ることを見出し、この発
明に至つた。
(Objective/Structure of the Invention) Therefore, in order to solve these drawbacks, the present inventor conducted a large number of test and research studies, and as a result, added bisbenzene chromium as a raw material for Cr that creates deep levels in the crystal. As a result, the inventors discovered that a high-quality semi-insulating epitaxial layer of a compound semiconductor such as GaAs can be produced by the MO-CVD method, leading to the present invention.

すなわち、この発明は、族の有機金属と族
の水素化物を原料とする気相エピタキシヤル法に
おいて、ビスベンゼンクロム(Cr(C6H62)の反
応系への導入により、クロム(Cr)をドーピン
グして半絶縁性の成長層を得ることを特徴とする
化合物半導体のエピタキシヤル成長法であり、
MO−CVD法によりGaAsなどの化合物半導体の
高品質半絶縁性エピタキシヤル層を得ることを目
的とする。
That is , the present invention provides chromium (Cr ) is a compound semiconductor epitaxial growth method characterized by doping to obtain a semi-insulating growth layer,
The purpose of this study is to obtain high-quality semi-insulating epitaxial layers of compound semiconductors such as GaAs using the MO-CVD method.

(実施例) 以下この発明の実施例を説明する。(Example) Examples of the present invention will be described below.

ビスベンゼンクロムは室温で蒸気圧が10-7気圧
程度の粒状の物質である。この昇華したビスベン
ゼンクロムをキヤリアガスとともに反応系に導入
することにより、成長中の結晶にCrを添加する
ことができる。
Bisbenzenechromium is a granular substance with a vapor pressure of about 10 -7 atmospheres at room temperature. By introducing this sublimated bisbenzene chromium together with a carrier gas into the reaction system, Cr can be added to the growing crystal.

第1図はビスベンゼンクロムをキヤリアガスと
ともに導入する方法を示す図である。この図にお
いて、1は容器であり、その中にビスベンゼンク
ロム2を入れる。そして、その容器1にキヤリア
ガス(たとえばH2)を入口3より入れる一方、昇
化したビスベンゼンクロムとキヤリアガスを出口
4より取出し、反応系に導入する。ここで、導入
するビスベンゼンクロムの量は容器1の温度と、
流すキヤリアガスの量で決定する。
FIG. 1 is a diagram showing a method of introducing bisbenzene chromium together with a carrier gas. In this figure, 1 is a container, into which bisbenzene chromium 2 is placed. A carrier gas (for example, H 2 ) is introduced into the container 1 from the inlet 3, while the elevated bisbenzene chromium and the carrier gas are taken out from the outlet 4 and introduced into the reaction system. Here, the amount of bisbenzenechromium introduced is determined by the temperature of container 1,
Determined by the amount of carrier gas flowing.

第2図は他の導入法であり、容器5の中にビス
ベンゼンクロム2を入れ、フイルタ6で容器5に
とじ込める。そして、それにキヤリアガスを入口
3′から入れる一方、昇華したビスベンゼンクロ
ムとともにキヤリアガスを出口4′より取出し、
反応系に導入する。
FIG. 2 shows another introduction method, in which bisbenzene chromium 2 is placed in a container 5 and confined in the container 5 with a filter 6. Then, carrier gas is introduced into it from the inlet 3', while the carrier gas is taken out from the outlet 4' along with the sublimated bisbenzene chromium.
Introduce into the reaction system.

このようにして反応系内に導入されたビスベン
ゼンクロムは加熱されてクロムとベンゼンに分解
する。そして、クロムは成長中の結晶に添加され
て深い準位を形成し、ベンゼンは反応系から排気
される。なお、一般にMO−CVD法では、反応管
の周囲を水冷する一方、基板近傍のみを加熱する
コールドウオール炉を使用する。したがつて、前
記ビスベンゼンクロムの分解は基板近傍のみで行
われることになる。
The bisbenzene chromium thus introduced into the reaction system is heated and decomposed into chromium and benzene. Chromium is then added to the growing crystal to form a deep level, and benzene is exhausted from the reaction system. Note that in general, the MO-CVD method uses a cold wall furnace that heats only the vicinity of the substrate while cooling the area around the reaction tube with water. Therefore, the bisbenzene chromium is decomposed only in the vicinity of the substrate.

本発明者は、減圧系のMO−CVD法により上記
の方法を実験した。そして、その実験で、n型
GaAsの電子濃度(6×1015cm-3)が、ビスベンゼ
ンクロムの導入により1桁下がることを確認し
た。また、電子濃度の下がり方は、導入するビス
ベンゼンクロムにより制御できることを確認し
た。この場合、n型のドーパントSeを同時に導
入しての結果であるが、このドーピング量を少な
くするか、ビスベンゼンクロムの導入量を増すこ
とにより、半絶縁性のエピタキシヤル成長層を得
ることができる。また、n型のドーパントを導入
しない場合には、ビスベンゼンクロムの導入量が
少なくても半絶縁性にすることができる。
The present inventor experimented with the above method using a reduced pressure MO-CVD method. In that experiment, n-type
It was confirmed that the electron concentration (6×10 15 cm -3 ) of GaAs was reduced by one order of magnitude by introducing bisbenzene chromium. We also confirmed that the way the electron concentration decreases can be controlled by introducing bisbenzenechromium. In this case, the n-type dopant Se was introduced at the same time, but it is possible to obtain a semi-insulating epitaxial growth layer by reducing this doping amount or increasing the amount of bisbenzene chromium introduced. can. Furthermore, when no n-type dopant is introduced, semi-insulating properties can be achieved even if the amount of bisbenzene chromium introduced is small.

以上説明したように実施例では、MO−CVD法
による化合物半導体の半絶縁性エピタキシヤル層
を、ビスベンゼンクロムの導入により得ることが
できる。この場合、ビスベンゼンクロムは塩化物
でないのでClの導入がなく、Cr以外にはCとH
のみである。したがつて、MO−CVD法の特徴を
保持したまま、Crの添加が可能となる。また、
蒸気圧が室温で10-7気圧程度と低いため、微少量
のCrの添加を精度よく制御することが容易であ
り、ゆえに低電子濃度の高純度結晶に、この電子
を相殺するだけの微量のCrを添加して不純物濃
度の低い高品質の半絶縁性エピタキシヤル成長層
を得ることができる。
As explained above, in the embodiment, a semi-insulating epitaxial layer of a compound semiconductor by MO-CVD can be obtained by introducing bisbenzene chromium. In this case, since bisbenzenechromium is not a chloride, there is no introduction of Cl, and other than Cr, C and H
Only. Therefore, it is possible to add Cr while maintaining the characteristics of the MO-CVD method. Also,
Since the vapor pressure is as low as 10 -7 atm at room temperature, it is easy to precisely control the addition of a small amount of Cr, and therefore a small amount of Cr is added to a high purity crystal with a low electron concentration, just enough to cancel out the electrons. By adding Cr, a high quality semi-insulating epitaxial growth layer with a low impurity concentration can be obtained.

(発明の効果) 以上詳述したようにこの発明の方法によれば、
ビスベンゼンクロムを、結晶中に深い準位をつく
るCrの原料として添加することにより、MO−
CVD法によりGaAsなどの化合物半導体の高品質
半絶縁性エピタキシヤル層を得ることができる。
したがつて、この発明の方法は、FETのバツフ
ア層、イオン打込み用の基板などの製造方法に利
用することができる。
(Effect of the invention) As detailed above, according to the method of this invention,
By adding bisbenzene chromium as a raw material for Cr that creates deep levels in the crystal, MO-
High quality semi-insulating epitaxial layers of compound semiconductors such as GaAs can be obtained by the CVD method.
Therefore, the method of the present invention can be used in manufacturing methods for FET buffer layers, ion implantation substrates, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の化合物半導体
のエピタキシヤル成長法の実施例を説明するため
の図で、ビスベンゼンクロムをキヤリアガスとと
もに導入する方法を示す図である。 2……ビスベンゼンクロム。
FIGS. 1 and 2 are diagrams for explaining an embodiment of the epitaxial growth method of a compound semiconductor according to the present invention, and are diagrams showing a method of introducing bisbenzene chromium together with a carrier gas. 2...Bisbenzenechromium.

Claims (1)

【特許請求の範囲】[Claims] 1 族の有機金属と族の水素化物を原料とす
る気相エピタキシヤル法において、ビスベンゼン
クロム(Cr(C6H62)の反応系への導入により、
クロム(Cr)をドーピングして半絶縁性の成長
層を得ることを特徴とする化合物半導体のエピタ
キシヤル成長法。
In the gas phase epitaxial method using Group 1 organic metals and Group hydrides as raw materials, by introducing bisbenzenechromium (Cr(C 6 H 6 ) 2 ) into the reaction system,
A compound semiconductor epitaxial growth method characterized by doping chromium (Cr) to obtain a semi-insulating growth layer.
JP2927683A 1983-02-25 1983-02-25 Method for epitaxially growing compound semiconductor Granted JPS59156997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2927683A JPS59156997A (en) 1983-02-25 1983-02-25 Method for epitaxially growing compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2927683A JPS59156997A (en) 1983-02-25 1983-02-25 Method for epitaxially growing compound semiconductor

Publications (2)

Publication Number Publication Date
JPS59156997A JPS59156997A (en) 1984-09-06
JPS6156199B2 true JPS6156199B2 (en) 1986-12-01

Family

ID=12271748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2927683A Granted JPS59156997A (en) 1983-02-25 1983-02-25 Method for epitaxially growing compound semiconductor

Country Status (1)

Country Link
JP (1) JPS59156997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170821A (en) * 1987-12-25 1989-07-05 Yonden Eng Kk Thermal image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170821A (en) * 1987-12-25 1989-07-05 Yonden Eng Kk Thermal image display device

Also Published As

Publication number Publication date
JPS59156997A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
US8512471B2 (en) Halosilane assisted PVT growth of SiC
CN104364428B (en) The NU types and PI type SI SiC single crystals and its growing method of vanadium compensation
JP2016507467A (en) Vanadium-doped single crystal and growth method thereof
JPH05208900A (en) Apparatus for growing silicon carbide single crystal
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
Fujiwara et al. Drastic effects of hydrogen flow rate on growth characteristics and electrical/optical properties of InP grown by organometallic vapour phase epitaxy with TMIn and TBP
US4239584A (en) Molecular-beam epitaxy system and method including hydrogen treatment
US3406048A (en) Epitaxial deposition of gallium arsenide from an atmosphere of hydrogen and ga2h6+ascl3+ash3 vapors
JPS6156199B2 (en)
US4238252A (en) Process for growing indium phosphide of controlled purity
JPH0225018A (en) Manufacture of semiconductor device
JP3932017B2 (en) Method for producing iron silicide crystal
JPH0416597A (en) Production of silicon carbide single crystal
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JPS6115150B2 (en)
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH07118457B2 (en) Metal-organic vapor phase epitaxy growth method of II-VI semiconductor materials
JPS64809B2 (en)
JPH02289484A (en) Growing device for single crystal
JPS647487B2 (en)
JPH0322519A (en) Manufacture of compound semiconductor mixed crystal
Koukitu et al. Vapor-phase epitaxial growth of GaAs by the single flat temperature zone method
JPS6242517A (en) Semiconductor vapor processing
JPS5861623A (en) Vapor phase growth of 3-5 group compound mixed crystal semiconductor
JPS62235300A (en) Method for growing iii-v compound semiconductor in vapor phase