JPS6155895B2 - - Google Patents

Info

Publication number
JPS6155895B2
JPS6155895B2 JP13278679A JP13278679A JPS6155895B2 JP S6155895 B2 JPS6155895 B2 JP S6155895B2 JP 13278679 A JP13278679 A JP 13278679A JP 13278679 A JP13278679 A JP 13278679A JP S6155895 B2 JPS6155895 B2 JP S6155895B2
Authority
JP
Japan
Prior art keywords
immunoglobulin
sulfonated
aggregates
monomer content
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13278679A
Other languages
Japanese (ja)
Other versions
JPS5657718A (en
Inventor
Shoji Ono
Juji Fukumoto
Tsunemasa Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP13278679A priority Critical patent/JPS5657718A/en
Priority to CA000359215A priority patent/CA1153695A/en
Priority to US06/182,053 priority patent/US4360457A/en
Priority to DE8080303004T priority patent/DE3067150D1/en
Priority to AT80303004T priority patent/ATE6740T1/en
Priority to EP80303004A priority patent/EP0025321B1/en
Publication of JPS5657718A publication Critical patent/JPS5657718A/en
Publication of JPS6155895B2 publication Critical patent/JPS6155895B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】 本発明は、単量体含量の多い免疫グロブリン誘
導体の製造法に関する。更に詳しくは、本発明
は、凝集体を含む免疫グロブリンから単量体含量
の多いS−スルホン化免疫グロブリンを得る方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing immunoglobulin derivatives with a high monomer content. More particularly, the present invention relates to a method for obtaining S-sulfonated immunoglobulins with a high monomer content from immunoglobulins containing aggregates.

免疫グロブリンは体液性免疫の担い手として医
学的に重要な意義を有し、種々の病原微生物に対
する免疫活性を有する。従つて、この免疫グロブ
リンの投与により麻疹、ウイルス性肝炎等のウイ
ルス感染症をはじめ、黄色ブドウ球菌の如き抗生
物質耐性細菌による感染症等も予防並びに治療す
ることができる。そしてこれらの予防並びに治療
に際しては、大量投与の可能性と速効性という点
で、筋注よりも静注による投与の方が好ましい。
しかしながら、人血漿より分画、調製された免疫
グロブリンを静注により投与した場合には、血圧
降下、悪寒発熱、呼吸困難、頭痛等を伴なうアナ
フイラキシー様副作用を生じるという問題があ
る。これは、人血漿より分画して集められた免疫
グロブリンはその分子が一部凝集して大分子(凝
集体)となつていることが多く、また製剤化工程
においても免疫グロブリンは除々に凝集する傾向
があり、これらの凝集体が血液中の補体成分と結
合し(抗補体活性)、それを活性化してアナフイ
ラトキシン様物質や血管透過性因子などの生物活
性因子を遊離するためである。
Immunoglobulin has medical significance as a carrier of humoral immunity and has immunological activity against various pathogenic microorganisms. Therefore, by administering this immunoglobulin, it is possible to prevent and treat viral infections such as measles and viral hepatitis, as well as infections caused by antibiotic-resistant bacteria such as Staphylococcus aureus. For the prevention and treatment of these diseases, intravenous injection is preferable to intramuscular injection because of the possibility of large-dose administration and rapid efficacy.
However, when immunoglobulin fractionated and prepared from human plasma is administered intravenously, there is a problem in that it causes anaphylaxis-like side effects accompanied by a drop in blood pressure, chills and fever, dyspnea, headache, and the like. This is because immunoglobulin fractionated and collected from human plasma often has some of its molecules aggregated into large molecules (aggregates), and immunoglobulin gradually aggregates during the formulation process. These aggregates bind to complement components in the blood (anticomplement activity) and activate them, releasing biologically active factors such as anaphylatoxin-like substances and vascular permeability factors. It is.

かかる凝集体による副作用を除去若しくは軽減
するために種々の方法が提案されているが、これ
らの中で優れた方法として、免疫グロブリンに亜
硫酸ナトリウムとテトラチオン酸ナトリウム等の
酸化剤とを反応させ、免疫グロブリンのペプチド
鎖間SS結合を切断し、S−スルホン化すること
により、各種抗体活性を保持したまま、抗補体活
性を低減させた、静注可能なスルホン化免疫グロ
ブリンを得る方法が知られている(例えば、特開
昭51−1630号参照)。免疫グロブリンのS−スル
ホン化反応では、免疫グロブリンの凝集体は除去
されるわけではなく、凝集体もS−スルホン化さ
れ、抗補体活性が低減し、安全な製剤になるもの
と考えられる。しかしながら、S−スルホン化免
疫グロブリンの凝集体は、もとの免疫グロブリン
の凝集体に比べれば抗補体価が低く安全性は高い
が、なお若干の補体結合能力を有しているので、
多量に含まれている場合には副作用を惹起する可
能性がある。したがつて、上記方法は、凝集体が
比較的少ない免疫グロブリンをスルホン化反応の
原料とする場合には問題はないが、工業的に入手
可能な免疫グロブリン、例えばコーンのエタノー
ル分画法によつて得られる免疫グロブリンは凝集
体が多く、これをそのままS−スルホン化反応の
原料とした場合には、抗補体活性が必ずしも十分
低減せず、静注時の安全性になお問題が残るとい
う欠点があつた。
Various methods have been proposed to eliminate or reduce the side effects caused by such aggregates, but one of the best methods is to react immunoglobulin with an oxidizing agent such as sodium sulfite and sodium tetrathionate to induce immunostimulation. There is a known method for obtaining intravenously injectable sulfonated immunoglobulin, which has reduced anti-complement activity while retaining various antibody activities, by cleaving the SS bonds between peptide chains of globulin and S-sulfonating it. (For example, see Japanese Patent Application Laid-open No. 1630/1983). In the S-sulfonation reaction of immunoglobulin, immunoglobulin aggregates are not removed, but the aggregates are also S-sulfonated, which reduces anti-complement activity and is thought to result in a safe preparation. However, although S-sulfonated immunoglobulin aggregates have a lower anti-complement value and are safer than the original immunoglobulin aggregates, they still have some complement-fixing ability.
If it is contained in large amounts, it may cause side effects. Therefore, the above method has no problems when immunoglobulin with relatively few aggregates is used as a raw material for the sulfonation reaction, but it does not have any problems when using immunoglobulin that is relatively free of aggregates as a raw material for the sulfonation reaction, but it is difficult to use industrially available immunoglobulin, such as Cohn's ethanol fractionation method. The immunoglobulin obtained by this process contains many aggregates, and if this is used as a raw material for the S-sulfonation reaction, the anti-complement activity will not necessarily be sufficiently reduced, and there will still be problems with safety during intravenous injection. There were flaws.

上記のような欠点のない静注可能なS−スルホ
ン化免疫グロブリンを得るためには、出来るだけ
S−スルホン化免疫グロブリン中の凝集体を除去
あるいは単量体に解離させる必要がある。しかし
ながら、凝集体を除去する方法の場合には、凝集
体と共に多くの単量体も除かれるために最終的に
利用できる単量体が少なくなり、これは貴重な人
血を原料としていることを考えると非常なデメリ
ツトである。凝集体を単量体に解離させる方法を
採用すれば上記の如き問題点は解消できる。しか
しながら、通常の免疫グロブリンの凝集体を単量
体に解離させる方法として従来知られている方法
は、いずれも下記の如き欠点を有している。例え
ば、凝集体を含む免疫グロブリンをPH4の酸性水
溶液で処理し、凝集体を単量体に解離させる方法
が知られているが、この方法は、処理後免疫グロ
ブリン溶液のPHを中性に戻すと再び単量体の凝集
が始まるし、PH4のまま長期間放置すると免疫グ
ロブリンが変性を受けるという欠点がある。また
蛋白分解酵素であるプラスミンにより凝集体を単
量体に解離させる方法も知られているが、この方
法は、凝集体を解離させるのに数日間かかるとい
う欠点を有し、更に処理後プラスミンを完全に除
去することが困難で、そのまま放置しておくと免
疫グロブリンの単量体も分解を受けるという問題
がある。また、免疫グロブリン溶液に、ブドウ
糖、果糖等の糖類、グリシン、アラニン等の中性
アミノ酸又は塩化ナトリウム、塩化カリウム等の
中性塩を比較的高濃度に添加することによつて、
凝集体を単量体に徐々に解離させると共に、単量
体の再凝集を防止する方法も知られているが(特
開昭54−20124)、この方法では、凝集体を単量体
に十分に解離させるのに2日〜30日間(37℃で3
〜7日間)を要し、工業的には利用しにくいとい
う欠点がある。
In order to obtain intravenously injectable S-sulfonated immunoglobulin without the above-mentioned drawbacks, it is necessary to remove aggregates or dissociate the S-sulfonated immunoglobulin into monomers as much as possible. However, in the case of the method of removing aggregates, many monomers are also removed along with the aggregates, resulting in a decrease in the amount of monomer that can be used in the end. When you think about it, this is a huge disadvantage. The above problems can be solved by adopting a method of dissociating aggregates into monomers. However, all conventionally known methods for dissociating ordinary immunoglobulin aggregates into monomers have the following drawbacks. For example, a method is known in which immunoglobulin containing aggregates is treated with an acidic aqueous solution of pH 4 to dissociate the aggregates into monomers, but this method returns the PH of the immunoglobulin solution to neutral after treatment. The monomers start aggregating again, and if left at PH4 for a long period of time, the immunoglobulin will undergo denaturation. A method is also known in which aggregates are dissociated into monomers using the proteolytic enzyme plasmin, but this method has the disadvantage that it takes several days to dissociate aggregates, and furthermore, plasmin is released after treatment. It is difficult to remove completely, and if left untreated, immunoglobulin monomers will also be degraded. In addition, by adding sugars such as glucose and fructose, neutral amino acids such as glycine and alanine, or neutral salts such as sodium chloride and potassium chloride to the immunoglobulin solution at relatively high concentrations,
A method is known in which the aggregates are gradually dissociated into monomers while preventing the monomers from re-agglomerating (Japanese Patent Application Laid-Open No. 1983-20124). for 2 to 30 days (37℃ at 37℃)
It takes up to 7 days) and is difficult to use industrially.

本発明者らは、従来技術の欠点を解消すべく鋭
意研究した結果、免疫グロブリンをS−スルホン
化するに際して、解離指数PKbが7以下の窒素塩
基性有機化合物を反応系に存在させることによ
り、凝集体の少ないS−スルホン化免疫グロブリ
ンが得られることを知見し、本発明に到達した。
As a result of intensive research to resolve the drawbacks of the conventional techniques, the present inventors discovered that when immunoglobulin is S-sulfonated, by allowing a nitrogen-based organic compound with a dissociation index PKb of 7 or less to exist in the reaction system, The present invention was achieved based on the discovery that S-sulfonated immunoglobulin with less aggregates can be obtained.

すなわち本発明は、凝集体を含む免疫グロブリ
ンを酸化剤並びに水中で亜硫酸イオンを生ずる化
合物でS−スルホン化するに際し、免疫グロブリ
ンに対し10〜600重量%の解離指数PKbが7以下
の窒素塩基性有機化合物を反応系に存在させるこ
とを特徴とする単量体含量の多いS−スルホン化
免疫グロブリンの製造法である。
That is, the present invention provides S-sulfonation of immunoglobulin containing aggregates with an oxidizing agent and a compound that generates sulfite ions in water. This is a method for producing S-sulfonated immunoglobulin with a high monomer content, which is characterized in that an organic compound is present in the reaction system.

本発明において原料として用いられる免疫グロ
ブリンとは、血清、血漿又はその他の体液又は臓
器抽出液から、コーンのエタノール分画法等公知
の方法で得られるγ−グロブリンを主体とする免
疫グロブリンを意味する。これらは通常20重量%
以上の凝集体(沈降定数9S以上)を含有してい
る。
The immunoglobulin used as a raw material in the present invention refers to an immunoglobulin mainly composed of γ-globulin obtained from serum, plasma, other body fluids, or organ extracts by a known method such as Cohn's ethanol fractionation method. . These are usually 20% by weight
Contains aggregates with a sedimentation constant of 9S or more.

免疫グロブリンのS−スルホン化反応は、免疫
グロブリンの鎖間SS結合を切断し、S−スルホ
ン化するものであるが、一般に酸化剤並びに水中
で亜硫酸イオンを形成する化合物によつて行なわ
れる。水中で亜硫酸イオンを形成する化合物とし
ては、亜硫酸ナトリウム、亜硫酸カリウム、亜硫
酸アンモニウム等の亜硫酸塩;重亜硫酸ナトリウ
ム、重亜硫酸カリウム、重亜硫酸アンモニウム等
の重亜硫酸塩;ピロ重亜硫酸ナトリウム、ピロ重
亜硫酸カリウム、ピロ重亜硫酸アンモニウム等の
ピロ重亜硫酸塩等が挙げられる。酸化剤としては
亜硫酸イオンとの反応性の低いものが望ましく、
例えば、水中でトリチオン酸イオン、テトラチオ
ン酸イオン、ペンタチオン酸イオン、ヘキサチオ
ン酸イオン等の硫黄原子が3〜6個のポリチオン
酸イオンを形成し得る化合物、水中で2価の銅イ
オンを形成し得る化合物、水中でヨード安息香酸
イオンを形成し得る化合物あるいは空気等の分子
状酸素含有ガス(この場合は触媒量のシステイン
または2−メルカプトエチルアミン等を加えるこ
とが望ましい)等が用いられる。水中で亜硫酸イ
オンを形成し得る化合物の量は、免疫グロブリン
の切断すべき鎖間SS結合に対して2モル倍以
上、好ましくは10モル倍以上が用いられる。また
酸化剤の量は、免疫グロブリンの切断すべき鎖間
SS結合に対して1モル倍以上、好ましくは2モ
ル倍以上が用いられる。
The S-sulfonation reaction of immunoglobulins involves cleaving the interchain SS bonds of immunoglobulins to form S-sulfonation, and is generally carried out using an oxidizing agent and a compound that forms sulfite ions in water. Compounds that form sulfite ions in water include sulfites such as sodium sulfite, potassium sulfite and ammonium sulfite; bisulfites such as sodium bisulfite, potassium bisulfite and ammonium bisulfite; sodium pyrobisulfite and potassium pyrobisulfite. , pyrobisulfites such as ammonium pyrobisulfite, and the like. As an oxidizing agent, it is desirable to use one that has low reactivity with sulfite ions.
For example, compounds that can form polythionate ions with 3 to 6 sulfur atoms such as trithionate ions, tetrathionate ions, pentathionate ions, and hexathionate ions in water, and compounds that can form divalent copper ions in water. , a compound capable of forming iodobenzoic acid ions in water, or a molecular oxygen-containing gas such as air (in this case, it is desirable to add a catalytic amount of cysteine or 2-mercaptoethylamine). The amount of the compound capable of forming sulfite ions in water is 2 times or more, preferably 10 times or more by mole, relative to the interchain SS bonds of the immunoglobulin to be cleaved. In addition, the amount of oxidizing agent is determined by
The amount used is 1 mole or more, preferably 2 mole or more relative to the SS bond.

本発明において用いられた窒素塩基性有機化合
物は、そのPKbが7以下のものである。ここで
PKbとは、PKb=−logk 〔K=〔BH〕/〔B〕〔H〕、〔B〕は塩基性化
合物の濃 度、〔H+〕は水素イオンの濃度、〔BH+〕は共役酸
の濃度を表わす。〕 で定義される塩基性化合物の解離指数である。こ
れらの具体例としては、メチルアミン、エチルア
ミン等の第一級アルキルアミン、ジメチルアミ
ン、ジエチルアミン等の第二級アルキルアミン、
トリメチルアミン、トリエチルアミン等の第三級
アルキルアミン、ピペリジン、ピロリジン等の環
状飽和アミン、イミダゾール、2−メチルイミダ
ゾール、ピラゾール、トリアゾール等の含窒素複
素環化合物、リジン、オルニチン、アルギニン等
の塩基性アミン酸、ロイシンアミド、グリシンア
ミド、アラニンアミド等の中性アミノ酸のアミド
誘導体又は低級アルキルエステル、D−グルコサ
ミン等のグルコースのアミン誘導体が挙げられ
る。特にアルギニン、ロイシンアミド、D−グル
コサミンが好ましい。かかる窒素塩基性有機化合
物はそのまゝの形あるいは塩酸塩、臭化水素酸塩
等の水溶性塩の形にして反応系に添加して用いら
れる。
The nitrogen basic organic compound used in the present invention has a PKb of 7 or less. here
PKb is PKb=-logk [K=[BH + ]/[B][H + ], [B] is the concentration of basic compound, [H + ] is the concentration of hydrogen ion, [BH + ] is the conjugate Represents the concentration of acid. ] is the dissociation index of basic compounds defined by Specific examples of these include primary alkyl amines such as methylamine and ethylamine; secondary alkyl amines such as dimethylamine and diethylamine;
Tertiary alkyl amines such as trimethylamine and triethylamine; cyclic saturated amines such as piperidine and pyrrolidine; nitrogen-containing heterocyclic compounds such as imidazole, 2-methylimidazole, pyrazole and triazole; basic amino acids such as lysine, ornithine and arginine; Examples include amide derivatives of neutral amino acids such as leucinamide, glycinamide, alaninamide, lower alkyl esters, and amine derivatives of glucose such as D-glucosamine. Particularly preferred are arginine, leucinamide, and D-glucosamine. Such nitrogen-based organic compounds are used as they are or in the form of water-soluble salts such as hydrochloride and hydrobromide, which are added to the reaction system.

本発明において、前記窒素塩基性有機化合物
(又はその水溶性塩)は、免疫グロブリンをスル
ホン化する前に、免疫グロブリン溶液に、免疫グ
ロブリンに対し10〜600重量%、好ましくは20〜
400重量%の割合で添加混合される。窒素塩基性
有機化合物の量が10重量%未満の場合には、本発
明の効果が十分には得られず、600重量%を越え
る場合には、本発明の効果は得られても経済的あ
るいは操作的に不利となるので好ましくない。添
加の際の温度は0〜50℃好ましくは0〜30℃であ
る。
In the present invention, the nitrogen basic organic compound (or its water-soluble salt) is added to the immunoglobulin solution in an amount of 10 to 600% by weight, preferably 20 to 600% by weight based on the immunoglobulin, before sulfonating the immunoglobulin.
It is added and mixed at a ratio of 400% by weight. If the amount of the nitrogen basic organic compound is less than 10% by weight, the effect of the present invention will not be sufficiently obtained, and if it exceeds 600% by weight, even though the effect of the present invention can be obtained, it will not be economical or effective. This is not preferable because it is disadvantageous in terms of operation. The temperature during addition is 0 to 50°C, preferably 0 to 30°C.

本発明において、スルホン化反応は水中で行な
われるが、反応時のPHは5.0〜9.0の範囲が好まし
い。反応温度は0〜50℃、好ましくは10〜45℃の
範囲で選ばれる。50℃以上の温度では免疫グロブ
リン分子が蛋白変性を受け易く、好ましくない。
0℃以下の温度では反応の進行は極めて遅いので
工業的ではない。反応時間は免疫グロブリンの鎖
間SS結合がほとんど切断されて、S−スルホン
化される迄であるが、それは試薬量、反応温度等
により異なるが、一般に0.5〜24時間の間で選ば
れる。
In the present invention, the sulfonation reaction is carried out in water, and the pH during the reaction is preferably in the range of 5.0 to 9.0. The reaction temperature is selected in the range of 0 to 50°C, preferably 10 to 45°C. Temperatures of 50°C or higher are undesirable because immunoglobulin molecules are susceptible to protein denaturation.
At temperatures below 0°C, the reaction progresses extremely slowly and is therefore not suitable for industrial use. The reaction time is until most of the interchain SS bonds of the immunoglobulin are cleaved and S-sulfonation occurs, and although it varies depending on the amount of reagents, reaction temperature, etc., it is generally selected between 0.5 and 24 hours.

本発明により免疫グロブリンの鎖間SS結合が
切断され、SS結合がS−スルホネート基に変換
した免疫グロブリンが得られる。このものは免疫
グロブリンのH鎖−H鎖間、H鎖−L鎖間が大部
分切断されているが、各鎖間は水素結合等の非共
有結合により免疫グロブリンの立体構造は保持さ
れている。スルホン化反応後生成物の分離は一般
的に透析、塩析、カラムクロマトグラフイー等の
精製方法を用いて行なわれる。例えば、スルホン
化反応後生理食塩液によつて透析することによ
り、目的物質の生理食塩液溶液が得られる。
According to the present invention, an immunoglobulin in which the interchain SS bonds of immunoglobulins are cleaved and the SS bonds are converted to S-sulfonate groups can be obtained. In this product, most of the H chain to H chain and H chain to L chain of the immunoglobulin are cleaved, but the three-dimensional structure of the immunoglobulin is maintained due to non-covalent bonds such as hydrogen bonds between each chain. . Separation of the product after the sulfonation reaction is generally performed using purification methods such as dialysis, salting out, and column chromatography. For example, by dialysis against physiological saline after the sulfonation reaction, a physiological saline solution of the target substance can be obtained.

本発明によつて得られるS−スルホン化免疫グ
ロブリンは、PKbが7以下の窒素塩基性有機化合
物を添加しない系で得られたS−スルホン化免疫
グロブリンに比較して凝集体が少なく、従つて静
注用として極めて安全なものである。
The S-sulfonated immunoglobulin obtained according to the present invention has fewer aggregates than the S-sulfonated immunoglobulin obtained in a system without the addition of a nitrogen-based organic compound with a PKb of 7 or less, and therefore has less aggregates. It is extremely safe for intravenous injection.

以下実施例により本発明を詳述する。実施例中
における%はすべて重量%を意味する。
The present invention will be explained in detail with reference to Examples below. All percentages in the examples mean percentages by weight.

なお実施例中におけるS−スルホン化免疫グロ
ブリンの単量体含量の測定、抗補体価の測定およ
びドデシル硫酸ナトリウム(SDS)デイスク電気
泳動は以下の方法によつてなされたものである。
In the Examples, the measurement of the monomer content of S-sulfonated immunoglobulin, the measurement of anti-complement value, and the sodium dodecyl sulfate (SDS) disk electrophoresis were carried out by the following methods.

〔S−スルホン化免疫グロブリンの単量体含量〕[Monomer content of S-sulfonated immunoglobulin]

S−スルホン化免疫グロブリンの5%溶液0.3
mlを用い、ゲル過分析を行なうことによつて単
量体(沈降定数7S、分子量約16万)の含量を求
めた。ゲルはセフアローズCL−6B(フアルマシ
ア社製)を用い、カラムは直径1.5cm長さ80cmの
ものを用いた。溶液の流出速度は0.17ml/minで
あつた。
5% solution of S-sulfonated immunoglobulin 0.3
The content of monomers (sedimentation constant 7S, molecular weight approximately 160,000) was determined by gel permeation analysis using ml. Sepharose CL-6B (manufactured by Pharmacia) was used as the gel, and a column with a diameter of 1.5 cm and a length of 80 cm was used. The solution flow rate was 0.17ml/min.

〔抗補体価〕[Anti-complement value]

カバツトとマイヤー(Kabat and Mayer)著
のエクスペリメンタルイムノケミストリー
(Experimental Immunochemistry)第225頁
(1961年発行)に記載された方法によつた。
The method described in Kabat and Mayer, Experimental Immunochemistry, p. 225 (published in 1961) was followed.

〔SDS デイスク電気泳動〕[SDS disk electrophoresis]

得られたスルホン化免疫グロブリンをウエーバ
ーとオズボーンの方法〔J.Biol.Chem244、4406
(1969)〕によりSDSデイスク電気泳動にかけ、未
反応の免疫グロブリンの量を測定した。
The obtained sulfonated immunoglobulin was processed by the method of Weber and Osborn [J.Biol.Chem244, 4406
(1969)], and the amount of unreacted immunoglobulin was measured.

実施例 1 人免疫グロブリン(コーンのエタノール分画法
によるフラクシヨン、単量体含量76.2%抗補体
価90%<、抗体価:ジフテリア2.0units/ml)の
10%溶液30mlにl−アルギニン塩酸塩1.5gを加
えて溶解した。この溶液に、テトラチオン酸ナト
リウム0.5gをPH7.2の食塩加0.1Mリン酸緩衝液2
mlに溶解した溶液と亜硫酸ナトリウム0.82gをPH
7.2の食塩加0.1Mリン酸緩衝液8mlに溶解した溶
液とを加え、37℃で4.5時間S−スルホン化反応
を行つた。反応終了後反応液を氷冷し、0.9%食
塩水溶液に対して透析することにより、S−スル
ホン化免疫グロブリンの6.5%溶液42mlを得た。
得られたS−スルホン化免疫グロブリンは以下の
ような性質を有していた。
Example 1 Human immunoglobulin (fraction by Cohn's ethanol fractionation method, monomer content 76.2%, anti-complement titer 90% <, antibody titer: diphtheria 2.0 units/ml)
1.5 g of l-arginine hydrochloride was added and dissolved in 30 ml of the 10% solution. Add 0.5 g of sodium tetrathionate to this solution in 0.1 M phosphate buffer with PH7.2 salt.
PH of the solution and 0.82 g of sodium sulfite dissolved in ml
A solution of 7.2 dissolved in 8 ml of 0.1M phosphate buffer with sodium chloride was added, and S-sulfonation reaction was carried out at 37°C for 4.5 hours. After the reaction was completed, the reaction solution was ice-cooled and dialyzed against a 0.9% saline solution to obtain 42 ml of a 6.5% solution of S-sulfonated immunoglobulin.
The obtained S-sulfonated immunoglobulin had the following properties.

単量体含量:85.6% 抗補体価:9.0% 免疫グロブリン(H2L2)量 0.8%(SDSデイス
ク電気泳動による) 抗体価:ジフテリア 2.0units/ml 比較例 1 l−アルギニン塩酸塩を加えることなく、その
他は実施例1の場合と全く同様な条件で反応を行
ない、S−スルホン化免疫グロブリン6.7%溶液
40mlを得た。得られたS−スルホン化免疫グロブ
リンの単量体含量は77.1%であり、抗補体価は
28.0であつた。
Monomer content: 85.6% Anti-complement titer: 9.0% Immunoglobulin (H 2 L 2 ) amount 0.8% (by SDS disc electrophoresis) Antibody titer: Diphtheria 2.0 units/ml Comparative example 1 Add l-arginine hydrochloride Otherwise, the reaction was carried out under the same conditions as in Example 1, and a 6.7% S-sulfonated immunoglobulin solution was used.
Obtained 40ml. The monomer content of the obtained S-sulfonated immunoglobulin was 77.1%, and the anti-complement value was
It was 28.0.

実施例 2 l−アルギニン塩酸塩の代わりにl−オルニチ
ン塩酸塩1.5gを用いる以外は実施例1と全く同
様に反応を行ない、S−スルホン化免疫グロブリ
ンの6.4%溶液40mlを得た。得られたS−スルホ
ン化免疫グロブリンの単量体含量は84.1%であつ
た。
Example 2 The reaction was carried out in exactly the same manner as in Example 1, except that 1.5 g of l-ornithine hydrochloride was used instead of l-arginine hydrochloride, to obtain 40 ml of a 6.4% solution of S-sulfonated immunoglobulin. The monomer content of the S-sulfonated immunoglobulin obtained was 84.1%.

実施例 3 l−アルギニン塩酸塩の代わりにl−リジン塩
酸塩1.5gを用いる以外は実施例1と全く同様に
反応を行ない、S−スルホン化免疫グロブリンの
6.6%溶液41mlを得た。得られたS−スルホン化
免疫グロブリンの単量体含量は83.2%であつた。
Example 3 The reaction was carried out in exactly the same manner as in Example 1, except that 1.5 g of l-lysine hydrochloride was used instead of l-arginine hydrochloride, and S-sulfonated immunoglobulin was
41 ml of 6.6% solution was obtained. The monomer content of the S-sulfonated immunoglobulin obtained was 83.2%.

実施例 4 l−アルギニン塩酸塩の代わりにl−ロイシン
アミド塩酸塩を用いる以外は実施例1と全く同様
に反応を行ない、S−スルホン化免疫グロブリン
の6.3%溶液43mlを得た。得られたS−スルホン
化免疫グロブリンの単量体含量は85.3%であつ
た。
Example 4 The reaction was carried out in exactly the same manner as in Example 1, except that l-leucineamide hydrochloride was used instead of l-arginine hydrochloride, and 43 ml of a 6.3% solution of S-sulfonated immunoglobulin was obtained. The monomer content of the S-sulfonated immunoglobulin obtained was 85.3%.

実施例 5 l−アルギニン塩酸塩の代わりにD−グルコサ
ミン塩酸塩を用いる以外は実施例1と全く同様に
反応を行ない、S−スルホン化免疫グロブリンの
6.6%溶液42mlを得た。得られたS−スルホン化
免疫グロブリンの単量体含量は83.9%であつた。
Example 5 The reaction was carried out in exactly the same manner as in Example 1 except that D-glucosamine hydrochloride was used instead of l-arginine hydrochloride, and S-sulfonated immunoglobulin was
42 ml of 6.6% solution was obtained. The monomer content of the S-sulfonated immunoglobulin obtained was 83.9%.

実施例 6 人免疫グロブリン(コーンのエタノール分画法
によるフラクシヨン)の10%溶液30mlにl−ア
ルギニン塩酸塩1.5gを加えて溶解した。この溶
液にトリチオン酸ナトリウム0.4gをPH7.2食塩加
0.1Mリン酸緩衝液2mlに溶解した溶液と亜硫酸
ナトリウム0.82gをPH7.2食塩加0.1Mリン酸緩衝
液8mlに溶解した溶液とを加え、37℃でも4.5時
間反応を行つた。反応終了後反応液を氷冷し、
0.9%食塩水溶液に対して透析することにより、
S−スルホン化免疫グロブリンの6.0%溶液45ml
を得た。得られたS−スルホン化免疫グロブリン
の単量体含量は86.2%、抗補体価は8.7%であつ
た。
Example 6 1.5 g of l-arginine hydrochloride was added and dissolved in 30 ml of a 10% solution of human immunoglobulin (fraction obtained by Cohn's ethanol fractionation method). Add 0.4 g of sodium trithionate to this solution and add salt to it at pH 7.2.
A solution dissolved in 2 ml of 0.1 M phosphate buffer and a solution of 0.82 g of sodium sulfite dissolved in 8 ml of 0.1 M phosphate buffer with pH 7.2 sodium chloride were added, and the reaction was carried out at 37° C. for 4.5 hours. After the reaction is completed, the reaction solution is cooled on ice,
By dialysis against 0.9% saline solution,
45 ml of 6.0% solution of S-sulfonated immunoglobulin
I got it. The monomer content of the obtained S-sulfonated immunoglobulin was 86.2%, and the anti-complement value was 8.7%.

Claims (1)

【特許請求の範囲】 1 凝集体を含む免疫グロブリンを酸化剤並びに
水中で亜硫酸イオンを生ずる化合物でS−スルホ
ン化するに際し、免疫グロブリンに対し10〜600
重量%の解離指数PKbが7以下の窒素塩基性有機
化合物を反応系に存在させることを特徴とする単
量体含量の多いS−スルホン化免疫グロブリンの
製造法。 2 窒素塩基性有機化合物が塩基性アミノ酸であ
る、特許請求の範囲第1項記載の単量体含量の多
いS−スルホン化免疫グロブリンの製造法。 3 窒素塩基性有機化合物が中性アミノ酸のアミ
ド誘導体である、特許請求の範囲第1項記載の単
量体含量の多いS−スルホン化免疫グロブリンの
製造法。 4 窒素塩基性有機化合物がグルコースのアミン
誘導体である、特許請求の範囲第1項記載の単量
体含量の多いS−スルホン化免疫グロブリンの製
造法。
[Scope of Claims] 1. When immunoglobulin containing aggregates is S-sulfonated with an oxidizing agent and a compound that generates sulfite ions in water, the immunoglobulin has a concentration of 10 to 600
1. A method for producing S-sulfonated immunoglobulin with a high monomer content, characterized in that a nitrogen-based organic compound having a weight percent dissociation index PKb of 7 or less is present in the reaction system. 2. The method for producing S-sulfonated immunoglobulin with a high monomer content according to claim 1, wherein the nitrogen basic organic compound is a basic amino acid. 3. The method for producing S-sulfonated immunoglobulin with a high monomer content according to claim 1, wherein the nitrogen basic organic compound is an amide derivative of a neutral amino acid. 4. The method for producing S-sulfonated immunoglobulin with a high monomer content according to claim 1, wherein the nitrogen basic organic compound is an amine derivative of glucose.
JP13278679A 1979-08-30 1979-10-17 Preparation of s-sulfonated immunoglobulin containing large amount of monomer Granted JPS5657718A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13278679A JPS5657718A (en) 1979-10-17 1979-10-17 Preparation of s-sulfonated immunoglobulin containing large amount of monomer
CA000359215A CA1153695A (en) 1979-08-30 1980-08-28 S-sulfonated immunoglobulin composition having a high monomer content and a process for production thereof
US06/182,053 US4360457A (en) 1979-08-30 1980-08-28 S-Sulfonated immunoglobulin composition having a high monomer content and a process for production thereof
DE8080303004T DE3067150D1 (en) 1979-08-30 1980-08-29 Composition containing s-sulfonated immunoglobulin and aggregation preventing or aggregate dissociating agent therefor, and processes for preparing compositions containing high proportions of monomeric s-sulfonated immunoglobulin
AT80303004T ATE6740T1 (en) 1979-08-30 1980-08-29 COMPOSITION CONTAINING AN S-SULFONATED IMMUNOGLOBULIN AND ANAGAGING PREVENTION OR AGAGING DISSOCIATION AGENT AND METHODS FOR PREPARING COMPOSITIONS CONTAINING A HIGH PROPORTION OF MONOMERIC S-SULFONATED IMMUNOGLOBULINS.
EP80303004A EP0025321B1 (en) 1979-08-30 1980-08-29 Composition containing s-sulfonated immunoglobulin and aggregation preventing or aggregate dissociating agent therefor, and processes for preparing compositions containing high proportions of monomeric s-sulfonated immunoglobulin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13278679A JPS5657718A (en) 1979-10-17 1979-10-17 Preparation of s-sulfonated immunoglobulin containing large amount of monomer

Publications (2)

Publication Number Publication Date
JPS5657718A JPS5657718A (en) 1981-05-20
JPS6155895B2 true JPS6155895B2 (en) 1986-11-29

Family

ID=15089503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13278679A Granted JPS5657718A (en) 1979-08-30 1979-10-17 Preparation of s-sulfonated immunoglobulin containing large amount of monomer

Country Status (1)

Country Link
JP (1) JPS5657718A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485489B2 (en) * 2000-08-11 2014-05-07 中外製薬株式会社 Antibody-containing stabilized preparation
JP2014105180A (en) * 2012-11-27 2014-06-09 Hoya Corp Method of monomerization

Also Published As

Publication number Publication date
JPS5657718A (en) 1981-05-20

Similar Documents

Publication Publication Date Title
EP0025275B1 (en) Immunoglobulin-containing composition containing an aggregation preventing or aggregate dissociating agent for the immunoglobulin, and process for preparation thereof
US4340589A (en) Antithrombin preparation and process for the production thereof
US4915945A (en) Process for the preparation of the C1 inactivator
EP0073371B1 (en) Intravenously injectable immune serum globulin and method of preparing same
US4424206A (en) Process for heat treatment of aqueous solution containing cold insoluble globulin to inactivate hepatitis virus
HU218463B (en) Method for producing immunoglobulin g concentrate for therapeutical use
CA1245155A (en) Immunoglobulin-g-containing fraction
US20030143222A1 (en) Method of producing igg
US4876088A (en) Gamma-globulin injectable solutions containing sorbitol
AU2001273907A1 (en) A method of producing IgG
US4384993A (en) Method of the production of immunoglobulin having high content of monomer
US4256631A (en) Process for the preparation of immunoglobulin for intravenous administration
EP0148843B2 (en) A concentrate of the antihemophilic factor viii and a process for producing it
US4360457A (en) S-Sulfonated immunoglobulin composition having a high monomer content and a process for production thereof
US4322403A (en) Method for the preparation of an immune globulin solution suitable for intravenous use
JPS63165328A (en) Medicine containing tissue protein pp4
CA1211710A (en) Gamma-globulin preparation for intravenous administration
JPS6155895B2 (en)
CA2150612A1 (en) Process for producing albumin preparation
US4197238A (en) Method of preparation of human albumin using polyethylene glycol
JPS647050B2 (en)
JPS647051B2 (en)
US5378811A (en) Pure C3b inactivator and a process for producing said protein
JPS62292731A (en) Manufacture of pasteurized immunogloblin medicine
JPS62886B2 (en)