JPS6155834A - Sf6 gas breaker - Google Patents

Sf6 gas breaker

Info

Publication number
JPS6155834A
JPS6155834A JP17684084A JP17684084A JPS6155834A JP S6155834 A JPS6155834 A JP S6155834A JP 17684084 A JP17684084 A JP 17684084A JP 17684084 A JP17684084 A JP 17684084A JP S6155834 A JPS6155834 A JP S6155834A
Authority
JP
Japan
Prior art keywords
contact
capacitor
fixed
contacts
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17684084A
Other languages
Japanese (ja)
Other versions
JPH0797463B2 (en
Inventor
茂夫 小林
遠藤 奎將
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59176840A priority Critical patent/JPH0797463B2/en
Publication of JPS6155834A publication Critical patent/JPS6155834A/en
Publication of JPH0797463B2 publication Critical patent/JPH0797463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は8F6ガス遮断器に係り、特に並列コンデンサ
を有するSF、ガス遮断器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an 8F6 gas circuit breaker, and more particularly to an SF gas circuit breaker having a parallel capacitor.

〔発明の、背景〕[Background of the invention]

従来のSF6ガス遮断器の遮断部は、大電流遮部品との
位置関係が決められていた。従って、遮断部と周囲部品
との配置によって、開極動作中の極間の電位分布に対す
る考慮は払われていなかった。特に、進み/J1電流遮
断の場合のように極間開歪距離が十分に大きくならない
うちに極間に高い電圧が印加される場合、前記のような
部品配置では極間の絶縁耐力が不十分で、進み小を流速
断性能に劣るという欠点があった。
The positional relationship between the interrupting part of the conventional SF6 gas circuit breaker and the large current interrupting component was determined. Therefore, no consideration has been given to the potential distribution between the electrodes during the opening operation, depending on the arrangement of the interrupting part and surrounding components. In particular, when a high voltage is applied between the electrodes before the open strain distance between the electrodes becomes sufficiently large, as in the case of advance/J1 current interruption, the dielectric strength between the electrodes is insufficient with the component arrangement described above. However, it had the disadvantage of being inferior in flow rate cutting performance at small advances.

進み小電流遮断試験時には、開極状態の30〜40%と
いう比収的小さな極間開離距離で、雷インパルス耐電圧
値の60〜70%程度の高い電圧が極間に印加される。
During the advanced small current interruption test, a high voltage of about 60 to 70% of the lightning impulse withstand voltage value is applied between the electrodes at a relatively small separation distance between the electrodes of 30 to 40% of the open state.

このため、遮断点数が少なく定格電圧の高い遮断器では
、進み小電流遮断が一層困難となる。
For this reason, in a circuit breaker with a small number of breaking points and a high rated voltage, it becomes more difficult to interrupt a small advance current.

また、太′IW流遮断時の過渡回復′cL圧上昇率も大
きくなり、これを抑制するために極間に並列コンデンサ
1に接続する方法がとられる。しかし、従来のS i、
T6ガス遮断器は、開極状態で雷インパルス耐電圧試販
に耐えるように設計がなされ、開極動作中の極間の絶縁
耐力に余り着目しなかったため、嘆造上、進み小電流遮
断時には固定接触子よりも可動接触子側が高電界となる
。従って、開極状態での極間の中心位置と、並列コンデ
ンサの中心電位の位置がほぼ一致する状態、もしくは並
列コンデンサと接触子間の゛電位差が固定接触子側と可
動接触子側でほぼ同じになるように、遮断部と並列コン
デンサが配置された従来の8F6ガス遮断器では、進み
小電流遮断のように極間開離距離が小さいうちに高い電
圧が極間に印加されると、並列コンデンサの電位分布の
影響を受けて可動接触子側の電界強度が高くなってしま
う欠点があった。
Furthermore, the transient recovery 'cL pressure rise rate when the thick IW flow is interrupted also increases, and in order to suppress this, a method is used in which a parallel capacitor 1 is connected between the poles. However, the conventional S i,
The T6 gas circuit breaker was designed to withstand the lightning impulse withstand voltage trial sales in the open state, and did not pay much attention to the dielectric strength between the poles during the open operation, so it was designed to withstand the lightning impulse withstand voltage trial sales in the open state. The electric field is higher on the movable contact side than on the fixed contact side. Therefore, the center position between the poles in the open state and the center potential position of the parallel capacitor are almost the same, or the potential difference between the parallel capacitor and the contact is almost the same on the fixed contact side and the movable contact side. In the conventional 8F6 gas circuit breaker, in which the interrupting part and the parallel capacitor are arranged, when a high voltage is applied between the poles while the separation distance between the poles is small, such as when interrupting a small advanced current, the parallel This has the disadvantage that the electric field strength on the movable contact side increases due to the influence of the potential distribution of the capacitor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、進み小電流遮断性能に優れた8F、ガ
ス遮断器を提供するにある。
An object of the present invention is to provide an 8F gas circuit breaker with excellent advance small current interrupting performance.

〔発明の概要〕[Summary of the invention]

本発明は、進み小電流遮断時に高電界となる極間開離距
離での電界分布を改善するため、並列コンデンサの中心
電位位置を従来よりも固定接触子側に寄せて、可動接触
子側の電界を緩和したことを特徴とする。
In order to improve the electric field distribution at the separation distance between poles, which causes a high electric field when cutting off a small advancing current, the center potential position of the parallel capacitor is moved closer to the fixed contact side than before, and the center potential position is moved closer to the movable contact side. It is characterized by a relaxed electric field.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はバッファー形遮断器であり、左半分は開極動作
中で進み小電流遮断後置大電圧が極間に加わる極間長に
ある状態を示しており、また右半分は開極を終えた状態
を示している。
Figure 1 shows a buffer type circuit breaker. The left half shows the state where the circuit breaker is in the process of opening and is at the distance between the poles where a large voltage is applied after the small current is cut off, and the right half shows the state where the circuit breaker is not opening. It shows the finished state.

1対のアーク接触子は固定アーク接触子1と可動アーク
接触子3から成り、1対の主接触子は固定主接触子2と
可動主接触子4から成る。可動アーク接触子3を包囲し
た絶縁ノズル5の外側に可動主接触子4が構成されてお
り、これらはバッファーシリンダ6に取付けられている
。バッファーシリンダ6は図示しない操作装置に連結さ
れ、上方への駆動によりピストン7との間のSF、ガス
を圧縮する。説明は前後したが、図示の部分はSF。
A pair of arc contacts consists of a fixed arc contact 1 and a movable arc contact 3, and a pair of main contacts consists of a fixed main contact 2 and a movable main contact 4. A movable main contact 4 is constructed on the outside of an insulating nozzle 5 surrounding the movable arc contact 3, and these are attached to a buffer cylinder 6. The buffer cylinder 6 is connected to an operating device (not shown) and compresses the SF and gas between it and the piston 7 by being driven upward. The explanation was a bit confusing, but the illustrated part is science fiction.

ガスを満した密封容器内に構成されている。上述のよう
にして圧縮されたガスは、絶縁ノズル5によって案内さ
れて消弧に用いられる。並列コンデ位置を形成している
。固定主接触子2は固定アーク接触子1を包囲して設け
られ、固定主接触子2の外周に並列コンデンサの支持金
具9aが設けられ、これら固定側の部材は電気的に接続
されていて同電位部を形成している。
It is constructed in a sealed container filled with gas. The gas compressed as described above is guided by the insulating nozzle 5 and used for arc extinguishing. Forming parallel conde positions. The fixed main contact 2 is provided surrounding the fixed arc contact 1, and a parallel capacitor support fitting 9a is provided on the outer periphery of the fixed main contact 2, and these fixed side members are electrically connected and are the same. It forms a potential section.

支持金具9a、9b間には並列コンデンサ8が構成され
ている。この並列コンデンサ8は、分担電圧の均等化を
図ったり再起電圧の上昇率を抑えたり干る目的で設けら
れているが、本実施例では後述する説明かられかるよう
に極間の電位分布改善用として兼用されている。並列コ
ンデンサ8の構成は、8F、ガス遮断器用として知られ
るように、例えば棒状コンデンサの組合せであり、固接
触子や絶縁ノズル5の外周にほぼ等間隔で3本以上の棒
状コンデンサを配置している。このように棒状コンデン
サをほぼ等間隔で配置することが本実施例において有効
である。各棒状コンデンサは複数のコンデンサ素子を絶
縁筒内に積層配置して成る。
A parallel capacitor 8 is configured between the support fittings 9a and 9b. This parallel capacitor 8 is provided for the purpose of equalizing the shared voltages and suppressing the rate of increase in the re-electromotive voltage. It is used for both purposes. The configuration of the parallel capacitor 8 is, for example, a combination of rod-shaped capacitors, as is known for use in 8F gas circuit breakers, and three or more rod-shaped capacitors are arranged at approximately equal intervals around the outer periphery of the solid contact or insulating nozzle 5. There is. Arranging the rod-shaped capacitors at approximately equal intervals in this manner is effective in this embodiment. Each rod-shaped capacitor is formed by stacking a plurality of capacitor elements in an insulating cylinder.

このような構成の遮断部の巡訪動作は、遮断部の可動側
を図示しない操作装置によって上方へ、駆動し、先ず主
電流通路r構成している固定主接触子2から可動主接触
子4を開離する。次いで、固定アーク接触子1から可動
アーク振触子3を開離し、この開離動作と共に両アーク
接触子1,3間にアークを発生する。このアークは、開
離動作と共にバッファーシリンダ6とピストン7で形成
した案内のSF、ガスを圧縮し、この圧縮したガスが絶
縁ノズル5によって案内されて作用し消弧される。
In the visiting operation of the interrupting section having such a configuration, the movable side of the interrupting section is driven upward by an operating device (not shown), and first, the movable main contactor 4 is connected from the fixed main contact 2 constituting the main current path r. Release. Next, the movable arc pendulum 3 is separated from the fixed arc contact 1, and an arc is generated between both the arc contacts 1 and 3 along with this separation operation. This arc compresses the guide SF and gas formed by the buffer cylinder 6 and the piston 7 along with the opening operation, and the compressed gas is guided by the insulating nozzle 5 and acts to extinguish the arc.

次に進み小電流遮断時ついて説明する。Next, a description will be given of the time when a small current is interrupted.

この場合、遮断電流が小さいため、固定主接触子2と可
動主接触子4間の開離に続いて固定アーク接触子1と可
動アーク接触子3間が開離すると、この開離と同時にア
ーク時間零で電流遮断が行なわれることがある。また進
み小電流遮断の場合には、電流と電圧の位相差が電気角
でほぼ90°のため、電流遮断が行なわれると遮断器の
負荷側には対地電圧のピーク値が充電された状態となる
。一方、遮断器の電源側には電の周波数の対地電圧が印
加されるので、例えば3相交流の場合、極間には次の(
1)式で与えられる電位差Vが生ずる。
In this case, since the breaking current is small, if the fixed main contact 2 and the movable main contact 4 are opened and then the fixed arc contact 1 and the movable arc contact 3 are opened, an arc occurs at the same time as this opening. Current interruption may occur at time zero. In addition, in the case of advanced small current interruption, the phase difference between current and voltage is approximately 90 degrees in electrical angle, so when current interruption occurs, the load side of the circuit breaker is charged with the peak value of the voltage to ground. Become. On the other hand, since a voltage to ground with a frequency of 300 nm is applied to the power supply side of the circuit breaker, for example, in the case of 3-phase AC, the following (
1) A potential difference V given by the formula is generated.

ただし、vp:電源電圧(線間電圧、実効値)、ω=2
πf、 f :電源周波数、t:時間(秒)。
However, vp: power supply voltage (line voltage, effective value), ω=2
πf, f: power supply frequency, t: time (seconds).

進み小電流遮断性能を検証するために遮断器には進み/
JS電流試験が課せられている。この時の試験電圧は適
用される規格や遮断器の定格電圧、試験法によって異な
るが、(1)式で示される電圧の1.1〜1.3倍であ
り、さらに高めようとする動きもある。(1)式で示さ
れる電圧は開極後0.5サイクルで最大となり、この上
昇率は開極時の極間長の増加の割合よりも大きいために
極間の電界強度は開極後0.5サイクルよりも早い時間
に最大となる。
In order to verify the advance small current breaking performance, the circuit breaker is
JS current test is required. The test voltage at this time varies depending on the applicable standard, the rated voltage of the circuit breaker, and the test method, but it is 1.1 to 1.3 times the voltage shown by equation (1), and there is a movement to further increase it. be. The voltage expressed by equation (1) reaches its maximum 0.5 cycles after the electrodes are opened, and this rate of increase is greater than the rate of increase in the distance between the electrodes when the electrodes are opened, so the electric field strength between the electrodes is 0 after the electrodes are opened. It reaches its maximum at a time earlier than .5 cycles.

一方、遮断器の極間の電位差を一定として固定接触子側
と可動接触子側の最大電界強度と極間長の関係を調べる
と、極間長の小さい場合には固定接触子側の電界強度が
高く、極間長が大きくなるにつれて、この関係が逆転す
る傾向がある。これは遮断器の機能上から制約される形
状の問題、例えば可動部を出来るだけ軽量にして開極速
度を大きくするため、余分な電界緩和シールドを付けら
れないこと、開極後できるだけ早く極間長を大きくする
には接触子部の曲率を大きくできないこと等に起因して
いる。
On the other hand, when we examine the relationship between the maximum electric field strength on the fixed contact side and the movable contact side and the distance between poles, assuming that the potential difference between the poles of the circuit breaker is constant, we find that when the distance between poles is small, the electric field strength on the fixed contact side This relationship tends to reverse as the distance between the poles increases and the distance between the poles increases. This is due to the problem of the shape of the circuit breaker, which is restricted from the functional point of view. This is due to the fact that the curvature of the contact portion cannot be increased in order to increase the length.

第1図に示す並列コンデンサ8の電位分布は、一般には
周囲の部品の影響を余り受けず極間長に無関係にほぼ一
定である。従って、並列コンデンサ8の電位分布と進み
小電流遮断時に最大電界強度となる可動接触子の位置を
適尚に選ぶことによつて可動接触子の電界を緩和するこ
とができる。
The potential distribution of the parallel capacitor 8 shown in FIG. 1 is generally not influenced much by surrounding components and is almost constant regardless of the distance between poles. Therefore, the electric field of the movable contact can be alleviated by appropriately selecting the position of the movable contact that matches the potential distribution of the parallel capacitor 8 and has the maximum electric field strength when a small current is interrupted.

これを第2図で説明する。同図は可動接触子側および固
定接触子側の最大電界強度と極間長の関係を表わしてい
る。開極状態において並列コンデンサ8の支持金具9a
、9b間の1/2の電位の位1tPが、固定接触子と可
動接触子のほぼ中心位置Qになるようにした場合の固定
接触子側の最大電界は曲線Aであり、また可動接触子側
の最大電界は曲線Bである。一方、並列コンデンサ8の
支持金具9a、9b間の1/2の電位の位置Pが、開る
ようにした場合、固定接触子側の最大電界は曲線Cであ
り、また可動接触子側の最大電界が曲線りである。
This will be explained with reference to FIG. This figure shows the relationship between the maximum electric field strength and the distance between poles on the movable contact side and the fixed contact side. Support metal fitting 9a of parallel capacitor 8 in open state
, 9b, the maximum electric field on the fixed contact side is curve A when 1tP, which is half the potential between the fixed contact and the movable contact, is approximately the center position Q of the fixed contact and the movable contact. The maximum electric field on the side is curve B. On the other hand, when the 1/2 potential position P between the support fittings 9a and 9b of the parallel capacitor 8 is opened, the maximum electric field on the fixed contact side is curve C, and the maximum electric field on the movable contact side is The electric field is curved.

このようにして可動接触子側の最大電界強度を低減でき
るのは次の理由による。
The reason why the maximum electric field strength on the movable contact side can be reduced in this way is as follows.

(1)極間長の小さい領域では、可動接触子側の最大電
界部が可動アーク接触子3にあり、極間長が大きくなっ
た領域では最大電界部が可動主接触子4に変わる。
(1) In a region where the distance between poles is small, the maximum electric field portion on the movable contact side is in the movable arc contact 3, and in a region where the distance between poles is large, the maximum electric field portion changes to the movable main contact 4.

(2)可動主接触子4は並列コンデンサ8に近い位置に
あり、並列コンデンサ8の電位分布により電界が緩和さ
れる。
(2) The movable main contactor 4 is located close to the parallel capacitor 8, and the electric field is relaxed by the potential distribution of the parallel capacitor 8.

(3)一方、固定接触子IKl+では固定アーク接触子
1の先端に最大電界部があり、固定主接触子2のシール
ド効果によって並列コンデンサ8の電位分布の影響を受
けない。
(3) On the other hand, in the fixed contact IKl+, the maximum electric field portion is at the tip of the fixed arc contact 1 and is not affected by the potential distribution of the parallel capacitor 8 due to the shielding effect of the fixed main contact 2.

(4)固定主接触子2の電界強度は並列コンデンサ8の
電位分布の影響を受けるが、この部分はシールドの曲率
(固定主接触子2の外側の曲率)を大きくできるので電
界強度は高くならない。
(4) The electric field strength of the fixed main contact 2 is affected by the potential distribution of the parallel capacitor 8, but since the curvature of the shield (curvature on the outside of the fixed main contact 2) can be increased in this area, the electric field strength does not become high. .

進み小電流遮断試験で最大電界強度となる極間長は、第
2図に示した例では極間長が0.3〜0.4であり、並
列コンデンサ8の支持金具9a、9b間の1/2の′a
位の位置が開極状態の固定接触子と可動接触子、つまり
固定アーク接触子1と可動アーク接触子3のほぼ中心よ
りも固定アーク接触子1側にすることにより、進み小電
流遮断性能を11〜15%向上することができる。並列
コンデンサ8の中間電位位置をどこまで固定接触子側に
寄せるかは、雷インパルス耐電圧試験値、進み小電流遮
断試験給与電圧、開極速度、開極長等を総合的に検討し
て決めるのが良い。また並列コンデンサ8の中間電位位
置は、並列コンデンサ全体の位置を変えても、績み重ね
るコンデンサ素子の各静電容量を変えて決めても良い。
In the example shown in FIG. 2, the distance between the poles that gives the maximum electric field strength in the advanced small current interruption test is 0.3 to 0.4, and the distance between the poles is 0.3 to 0.4. /2'a
By locating the position of the fixed contact and the movable contact in the open state, that is, the fixed arc contact 1 and the movable arc contact 3, closer to the fixed arc contact 1 than the approximate center of the open state, the advanced small current interrupting performance is improved. It can be improved by 11-15%. How far the intermediate potential position of the parallel capacitor 8 should be moved toward the fixed contact is determined by comprehensively considering the lightning impulse withstand voltage test value, the supply voltage for the advanced small current interruption test, the opening speed, the opening length, etc. is good. Further, the intermediate potential position of the parallel capacitor 8 may be determined by changing the position of the entire parallel capacitor or by changing the capacitance of each capacitor element.

第3図は本発明の他の実施例による遮断部の断面図で開
極後の左半分を示している。
FIG. 3 is a sectional view of a blocking section according to another embodiment of the present invention, showing the left half after opening.

この例では、並列コンデンサ8の可動接触子側の俵数個
のコンデンサ素子と電気的に接続された複数個の固定接
点10−1〜10−nを有している。
In this example, a plurality of fixed contacts 10-1 to 10-n are electrically connected to several capacitor elements on the movable contact side of the parallel capacitor 8.

この固定接点10−1〜10−nと対を成す摺動接点1
1は、可動接触子と電気的および機械的に接続されてお
り、閉極状態では何個かのコンデンサ素子を短絡してお
き開極時は極間長が大きくなるにつれて並列コンデンサ
8の直列数を増す。
Sliding contact 1 paired with these fixed contacts 10-1 to 10-n
1 is electrically and mechanically connected to the movable contact, and in the closed state, several capacitor elements are short-circuited, and in the open state, the number of parallel capacitors 8 connected in series increases as the distance between poles increases. increase.

この構成によれば、開極後における並列コンデンサ8の
支持金具9a、9b間の1/2の電位をもつ中間電位部
Pは、同状態での固定アーク接触子1と可動アーク接触
子3間の中心位!Qよりも固定アーク接触子1i141
1に位置しているが、第1図の例程ではない。しかし、
進み小延流遮断時においては、摺動接点11がある固定
接点と接触していて何個かのコンデンサ素子を短絡して
いるため、並列コンデンサ8の上述の中間電位部Pは第
1図の実施例と同じにできる。すなわち、進み小電流遮
断性能を向上させることによって、開極状態での各部の
関係は従来の設計法による関係を変えてしまうことにな
るが、第3図゛の例では進み小電流遮断性能の向上によ
って開極状態での各部の関係を余り変えず、従って雷イ
ンパルス耐電圧性能を低下させることのない遮断部が得
られる。
According to this configuration, the intermediate potential portion P having a potential of 1/2 between the supporting metal fittings 9a and 9b of the parallel capacitor 8 after opening is the same as that between the fixed arc contact 1 and the movable arc contact 3 in the same state. The center position! Fixed arc contactor 1i141 than Q
1, but not as high as the example in FIG. but,
At the time of interruption of the advanced small flow, the sliding contact 11 is in contact with the fixed contact and short-circuits several capacitor elements, so the above-mentioned intermediate potential part P of the parallel capacitor 8 is It can be the same as the example. In other words, by improving the advanced small current interrupting performance, the relationship between each part in the open state will change from the relationship based on the conventional design method, but in the example shown in Figure 3, the advanced small current interrupting performance is improved. By improving the structure, it is possible to obtain a cutoff section that does not significantly change the relationship between the various parts in the open state, and therefore does not reduce the lightning impulse withstand voltage performance.

上記実施例で説明した可動接触子は可動アーク接触子3
と可動主接触子4から構成し、固定接触子は固定アーク
接触子1と固定主接触子2から構成したが、この釉遮断
器で知られている種々の構成をとることができる。
The movable contact explained in the above embodiment is the movable arc contact 3.
Although the fixed contact is made up of the fixed arc contact 1 and the fixed main contact 2, various known structures can be adopted for this glazed circuit breaker.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、並列コンデンサの支持金
具間のほぼ1/2の電位となる中間電位部が、開極後の
両接触子間のほぼ中心位置よりも固定液j恒子側に位置
させたため、開極動作中の遮断部の最大電界強度を低減
して、進み小電流遮断性能を向上することができる。
As explained above, in the present invention, the intermediate potential portion, which is approximately 1/2 the potential between the supporting metal fittings of the parallel capacitor, is located closer to the fixed liquid j stator than the approximately central position between both contacts after opening. Therefore, it is possible to reduce the maximum electric field strength of the interrupting part during the opening operation and improve the small current interrupting performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による8J4”6ガス遮断器
の縦断面図、第2図は極間長と最大電界強度の関係を示
す特性図、第3図は本発明の他の実施例によるSF6ガ
ス遮断器の縦断面図である。 1・・・・・・固定アーク接触子、2・・・・・・固定
主接触子、3・・・・・・可動アーク接触子、4・・・
・・・可動主接触子、5・・・・・・ABfiノズル、
8・・・・・・並列コンデンサ、9a。 9b・・・・・・支持金具。 第1図 第2図 掻閏長(a月儀) 第
Fig. 1 is a longitudinal cross-sectional view of an 8J4''6 gas circuit breaker according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between pole length and maximum electric field strength, and Fig. 3 is another embodiment of the present invention. It is a vertical cross-sectional view of an SF6 gas circuit breaker according to an example. 1... Fixed arc contact, 2... Fixed main contact, 3... Movable arc contact, 4 ...
...Movable main contact, 5...ABfi nozzle,
8...Parallel capacitor, 9a. 9b... Support metal fittings. Figure 1 Figure 2 Leap length (a month) No.

Claims (1)

【特許請求の範囲】 1、開離可能な1対の可動接触子および固定接触子と、
上記両接触子の開離によって発生したアークにSF_6
ガスを吹き付けるよう案内する絶縁ノズルと、上記可動
接触子および固定接触子へそれぞれ電気的に接続した1
対の支持金具間に構成された並列コンデンサとを有する
SF_6ガス遮断器において、上記並列コンデンサは、
上記両接触子および絶縁ノズルの外周に3本以上の棒状
コンデンサをほぼ等間隔で配置して極間の電位分布改善
用として用い、進み小電流遮断時の開極動作時の最大電
界を緩和するよう上記支持金具間のほぼ1/2の電位を
もつ上記並列コンデンサの中間電位部が、開極状態にあ
る上記両接触子間の対向部の中心位置よりも上記固定接
触子側に位置するようにしたことを特徴とするSF_6
ガス遮断器。 2、上記特許請求の範囲第1項記載のものにおいて、上
記各棒状コンデンサは積層した複数のコンデンサ素子と
、このコンデンサ素子のうち上記可動接触子側から所定
の数のコンデンサ素子に設けた複数の固定接点と、この
固定接点と順次接離するよう上記可動接触子に連動する
摺動接点とを有し、上記可動接触子の開極動作と共に上
記並列コンデンサの中間電位部を上記中心位置側に移動
するように構成したことを特徴とするSF_6ガス遮断
器。
[Claims] 1. A pair of separable movable contacts and fixed contacts;
SF_6 is applied to the arc generated by the opening of both contacts above.
an insulated nozzle for guiding the gas to be blown; and 1 electrically connected to the movable contact and the fixed contact, respectively.
In the SF_6 gas circuit breaker having a parallel capacitor configured between a pair of support fittings, the parallel capacitor is
Three or more rod-shaped capacitors are arranged at approximately equal intervals around the outer periphery of both of the contacts and the insulating nozzle, and are used to improve the potential distribution between the poles, thereby alleviating the maximum electric field during opening operation when cutting off a small advance current. so that the intermediate potential portion of the parallel capacitor, which has approximately 1/2 the potential between the supporting metal fittings, is located closer to the fixed contact than the center position of the opposing portion between the two contacts in an open state. SF_6, which is characterized by
Gas circuit breaker. 2. In the device described in claim 1 above, each rod-shaped capacitor includes a plurality of laminated capacitor elements, and a plurality of capacitor elements provided in a predetermined number of capacitor elements from the movable contact side of the capacitor elements. It has a fixed contact and a sliding contact that is linked to the movable contact so as to sequentially connect and separate from the fixed contact, and when the movable contact opens, the intermediate potential portion of the parallel capacitor is moved toward the center position. An SF_6 gas circuit breaker characterized by being configured to move.
JP59176840A 1984-08-27 1984-08-27 SF ▲ Lower 6 ▼ Gas circuit breaker Expired - Lifetime JPH0797463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59176840A JPH0797463B2 (en) 1984-08-27 1984-08-27 SF ▲ Lower 6 ▼ Gas circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176840A JPH0797463B2 (en) 1984-08-27 1984-08-27 SF ▲ Lower 6 ▼ Gas circuit breaker

Publications (2)

Publication Number Publication Date
JPS6155834A true JPS6155834A (en) 1986-03-20
JPH0797463B2 JPH0797463B2 (en) 1995-10-18

Family

ID=16020748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176840A Expired - Lifetime JPH0797463B2 (en) 1984-08-27 1984-08-27 SF ▲ Lower 6 ▼ Gas circuit breaker

Country Status (1)

Country Link
JP (1) JPH0797463B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197010A (en) * 2012-03-22 2013-09-30 Toshiba Corp Gas circuit breaker

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054556U (en) * 1973-09-17 1975-05-24
JPS51131660U (en) * 1975-04-16 1976-10-23
JPS5341771A (en) * 1976-09-29 1978-04-15 Hitachi Ltd Breaker
JPS5431578A (en) * 1977-08-16 1979-03-08 Tokyo Shibaura Electric Co Buffer type gas circuit breaker
JPS5465376A (en) * 1977-11-02 1979-05-25 Hitachi Ltd Gas breaker
JPS57126020A (en) * 1981-01-29 1982-08-05 Mitsubishi Electric Corp Buffer type gas breaker
JPS5841949U (en) * 1981-09-16 1983-03-19 三菱電機株式会社 Power switchgear
JPS5866520U (en) * 1981-10-30 1983-05-06 株式会社東芝 voltage sharing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054556U (en) * 1973-09-17 1975-05-24
JPS51131660U (en) * 1975-04-16 1976-10-23
JPS5341771A (en) * 1976-09-29 1978-04-15 Hitachi Ltd Breaker
JPS5431578A (en) * 1977-08-16 1979-03-08 Tokyo Shibaura Electric Co Buffer type gas circuit breaker
JPS5465376A (en) * 1977-11-02 1979-05-25 Hitachi Ltd Gas breaker
JPS57126020A (en) * 1981-01-29 1982-08-05 Mitsubishi Electric Corp Buffer type gas breaker
JPS5841949U (en) * 1981-09-16 1983-03-19 三菱電機株式会社 Power switchgear
JPS5866520U (en) * 1981-10-30 1983-05-06 株式会社東芝 voltage sharing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197010A (en) * 2012-03-22 2013-09-30 Toshiba Corp Gas circuit breaker

Also Published As

Publication number Publication date
JPH0797463B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
Bachmann et al. Development of a 500kV airblast HVDC circuit breaker
US20110175460A1 (en) Dc current breaker
US3004116A (en) Air-break disconnecting switch
JPS6155834A (en) Sf6 gas breaker
US4103128A (en) Tank-type compressed-gas circuit-breaker having capacitance-supporting means
JPS59169306A (en) Gas insulated switching device
JPH0719505B2 (en) Disconnector
JP3031174B2 (en) Gas circuit breaker
JPS6027865A (en) Impulse voltage testing circuit for electric appliance
RU2321129C2 (en) Distributing power network
JP3369321B2 (en) Gas insulated switchgear
JPS6353656B2 (en)
JPH0376083B2 (en)
JPH035014B2 (en)
JPH0719508B2 (en) Gas insulated switchgear
JPH0819135A (en) Gas insulated switch
JPS5875413A (en) Switching device
JPS6326523B2 (en)
Batura et al. Switching unloaded medium voltage cable lines by a vacuum switch
JPS5941106A (en) 3-phase simultaneous gas insulated electric device
JPS6266517A (en) Switch
JPH05342952A (en) Gas insulation switching device
JPS5928816A (en) Gas insulated substation
JPH03155320A (en) Insulator supporter
McConnell et al. Late Model 230-kV Oil Circuit Breaker

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term