JPS6155203B2 - - Google Patents

Info

Publication number
JPS6155203B2
JPS6155203B2 JP12354078A JP12354078A JPS6155203B2 JP S6155203 B2 JPS6155203 B2 JP S6155203B2 JP 12354078 A JP12354078 A JP 12354078A JP 12354078 A JP12354078 A JP 12354078A JP S6155203 B2 JPS6155203 B2 JP S6155203B2
Authority
JP
Japan
Prior art keywords
rubber
ethylene
copolymer rubber
weight
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12354078A
Other languages
Japanese (ja)
Other versions
JPS5550511A (en
Inventor
Yasuhiko Ootawa
Akira Matsuda
Takashi Mishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP12354078A priority Critical patent/JPS5550511A/en
Publication of JPS5550511A publication Critical patent/JPS5550511A/en
Publication of JPS6155203B2 publication Critical patent/JPS6155203B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気絶縁材、とくに、特定のエチレ
ン・α−オレフイン共重合ゴムをゴム成分とする
組成物から作られた電気絶縁材に関する。 電気絶縁物、例えば送電用電線、舶用電線、自
動車用イグニツシヨンケーブルなどの通電部を円
筒状に被覆した絶縁層、プラグキヤツプ、イグニ
ツシヨンキヤツプ、デイストリビユーターキヤツ
プなどの自動車エンジン周辺の電気絶縁用キヤツ
プ類、コンデンサーキヤツプ、ケーブルジヨイン
トカバー等の一般絶縁用電気部品などには耐候
性、耐熱性、電気絶縁性に優れたエチレン・プロ
ピレン・ランダム共重合ゴムあるいはエチレン・
プロピレン・ポリエンランダム共重合ゴムをゴム
成分とする配合ゴムの加硫物が多用されているこ
とは周知である。しかしながらこれらのゴム(以
下EPゴムと略す。)は尚不満足な点が多い。 例えば電線、とくに高圧送電用電線の絶縁層と
してEPゴムの加硫物を使用する場合は、その加
硫物の電気特性、機械的強度いずれも高水準のも
のが要求されるが、EPゴムの加硫物を絶縁層と
する送電用電線の送電圧は実用的には約2万ボル
トに留まる。その原因はEPゴム加硫物を絶縁層
とする電線を製造する工程におけるEPゴム未加
硫配合ゴムの加工性およびEPゴム加硫物の強度
のバランスを取れず、高水準の電気特性と機械的
特性を満たし得ないことが原因になる。すなわち
EPゴム加硫物を絶縁層とする電線は通常、EPゴ
ム、加硫剤、軟化剤および充填剤が配合せられた
未加硫の配合ゴムを押出機に供給すると同時に、
別途該押出機に導入せられた電線の通電部となる
導線を押出機内で配合ゴムを円筒状に被覆し、つ
いで加硫系内で加熱することにより製造される
が、より一層高電圧の電線の絶縁層として使用さ
れるためには誘電正接の低い絶縁層である必要が
あり、それは誘電正接上昇の原因となる軟化剤、
充填剤等の配合量の少ない配合ゴムを用いること
により実現される。しかしこの場合は軟化剤配合
量の少ないことに起因し前記電線の製造工程で通
電部の回りに配合ゴムを円筒状に被覆する押出工
程において円筒外面が平滑性を失うといういわゆ
る押出加工性が悪化し、むしろ平滑性を失つたた
めに絶縁部の耐交流破壊電圧が低下し高圧の送電
用電線としては使用し得ない。この押出加工性を
解決する方法としてEPゴムの分子量を下げるか
又は分子量分布の広いEPゴムを用いる方法も試
みられているが、本発明者らはこの方法では確か
に押出加工性は改良されるものの分子量の低下又
は分子量分布の拡大に伴い、加硫物の強度、特に
破断点応力が低下し、高圧の送電用電線の絶縁層
としては使用に耐えないことを知つた。従つて、
いずれにせよ一般的なEPゴムを用いる限り、そ
の加硫物を絶縁層とする送電用電線の電圧は実用
的には2万ボルト程度が限度である。 またプラグキヤツプ、イグニツシヨンキヤツ
プ、デイストリビユーターキヤツプ、イグニツシ
ヨンケーブルの絶縁層、ケーブルジヨイントカバ
ーなどの用途に用いる場合はそれ程高水準の電気
的性質を要求されないため安価な軟化剤、無機充
填剤などを多量に配合しなるべく安価に製造する
ことが望ましいが、EPゴム加硫物の強度との兼
合からEPゴム100重量部に対して軟化剤は80重量
部程度、無機充填剤は200重量部程度が配合量の
上限であつて、現状より製造費用を下げることに
は限界があつた。 しかしながら、本発明者らはエチレン・α−オ
レフイン共重合ゴムの加硫物の機械的性質に与え
る要因、とくに共重合ゴムのα−オレフインの種
類、エチレンとα−オレフインの組成比等につき
究明した結果、エチレン単位とα−オレフイン単
位の組成比がモル比で80/20ないし95/5において
は、α−オレフインが炭素数が4ないし10のα−
オレフインであると、α−オレフインがプロピレ
ンであるEPゴムの場合と比較して、共重合ゴム
加硫物の強度が著しく高いという驚くべき事実を
見出し、本発明に至つた。 すなわち、本発明はエチレン単位と炭素数が4
−10のα−オレフイン単位のモル比(エチレン/
α−オレフイン)が80/20−95/5、好ましくは85/
15−95/5であり、かつ極限粘度[η]が0.6−6.0
dl/g、好ましくは0.8−4.0dl/gであり、ヨウ
素価表示で4−50のポリエン成分を含み、その分
子量分布指数Q値(MW/MN)が4−12であるエ
チレン・α−オレフイン共重合ゴムの組成物から
なる電気絶縁材を提供することにある。 本発明の利点は以下の記載から一層明らかとな
ろう。すなわち、安価な軟化剤や無機充填剤を多
量に配合しても、本発明のエチレン・α−オレフ
イン共重合ゴム加硫物は充分な実用強度を有する
ので、高水準の誘電率、誘電正接などの電気特性
を必要としない電気絶縁材を、EPゴムの場合よ
りも安価に製造できる。電線被覆用のゴム組成物
は、加硫物の誘電正接(%)が0.3以下となるよ
うに軟化剤と無機充填剤の配合量は少なく制限さ
れる。しかし、本発明の分子量分布指数Q値が4
ないし12であるエチレン・α−オレフイン共重合
ゴムを用いれば、このような電線被覆の場合に
も、押出加工性が良好であるから絶縁層表面の平
滑性が充分に保たれ、かつ加硫物の破断点強度を
100Kg/cm3以上とすることが可能である。その結
果、6万ボルト程度の高圧送電用電線の絶縁層と
して本発明のエチレン・α−オレフイン共重合ゴ
ムの加硫物は実用的に充分機能する。このよう
に、本発明のエチレン・α−オレフイン共重合ゴ
ムの加硫物は、その強度が高いので、それ程高圧
でない送電用電線あるいは舶用電線の絶縁層とし
ての機能をより一層保証する。 本発明の構成を以下に詳しく説明する。 本発明で使用するエチレン・α−オレフイン共
重合ゴムの成分であるα−オレフインは炭素数4
ないし10のα−オレフインである。具体的には1
−ブテン、1−ペンテン、1−ヘキセン、4−メ
チル−1−ペンテン、1−オクテン、1−デセン
およびこれらの混合物を例示できるが、1−ブテ
ンが特に好ましい。そしてエチレン単位とα−オ
レフイン単位のモル比(エチレン/α−オレフイ
ン)は80/20ないし95/5、好ましくは85/15ないし
95/5、更に好ましくは85/15ないし93/7を例示で
きる。モル比が95/5以上とエチレン単位含有量が
多い場合は加硫物のゴム弾性を失い、高硬度とな
つて柔軟性を失う。80/20以下であると加硫物の
強度はEPゴムのそれと変らない。 本発明のエチレン・α−オレフイン共重合ゴム
はポリエン成分を含有することが好ましい。そし
てその量はヨウ素価で表示して4ないし50が好ま
しく、8ないし40がより好ましい。とくに加硫剤
としてイオウ系化合物を使用する場合は上記範囲
のポリエン成分を含有することが必須である。ポ
リエン成分として具体的には1,4−ヘキサジエ
ン、1,6−オクタジエン、2−メチル−1,5
−ヘキサジエン、6−メチル−1,5−ヘプタジ
エン、7−メチル−1,6−オクタジエンのよう
な鎖状非共役ジエン、シクロヘキサジエン、ジシ
クロペンタジエン、メチルテトラヒドロインデ
ン、5−ビニルノルボルネン、5−エチリデン−
2−ノルボルネン、5−メチレン−2−ノルボル
ネン、5−イソプロピリデン−2−ノルボルネ
ン、6−クロロメチル−5−イソプロペニル−2
−ノルボルネンのような環状非共役ジエン、2,
3−ジイソプロピリデン−5−ノルボルネン、2
−エチリデン−3−イソプロピリデン−5−ノル
ボルネン、2−プロペニル−2,2−ノルボルナ
ジエン、1,3,7−オクタトリエン、1,4,
9−デカトリエンのようなトリエンを代表例とし
て例示することができる。好適なポリエンは環状
非共役ジエンおよび1,4−ヘキサジエンとりわ
けジシクロペンタジエン又は5−エチリデン−2
−ノルボルネンである。 本発明のエチレン・α−オレフイン共重合ゴム
の極限粘度[η]はデカリン中、135℃で測定さ
れた値が0.6ないし6.0dl/g、好ましくは0.8ない
し4.0dl/gである。0.6dl/g以下であると加硫
物の強度が低くまた6.0dl/g以上であると未加
硫配合ゴムを調製する際困難性を伴う。本発明の
組成物の加硫物を電線の絶縁層として使用する場
合は0.8ないし2.5dl/gが好ましく、特に好まし
くは0.8ないし1.8dl/gが例示できる。 本発明の共重合ゴムの加硫物を電線の絶縁層と
する場合、特に電線が高圧送電用電線の場合には
本発明のエチレン・α−オレフイン共重合ゴムの
分子量分布指数Q値が4−12であると加硫ゴムを
絶縁層とした電線を製造する後記工程において押
出加工性に優れる。ここで分子量分布指数Q値は
重量平均分子量MWと数平均分子量MNの比(M
W/MN)である。その測定は「ゲルパーミエーシ
ヨン クロマトグラフイー」(丸善)に準じて次
の方法で実施される。 (1) 分子量既知の標準ポリスチレン(東洋曹達工
業製造の単分散ポリスチレン)を使用して、分
子量MとそのGPC(Gel Permeation
Chromatogroph)カウントを測定し、分子量
MとEV(Elution Volume)の相関図(較正曲
線)を作成する。この時の濃度は0.02重量%と
する。 (2) GPC測定法により試料のGPCパターンをと
り、前記(1)によりMを知る。その際のサンプル
調製条件およびGPC測定条件は以下の通り。 〈サンプル調製〉 (イ) 試料を0.04重量%になるようにo−ジクロル
ベンゼン溶媒とともに三角フラスコに分取す
る。 (ロ) 試料の入つている三角フラスコに老化防止剤
2,6−ジ−tert−プチル−p−クレゾールを
ポリマー溶液に対して0.1重量%添加する。 (ハ) 三角フラスコを140℃に加温し、約30分間撹
拌し、溶解させる。 (ニ) その後135℃ないし140℃において、1μミリ
ポアフイルターで過する。 (ホ) その液をGPCにかける。 〈GPC測定条件〉 次の条件で実施する。 (イ) 装 置 Waters社製 200型 (ロ) カ ラ ム 東洋曹達工業製 S−タイプ(Mixタイプ) (ハ) サンプル量 2ml 本発明のこのようなエチレン・α−オレフイン
共重合体を製造するには公知の触媒を用いて製造
することができる。すなわち媒体中、可溶性バナ
ジウム化合物と有機アルミニウム化合物などのチ
ーグラー触媒を用い、エチレン、炭素数4ないし
10のα−オレフイン、更には必要に応じてポリエ
ン、分子量調節剤としての水素ガスなどを供給す
ることにより製造される。媒体としては、例えば
ペンタン、ヘキサン、ヘプタン、オクタン、灯油
のような脂肪族炭化水素、シクロヘキサンのよう
な脂環族炭化水素、ベンゼン、トルエン、キシレ
ンのような芳香族炭化水素、クロルベンゼン、四
塩化炭素、テトラクロルエチレン、トリクロルエ
チレン、塩化エチル、塩化メチレン、ジクロルエ
タンなどのハロゲン化炭化水素を単独であるいは
混合して用いることができる。可溶性バナジウム
化合物としては、例えば四塩化バナジウム、バナ
ジルトリクロリド、バナジウムトリアセチルアセ
トネート、バナジルジアセチルアセトネート、バ
ナジルトリアルコキシドVO(OR)3(こゝでRは
脂肪族炭化水素基を示す。)、ハロゲン化バナジル
アルコキシドVO(OR)nX3-o(こゝでRは脂肪
族炭化水素基、Xはハロゲン原子を示し、またO
<n<3である。)などを単独でまたは混合して
用いることができる。 一方、有機アルミニウム化合物としては一般式
RmAlX3-n(こゝでRは脂肪族炭化水素基、Xは
ハロゲンを示し、また1≦m≦3である。)で表
わされる化合物例えばトリエチルアルミニウム、
ジエチルアルミニウムクロリド、エチルアルミニ
ウムセスキクロリド、エチルアルミニウムジクロ
リドなどを単独であるいは混合して用いることが
できる。 特に分子量分布指数Q値が3以上のエチレン・
α−オレフイン共重合ゴムを製造する場合は、例
えばバナジルトリクロリドとエチルアルミニウム
セスキクロリドをAl/V(モル比)で2ないし
50の範囲で使用した触媒系で20ないし100℃の温
度で共重合させる方法が例示される。 本発明の共重合ゴムから得られる加硫物を絶縁
層とした電線を製造する場合は、例えばバンバリ
ーミキサーなどのミキサー類を用いて90ないし
150℃で4ないし10分間程度の時間で本発明の共
重合ゴム、充填剤、軟化剤などを混練した後、オ
ープンロールなどのロール類を用いてロール温度
70ないし100℃の温度で加硫剤、必要に応じて加
硫促進剤または加硫助剤などを追加混合して調製
せられたシート状またはリボン状の未加硫配合ゴ
ムをあるいは後述する方法でペレツト化された未
加硫配合ゴムを90ないし110℃に加熱された押出
機に供給し、別途該押出機に導入された導線を押
出機内において上記配合ゴムで円筒状に被覆し、
次いで被覆させた導線をスチームなどにより180
ないし220℃に加熱された加硫槽内に連続的に導
入し0.5ないし10分間加熱することにより本発明
の共重合ゴムの加硫物が絶縁層となつた電線を製
造することができる。また前記キヤツプ類、ケー
ブルジヨイントカバーなどの電気絶縁物を製造す
る場合は、前記未加硫配合ゴムを押出成形機によ
つて電気絶縁物の形状となるように成形し、成形
と同時にあるいは加硫槽内で130ないし220℃で1
ないし60分間加熱することによりあるいは未加硫
配合ゴムを熱プレスを用いて成形と同時に該温
度、該時間加熱して加硫を行うことにより製造す
ることができる。 本発明の絶縁材中に含まれるエチレン・α−オ
レフイン共重合体の割合は25ないし90重量%好ま
しくは40ないし88重量%であり、そして約3万ボ
ルト以上の高圧送電用電線の絶縁層として使用す
る場合は55ないし90重量%、好ましくは65ないし
88重量%である。 本発明の共重合ゴムに配合使用される無機充填
剤としては微粉ケイ酸、炭酸カルシウム、タル
ク、クレー、カーボンブラツクなどを例示でき
る。電気絶縁物の体積固有抵抗は1×1014Ω・cm
以上であることが好ましいため、非電導性の充填
剤の使用が好ましい。それ程高い水準の電気特性
を要求しない用途ではこのような無機充填剤を共
重合ゴム100重量部に対して約250重量部程度と多
量に配合しても実用的強度を保持するので、より
安価に製造できることは本発明の一つの利点であ
る。約3万ボルト以上の高圧送電用電線の絶縁層
として使用する場合は共重合ゴム100重量部に対
して50重量部以下、好ましくは30重量部以下配合
する。 尚、カーボンブラツクを使用する場合は共重合
ゴム100重量部に対して15重量部以下に留めるの
が好ましい。 本発明の共重合ゴムに配合できる軟化剤として
は通常ゴムに使用される軟化剤、例えばプロセス
オイル、潤滑油、パラフイン、流動パラフイン、
石油アスフアルト、ワセリンなどの石油系軟化
剤、コールタール、コールタールピツチなどのコ
ールタール系軟化剤、ヒヤシ油、アマニ油、ナタ
ネ油、ヤシ油などの脂肪油系軟化剤トール油;サ
ブ;密ロウ、カルナウバロウ、ラノリンなどのロ
ウ類;リシノール酸、パルミチン酸、ステアリン
酸バリウム、ステアリン酸カルシウム、ラウリン
酸亜鉛などの脂肪酸および脂肪酸;石油樹脂、ア
タクチツクポリプロピレン、クマロンインデン樹
脂などの合成高分子物質を挙げることができる。
なかでも石油系軟化剤が好ましく用いられ、特に
プロセスオイルが好ましく用いられる。それ程高
い水準の電気特性を要求しない用途では安価な軟
化剤を共重合ゴム100重量部に対して約100重量部
と多量に配合しても実用的強度を保持し、従つて
安価に電気絶縁材が製造できる。 約3万ボルト以上の高圧送電用電線の絶縁層と
して使用する場合は共重合ゴム100重量部に対し
て7重量部以下、好ましくは5重量部以下配合す
る。 加硫剤としては、イオウ、塩化イオウ、二塩化
イオウ、モルホリンジスルフイド、アルキルフエ
ノールジスルフイド、テトラメチルチウラムジス
ルフイド、ジメチルジチオカルバミン酸セレンな
どのイオウ系化合物;ジクミルペルオキシド、
2,5−ジメチル−2,5−ジ(第三ブチルペル
オキシ)ヘキサン、2,5−ジメチル−2,5−
ジ(ベンゾイルペルオキシ)ヘキサン、2,5−
ジメチル−2,5−ジ(第三ブチルペルオキシ)
ヘキシン−3、ジ第三ブチルペルオキシド、ジ第
三ブチルペルオキシ−3,3,5−トリメチルシ
クロヘキサン、第三ブチルヒドロペルオキシドな
どの有機過酸化物を挙げることができる。中でも
イオウ、有機過酸化物が好んで使用され、特にイ
オウ、ジクミルペルオキシド、ジ第三ブチルペル
オキシド、ジ第三ブチルペルオキシ−3,3,5
−トリメチルシクロヘキサンが好ましい。本発明
の電気絶縁材を絶縁層とする電線を製造する場合
はイグニツシヨンケーブルの場合を除いて加硫剤
として上記過酸化物の使用が好ましい。イオウ系
化合物は共重合ゴム100重量部に対して0.1ないし
10重量部、好ましくは0.5ないし5重量部で使用
される。また有機過酸化物は共重合ゴム100重量
部に対して0.1ないし15重量部、好ましくは0.5な
いし8重量部の割合で使用される。 また必要に応じて加硫剤と併用して、加硫促進
剤が使用される。加硫促進剤としては、N−シク
ロヘキシル−2−ベンゾチアゾール−スルフエン
アミド、N−オキシジエチレン−2−ベンゾチア
ゾール−スルフエンアミド、N,N−ジイソプロ
ピル−2−ベンゾチアゾールスルフエンアミド、
2−メルカプトベンゾチアゾール、2−(2,4
−ジニトロフエニル)メルカプトベンゾチアゾー
ル、2−(2,6−ジエチル−4−モルホリノチ
オ)ベンゾチアゾール、ジベンゾチアジル−ジス
ルフイドなどのチアゾール系;ジフエニルグアニ
ジン、トリフエニルグアニジン、ジオルソトリル
グアニジン、オルソトリル・バイ・グアナイド、
ジフエニルグアニジン・フタレートなどのグアニ
ジン系;アセトアルデヒド−アニリン反応物、ブ
チルアルデヒド−アニリン縮合物、ヘキサメチレ
ンテトラミン、アセトアルデヒドアンモニアなど
のアルデヒドアミンまたはアルデヒド−アンモニ
ア系;2−メルカプトイミダゾリンなどのイミダ
ゾリン系;チオカルバニリド、ジエチルチオユリ
ア、ジブチルチオユリア、トリメチルチオユリ
ア、ジオルソトリルチオユリアなどのチオユリア
系;テトラメチルチウラムモノスルフイド、テト
ラメチルチウラムジスルフイド、テトラエチルチ
ウラムジスルフイド、テトラブチルチウラムジス
ルフイド、ペンタメチレンチウラムテトラスルフ
イドなどのチウラム系;ジメチルジチオカルバミ
ン酸亜鉛、ジエチルチオカルバミン酸亜鉛、ジ−
n−ブチルチオカルバミン酸亜鉛、エチルフエニ
ルジチオカルバミン酸亜鉛、ブチルフエニルジチ
オカルバミン酸亜鉛、ジメチルジチオカルバミン
酸ナトリウム、ジメチルジチオカルバミン酸セレ
ン、ジエチルチオカルバミン酸テルルなどのジチ
オ酸塩系;ジブチルキサントゲン酸亜鉛などのザ
ンテート系、酸化亜鉛、酸化マグネシウム、鉛丹
などの金属酸化物などを挙げることができる。こ
れら加硫促進剤は共重合ゴム100重量部に対して
0.1ないし20重量部、好ましくは0.2ないし10重量
部の割合で使用される。 また過酸化物による架橋に際しては、酸化亜
鉛、酸化マグネシウム、鉛丹などの金属酸化物、
硫黄、P−キノンジオキシムなどのキノンジオキ
シム系;ポリエチレングリコールジメタクリレー
トなどのメタクリレート系;ジアリルフタレー
ト、トリアリルシアヌレートなどのアリル系;そ
の他マレイミド系;ジビニルベンゼンなどの架橋
助剤を使用してもよい。 本発明の電気絶縁材を絶縁層とする電線を製造
するに当つてはペレツト化された配合ゴムを用い
ることが電線を製造する上で省力化の利点をもた
らす。そして本発明の共重合ゴムを用いることに
よりペレツト化が可能である。本発明の共重合ゴ
ムを用いてペレツト化するには、該共重合ゴムに
軟化剤、無機充填剤を配合しなくてもペレツト化
が可能であり、また軟化剤、無機充填剤を配合す
る場合は共重合ゴム100重量部に対する各配合量
をx重量部、y重量部としたときx≦80の場合は
x+y≦400を満たすことにより又x>80の場合
はy>5(x−80)およびx+y≦400を満たす
ことによりペレツト化が可能である。そしてこの
ようなペレツト化された配合ゴムを製造するには
前記の方法で軟化剤、無機充填剤、加硫剤などの
配合せられた未加硫の配合ゴムを一度調製した後
90ないし110℃に加熱せられたペレタイザーに供
給してペレツト化される。尚、加硫剤、加硫助剤
又は加硫促進剤などの加硫系を規定する物質はペ
レタイザーによるペレツト化の工程で混合しても
よい。 以下具体的に実施例、比較例を以つて具体的に
説明する。 実施例 1 エチレン単位と1−ブテン単位含有量のモル比
(エチレン/1−ブテン)が85/15、ヨウ素価10、
[η]が1.35、そしてQ値が4.5であるエチレン、
1−ブテン、5−エチリデン−2−ノルボルネン
からなる共重合ゴム800gを用いて、表1のA欄
に示される配合表に従い、8インチオープンロー
ルにより、ロール温度75℃/80℃(フロントロー
ル/バツクロール)で20分間混練し未加硫の配合
ゴムを得た。 この配合ゴムを160℃に加熱されたプレスによ
り150Kg/cm2の圧力下に30分間加熱し14cm×12
cm、厚さ2mmの加硫シートを作製した。このシー
トよりJIS3号ダンベルを打抜きJIS K6301に規定
される方法に従い25℃雰囲気下、引張速度500
mm/minにより破断点応力TB(Kg/cm2)および
破断点伸びEB(%)を測定した。また同JISの規
定に従い硬度HS(JIS A)を測定した。 また加硫シートから試料を採取しシエーリング
ブリシジ法により1KV/secの昇電圧速度で交流
破壊電圧および25℃、500Vでの誘電正接を測定
した。 別途前記未加硫配合ゴムを50mmφ押出機(L/
D=10、圧縮比=6、ガーベイダイ)に供給し、
押出温度105℃、回転速度40rpmで押し出し得ら
れたストランドの表面の外観を観察し、押出加工
性の指標として押出肌の5段階評価を行つた。 5……表面凹凸が全くなく、光沢が良好 4……表面凹凸がほとんどなく、光沢なし 3……表面凹凸が僅かにあり、光沢なし 2……表面凹凸があり、光沢なし 1……表面に大きな凹凸があり、光沢全くなし 以上の結果を表2に示した。
The present invention relates to an electrical insulating material, and particularly to an electrical insulating material made from a composition containing a specific ethylene/α-olefin copolymer rubber as a rubber component. Electrical insulators, such as cylindrical insulating layers covering current-carrying parts such as power transmission wires, marine wires, and automobile ignition cables, and those around automobile engines such as plug caps, ignition caps, and distributor caps. Ethylene-propylene random copolymer rubber or ethylene-propylene random copolymer rubber, which has excellent weather resistance, heat resistance, and electrical insulation, is used for general insulating electrical parts such as electrical insulation caps, condenser caps, and cable joint covers.
It is well known that vulcanized rubber compounds containing propylene/polyene random copolymer rubber as a rubber component are widely used. However, these rubbers (hereinafter abbreviated as EP rubber) still have many unsatisfactory points. For example, when using an EP rubber vulcanizate as an insulating layer for electric wires, especially high-voltage power transmission wires, the vulcanizate must have high electrical properties and mechanical strength. In practical terms, the transmission voltage of a power transmission cable with a vulcanized material as an insulating layer remains at about 20,000 volts. The reason for this is that in the process of manufacturing electric wires using EP rubber vulcanizate as an insulating layer, the processability of EP rubber unvulcanized compound rubber and the strength of EP rubber vulcanizate cannot be balanced, and high-level electrical properties and mechanical This is caused by not being able to satisfy the following characteristics. i.e.
Electric wires with an insulating layer made of EP rubber vulcanizate are usually produced by feeding an unvulcanized rubber compound containing EP rubber, a vulcanizing agent, a softening agent, and a filler to an extruder.
It is produced by covering a conductive wire, which becomes the current-carrying part of the electric wire separately introduced into the extruder, in a cylindrical shape with compounded rubber in the extruder, and then heating it in a vulcanization system, but the electric wire has an even higher voltage. In order to be used as an insulating layer, the insulating layer must have a low dielectric loss tangent.
This is achieved by using a compounded rubber with a small amount of filler, etc. However, in this case, due to the small amount of softener blended, the so-called extrusion processability deteriorates, in which the outer surface of the cylinder loses its smoothness in the extrusion process in which the compound rubber is coated in a cylindrical shape around the current-carrying part in the manufacturing process of the electric wire. However, due to the loss of smoothness, the withstand AC breakdown voltage of the insulating part decreases, and it cannot be used as a high-voltage power transmission wire. As a method to solve this extrusion processability, methods have been attempted to lower the molecular weight of EP rubber or use EP rubber with a wide molecular weight distribution, but the present inventors have found that this method does indeed improve extrusion processability. It was learned that as the molecular weight of the vulcanizate decreases or the molecular weight distribution expands, the strength of the vulcanizate, especially the stress at break, decreases, making it unusable as an insulating layer for high-voltage power transmission lines. Therefore,
In any case, as long as common EP rubber is used, the practical voltage limit for power transmission wires using the vulcanizate as an insulating layer is about 20,000 volts. In addition, when used for applications such as plug caps, ignition caps, distributor caps, ignition cable insulating layers, and cable joint covers, inexpensive softeners are not required because they do not require such high levels of electrical properties. It is desirable to mix a large amount of inorganic fillers and the like to manufacture the product as inexpensively as possible, but in view of the strength of the EP rubber vulcanizate, the softener should be about 80 parts by weight and the inorganic filler should be added to 100 parts by weight of EP rubber. The upper limit of the blending amount is about 200 parts by weight, and there is a limit to lowering manufacturing costs from the current situation. However, the present inventors have investigated the factors that affect the mechanical properties of vulcanizates of ethylene/α-olefin copolymer rubber, particularly the type of α-olefin in the copolymer rubber, the composition ratio of ethylene and α-olefin, etc. As a result, when the molar ratio of ethylene units to α-olefin units is 80/20 to 95/5, α-olefins are α-olefins having 4 to 10 carbon atoms.
We have discovered the surprising fact that when olefin is used, the strength of a copolymer rubber vulcanizate is significantly higher than in the case of EP rubber where propylene is used as α-olefin, and this has led to the present invention. That is, the present invention has an ethylene unit and a carbon number of 4.
−10 α-olefin unit molar ratio (ethylene/
α-olefin) is 80/20−95/5, preferably 85/
15-95/5, and the intrinsic viscosity [η] is 0.6-6.0
dl/g, preferably 0.8-4.0 dl/g, contains a polyene component with an iodine value of 4-50, and has a molecular weight distribution index Q value (M W /M N ) of 4-12. - An object of the present invention is to provide an electrical insulation material comprising a composition of olefin copolymer rubber. The advantages of the invention will become clearer from the description that follows. In other words, even if a large amount of inexpensive softeners and inorganic fillers are blended, the ethylene/α-olefin copolymer rubber vulcanizate of the present invention has sufficient strength for practical use, so it has a high level of dielectric constant, dielectric loss tangent, etc. Electrical insulation materials that do not require the same electrical properties can be produced at a lower cost than EP rubber. In the rubber composition for covering electric wires, the blending amount of the softener and inorganic filler is limited so that the dielectric loss tangent (%) of the vulcanizate is 0.3 or less. However, the molecular weight distribution index Q value of the present invention is 4
If an ethylene/α-olefin copolymer rubber having 1 to 12 is used, the extrusion processability is good even in the case of wire coating, so the surface smoothness of the insulating layer can be maintained sufficiently, and the vulcanizate can be coated with ethylene/α-olefin copolymer rubber. The strength at break of
It is possible to set it to 100Kg/cm 3 or more. As a result, the vulcanized product of the ethylene/α-olefin copolymer rubber of the present invention functions satisfactorily as an insulating layer for high-voltage power transmission wires of about 60,000 volts. As described above, since the vulcanized product of the ethylene/α-olefin copolymer rubber of the present invention has high strength, it further guarantees its function as an insulating layer for power transmission wires or marine wires that are not very high voltage. The configuration of the present invention will be explained in detail below. α-olefin, which is a component of the ethylene/α-olefin copolymer rubber used in the present invention, has 4 carbon atoms.
to 10 α-olefins. Specifically 1
Examples include -butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, and mixtures thereof, with 1-butene being particularly preferred. The molar ratio of ethylene units to α-olefin units (ethylene/α-olefin) is 80/20 to 95/5, preferably 85/15 to 95/5.
Examples include 95/5, more preferably 85/15 to 93/7. When the molar ratio is 95/5 or more and the ethylene unit content is large, the vulcanizate loses its rubber elasticity, becomes hard and loses flexibility. If it is 80/20 or less, the strength of the vulcanizate is the same as that of EP rubber. The ethylene/α-olefin copolymer rubber of the present invention preferably contains a polyene component. The amount is preferably 4 to 50, more preferably 8 to 40, expressed in terms of iodine value. In particular, when a sulfur compound is used as a vulcanizing agent, it is essential to contain the polyene component within the above range. Specifically, the polyene component is 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5
- linear non-conjugated dienes such as hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, cyclohexadiene, dicyclopentadiene, methyltetrahydroindene, 5-vinylnorbornene, 5-ethylidene −
2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2
- cyclic nonconjugated dienes such as norbornene, 2,
3-diisopropylidene-5-norbornene, 2
-ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,2-norbornadiene, 1,3,7-octatriene, 1,4,
Trienes such as 9-decatriene can be exemplified as a representative example. Suitable polyenes are cyclic non-conjugated dienes and 1,4-hexadiene, especially dicyclopentadiene or 5-ethylidene-2
- Norbornene. The intrinsic viscosity [η] of the ethylene/α-olefin copolymer rubber of the present invention is 0.6 to 6.0 dl/g, preferably 0.8 to 4.0 dl/g, as measured in decalin at 135°C. If it is less than 0.6 dl/g, the strength of the vulcanizate will be low, and if it is more than 6.0 dl/g, it will be difficult to prepare an unvulcanized compounded rubber. When the vulcanized product of the composition of the present invention is used as an insulating layer for electric wires, the amount is preferably 0.8 to 2.5 dl/g, particularly preferably 0.8 to 1.8 dl/g. When the vulcanizate of the copolymer rubber of the present invention is used as an insulating layer of an electric wire, especially when the electric wire is a high-voltage power transmission wire, the molecular weight distribution index Q value of the ethylene/α-olefin copolymer rubber of the present invention is 4-4. When the number is 12, extrusion processability is excellent in the process described later for producing an electric wire having an insulating layer made of vulcanized rubber. Here, the molecular weight distribution index Q value is the ratio of the weight average molecular weight M W to the number average molecular weight M N (M
W /M N ). The measurement is carried out according to the following method according to "Gel Permeation Chromatography" (Maruzen). (1) Using standard polystyrene with a known molecular weight (monodisperse polystyrene manufactured by Toyo Soda Kogyo), calculate the molecular weight M and its GPC (Gel Permeation
Chromatograph) count and create a correlation diagram (calibration curve) between molecular weight M and EV (Elution Volume). The concentration at this time is 0.02% by weight. (2) Obtain a GPC pattern of the sample using the GPC measurement method, and find M using the above (1). The sample preparation conditions and GPC measurement conditions at that time are as follows. <Sample Preparation> (a) Aliquot the sample into an Erlenmeyer flask together with o-dichlorobenzene solvent to a concentration of 0.04% by weight. (b) Add 2,6-di-tert-butyl-p-cresol, an anti-aging agent, to the Erlenmeyer flask containing the sample in an amount of 0.1% by weight based on the polymer solution. (c) Heat the Erlenmeyer flask to 140°C and stir for about 30 minutes to dissolve. (d) Then pass through a 1 μm Millipore filter at 135°C to 140°C. (e) Apply the liquid to GPC. <GPC measurement conditions> Perform under the following conditions. (b) Apparatus 200 type (b) manufactured by Waters Column S-type (Mix type) manufactured by Toyo Soda Kogyo (c) Sample amount 2 ml To produce such an ethylene/α-olefin copolymer of the present invention can be produced using a known catalyst. That is, in a medium, using a Ziegler catalyst such as a soluble vanadium compound and an organoaluminium compound, ethylene, carbon number 4 or
It is produced by supplying α-olefin of No. 10, polyene if necessary, hydrogen gas as a molecular weight regulator, etc. Examples of media include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, and kerosene, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene, chlorobenzene, and tetrachloride. Carbon, halogenated hydrocarbons such as tetrachlorethylene, trichlorethylene, ethyl chloride, methylene chloride, and dichloroethane can be used alone or in combination. Examples of soluble vanadium compounds include vanadium tetrachloride, vanadyl trichloride, vanadium triacetylacetonate, vanadyl diacetylacetonate, vanadyl trialkoxide VO(OR) 3 (where R represents an aliphatic hydrocarbon group), Halogenated vanadyl alkoxide VO(OR)nX 3-o (where R is an aliphatic hydrocarbon group, X is a halogen atom, and O
<n<3. ) can be used alone or in combination. On the other hand, as an organoaluminum compound, the general formula
Compounds represented by RmAlX 3-n (where R is an aliphatic hydrocarbon group, X is a halogen, and 1≦m≦3), such as triethylaluminum,
Diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, and the like can be used alone or in combination. In particular, ethylene with a molecular weight distribution index Q value of 3 or more
When producing α-olefin copolymer rubber, for example, vanadyl trichloride and ethylaluminum sesquichloride are mixed at an Al/V (molar ratio) of 2 to 2.
An example is a method in which copolymerization is carried out at a temperature of 20 to 100°C using a catalyst system in the range of 50°C. When manufacturing an electric wire having an insulating layer made of the vulcanizate obtained from the copolymer rubber of the present invention, for example, a mixer such as a Banbury mixer is used to
After kneading the copolymer rubber of the present invention, filler, softener, etc. at 150°C for about 4 to 10 minutes, the temperature of the rolls is increased using rolls such as open rolls.
A sheet or ribbon-shaped unvulcanized rubber compound prepared by additionally mixing a vulcanizing agent and, if necessary, a vulcanization accelerator or vulcanization aid at a temperature of 70 to 100°C, or the method described below. The unvulcanized compounded rubber pelletized with is fed to an extruder heated to 90 to 110°C, and a conducting wire separately introduced into the extruder is covered in a cylindrical shape with the compounded rubber in the extruder,
Next, the coated conductor wire is heated to 180% by steam etc.
By continuously introducing the copolymer rubber into a vulcanization tank heated to 220° C. to 220° C. and heating for 0.5 to 10 minutes, an electric wire having an insulating layer made of the vulcanizate of the copolymer rubber of the present invention can be produced. In addition, when manufacturing electrical insulating materials such as caps and cable joint covers, the unvulcanized compounded rubber is molded into the shape of electrical insulating materials using an extrusion molding machine, and either simultaneously with molding or vulcanization. 1 at 130 to 220℃ in a sulfur tank
It can be produced by heating for 60 minutes to 60 minutes, or by vulcanizing an unvulcanized compounded rubber by heating it at the temperature and for the time at the same time as molding using a hot press. The proportion of the ethylene/α-olefin copolymer contained in the insulating material of the present invention is 25 to 90% by weight, preferably 40 to 88% by weight, and can be used as an insulating layer for high-voltage power transmission wires of about 30,000 volts or more. If used, 55 to 90% by weight, preferably 65 to 90% by weight
It is 88% by weight. Examples of the inorganic filler that can be used in the copolymer rubber of the present invention include finely divided silicic acid, calcium carbonate, talc, clay, and carbon black. The volume resistivity of electrical insulators is 1×10 14 Ω・cm
Since the above is preferable, it is preferable to use a non-conductive filler. For applications that do not require such high levels of electrical properties, practical strength can be maintained even when such inorganic fillers are blended in a large amount of about 250 parts by weight per 100 parts by weight of copolymer rubber, making it cheaper. Manufacturability is one advantage of the present invention. When used as an insulating layer for high-voltage power transmission wires of approximately 30,000 volts or more, the amount is 50 parts by weight or less, preferably 30 parts by weight or less, per 100 parts by weight of copolymer rubber. In addition, when carbon black is used, it is preferable to limit it to 15 parts by weight or less based on 100 parts by weight of the copolymer rubber. Softeners that can be blended into the copolymer rubber of the present invention include softeners commonly used for rubber, such as process oils, lubricating oils, paraffin, liquid paraffin,
Petroleum-based softeners such as petroleum asphalt and vaseline, coal tar-based softeners such as coal tar and coal tar pitch, fatty oil-based softeners such as coconut oil, linseed oil, rapeseed oil, and coconut oil.Tall oil; sub; beeswax; waxes such as , carnauba wax, and lanolin; fatty acids and fatty acids such as ricinoleic acid, palmitic acid, barium stearate, calcium stearate, and zinc laurate; synthetic polymeric substances such as petroleum resin, atactic polypropylene, and coumaron indene resin. be able to.
Among these, petroleum-based softeners are preferably used, and process oils are particularly preferred. For applications that do not require such high levels of electrical properties, practical strength can be maintained even when an inexpensive softener is blended in large amounts (approximately 100 parts by weight to 100 parts by weight of copolymer rubber). can be manufactured. When used as an insulating layer for high-voltage power transmission wires of about 30,000 volts or more, the amount is 7 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the copolymer rubber. As a vulcanizing agent, sulfur-based compounds such as sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, selenium dimethyldithiocarbamate; dicumyl peroxide,
2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, 2,5-dimethyl-2,5-
Di(benzoylperoxy)hexane, 2,5-
Dimethyl-2,5-di(tert-butylperoxy)
Organic peroxides such as hexene-3, di-tert-butyl peroxide, di-tert-butyl peroxy-3,3,5-trimethylcyclohexane, and tert-butyl hydroperoxide can be mentioned. Among them, sulfur and organic peroxides are preferably used, especially sulfur, dicumyl peroxide, di-tert-butyl peroxide, di-tert-butyl peroxide-3,3,5
-trimethylcyclohexane is preferred. When producing an electric wire having an insulating layer made of the electrical insulating material of the present invention, it is preferable to use the above-mentioned peroxide as a vulcanizing agent, except in the case of ignition cables. The sulfur compound is 0.1 to 100 parts by weight of copolymer rubber.
It is used in amounts of 10 parts by weight, preferably 0.5 to 5 parts by weight. The organic peroxide is used in an amount of 0.1 to 15 parts by weight, preferably 0.5 to 8 parts by weight, based on 100 parts by weight of the copolymer rubber. Further, a vulcanization accelerator is used in combination with a vulcanizing agent, if necessary. As the vulcanization accelerator, N-cyclohexyl-2-benzothiazole-sulfenamide, N-oxydiethylene-2-benzothiazole-sulfenamide, N,N-diisopropyl-2-benzothiazole-sulfenamide,
2-mercaptobenzothiazole, 2-(2,4
-dinitrophenyl)mercaptobenzothiazole, 2-(2,6-diethyl-4-morpholinothio)benzothiazole, dibenzothiazyl-disulfide, and other thiazoles; diphenylguanidine, triphenylguanidine, diorthotolylguanidine, orthotolyl・Guanide,
Guanidine type such as diphenylguanidine phthalate; aldehyde amine or aldehyde-ammonia type such as acetaldehyde-aniline reaction product, butyraldehyde-aniline condensate, hexamethylenetetramine, acetaldehyde ammonia; imidazoline type such as 2-mercaptoimidazoline; thiocarbanilide, Thiourea series such as diethylthiourea, dibutylthiourea, trimethylthiourea, diorthotolylthiourea; tetramethylthiuram monosulfide, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, Thiuram series such as pentamethylene thiuram tetrasulfide; zinc dimethyldithiocarbamate, zinc diethylthiocarbamate, di-
Dithioate salts such as zinc n-butylthiocarbamate, zinc ethyl phenyl dithiocarbamate, zinc butylphenyl dithiocarbamate, sodium dimethyl dithiocarbamate, selenium dimethyl dithiocarbamate, tellurium diethyl thiocarbamate; zinc dibutyl xanthate, etc. Examples include metal oxides such as xanthate, zinc oxide, magnesium oxide, and red lead. These vulcanization accelerators are used per 100 parts by weight of copolymer rubber.
It is used in a proportion of 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight. In addition, when crosslinking with peroxides, metal oxides such as zinc oxide, magnesium oxide, red lead, etc.
Quinone dioxime systems such as sulfur and P-quinone dioxime; methacrylate systems such as polyethylene glycol dimethacrylate; allyl systems such as diallyl phthalate and triallyl cyanurate; other maleimide systems; and crosslinking aids such as divinylbenzene. Good too. When manufacturing electric wires having the electrical insulating material of the present invention as an insulating layer, using pelletized compounded rubber brings about the advantage of labor saving in manufacturing the electric wires. Pelletization is possible by using the copolymer rubber of the present invention. In order to make pellets using the copolymer rubber of the present invention, it is possible to make pellets without adding a softener or an inorganic filler to the copolymer rubber, or when a softener or an inorganic filler is added to the copolymer rubber. If x≦80, then x+y≦400, and if x>80, then y>5(x-80). Pelletization is possible by satisfying x+y≦400. In order to produce such pelletized compounded rubber, the unvulcanized compounded rubber containing softeners, inorganic fillers, vulcanizing agents, etc. is prepared by the method described above.
It is fed into a pelletizer heated to 90 to 110°C and turned into pellets. Incidentally, substances that define the vulcanization system, such as a vulcanizing agent, a vulcanizing aid, or a vulcanizing accelerator, may be mixed in the step of pelletizing with a pelletizer. The following will specifically explain examples and comparative examples. Example 1 The molar ratio of ethylene unit and 1-butene unit content (ethylene/1-butene) was 85/15, the iodine value was 10,
Ethylene with [η] of 1.35 and Q value of 4.5,
Using 800 g of a copolymer rubber consisting of 1-butene and 5-ethylidene-2-norbornene, it was rolled at a roll temperature of 75°C/80°C (front roll/ The mixture was kneaded for 20 minutes using a back roll to obtain an unvulcanized compounded rubber. This compounded rubber was heated under a pressure of 150 kg/cm 2 for 30 minutes using a press heated to 160°C to form a 14 cm x 12
A vulcanized sheet with a thickness of 2 mm and a thickness of 2 mm was prepared. JIS No. 3 dumbbells were punched out from this sheet according to the method specified in JIS K6301 at a tensile speed of 500 in an atmosphere of 25℃.
The stress at break TB (Kg/cm 2 ) and elongation at break EB (%) were measured using mm/min. In addition, the hardness HS (JIS A) was measured according to the same JIS regulations. In addition, a sample was taken from the vulcanized sheet and the AC breakdown voltage and dielectric loss tangent at 25°C and 500V were measured using the Schering-Brissige method at a voltage increase rate of 1KV/sec. Separately, the unvulcanized compounded rubber is processed using a 50mmφ extruder (L/
D=10, compression ratio=6, Garvey dye),
The appearance of the surface of the strands obtained by extrusion at an extrusion temperature of 105° C. and a rotational speed of 40 rpm was observed, and the extrusion texture was evaluated in five grades as an index of extrusion processability. 5... No surface unevenness at all, good gloss 4... Almost no surface unevenness, no gloss 3... Slight surface unevenness, no gloss 2... Surface unevenness, no gloss 1... Surface There were large irregularities and no gloss at all. The above results are shown in Table 2.

【表】 実施例2,3,4、比較例1,2 実施例1において共重合ゴムとして表2に記載
されるエチレン、1−ブテン、5−エチリデン−
2−ノルボルネン共重合ゴムを用いる他は実施例
1と同一の操作を行つた。結果を表2に示した。 比較例 3,4 実施例1において共重合ゴムとして表2に記載
されるエチレン、プロピレン、5−エチリデン−
2−ノルボルネンからなる共重合ゴムを用いる他
は実施例1と同一の操作を行つた。結果を表2に
示した。 比較例 5 比較例3において配合を表1のB欄に示すよう
に変更し押出加工性を向上させる他は比較例3と
同一の操作を行つた。結果を表2に示した。
[Table] Examples 2, 3, 4, Comparative Examples 1, 2 Ethylene, 1-butene, and 5-ethylidene listed in Table 2 as the copolymer rubber in Example 1
The same operation as in Example 1 was performed except that 2-norbornene copolymer rubber was used. The results are shown in Table 2. Comparative Examples 3 and 4 Ethylene, propylene, and 5-ethylidene listed in Table 2 as the copolymer rubber in Example 1
The same operation as in Example 1 was performed except that a copolymer rubber consisting of 2-norbornene was used. The results are shown in Table 2. Comparative Example 5 The same operations as in Comparative Example 3 were performed except that the formulation was changed as shown in column B of Table 1 to improve extrusion processability. The results are shown in Table 2.

【表】 実施例5、比較例6 実施例1においてエチレン・α−オレフイン共
重合ゴムとして表4に記載されるエチレン・1−
ブテン・ジシクロペンタジエン共重合ゴム(実施
例5)、エチレン・プロピレン・ジシクロペンタ
ジエン共重合ゴム(比較例6)を各々使用、配合
を表3のA欄に記載される割合とし、かつ加硫温
度を180℃、5分間とする以外は実施例1と同一
の操作を行つた。結果を表4に示した。
[Table] Example 5, Comparative Example 6 Ethylene-1-
Butene/dicyclopentadiene copolymer rubber (Example 5) and ethylene/propylene/dicyclopentadiene copolymer rubber (Comparative Example 6) were used, the proportions were as shown in column A of Table 3, and vulcanization was performed. The same operation as in Example 1 was performed except that the temperature was 180° C. for 5 minutes. The results are shown in Table 4.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 エチレン単位と炭素原子数4〜10のα−オレ
フイン単位とのモル比(エチレン/α−オレフイ
ン)が80/20〜95/5の範囲に属する共重合体であ
つて、その極限粘度[η]が0.6ないし6.0dl/g
であり、そのポリエン単位含有率がヨウ素価表示
で4−50及びその分子量分布指数Q値(MW/M
N)が4〜12であるエチレン・α−オレフイン共
重合ゴムを主体とする電気絶縁材。 2 電線の絶縁層であることを特徴とする特許請
求の範囲第1項記載の電気絶縁材。
[Scope of Claims] 1. A copolymer in which the molar ratio of ethylene units to α-olefin units having 4 to 10 carbon atoms (ethylene/α-olefin) is in the range of 80/20 to 95/5; , its intrinsic viscosity [η] is 0.6 to 6.0 dl/g
The polyene unit content is 4-50 in terms of iodine value and the molecular weight distribution index Q value (M W /M
An electrical insulating material mainly composed of ethylene/α-olefin copolymer rubber having N ) of 4 to 12. 2. The electrical insulating material according to claim 1, which is an insulating layer of an electric wire.
JP12354078A 1978-10-09 1978-10-09 Electric insulating material Granted JPS5550511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12354078A JPS5550511A (en) 1978-10-09 1978-10-09 Electric insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12354078A JPS5550511A (en) 1978-10-09 1978-10-09 Electric insulating material

Publications (2)

Publication Number Publication Date
JPS5550511A JPS5550511A (en) 1980-04-12
JPS6155203B2 true JPS6155203B2 (en) 1986-11-26

Family

ID=14863121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12354078A Granted JPS5550511A (en) 1978-10-09 1978-10-09 Electric insulating material

Country Status (1)

Country Link
JP (1) JPS5550511A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787010A (en) * 1980-11-18 1982-05-31 Hitachi Cable Insulating composition
JPS5788613A (en) * 1980-11-25 1982-06-02 Hitachi Cable Electric insulating composition
JPS5999614A (en) * 1982-11-30 1984-06-08 住友電気工業株式会社 Electrically insulating cable
JP2518292B2 (en) * 1987-07-08 1996-07-24 日立電線株式会社 Oil well wire / cable

Also Published As

Publication number Publication date
JPS5550511A (en) 1980-04-12

Similar Documents

Publication Publication Date Title
AU712359B2 (en) Hydrosilylation crosslinking
US4588794A (en) Process for production of rubbery ethylene/1-butene/polyene copolymers
AU726095B2 (en) Hydrosilylation crosslinking of thermoplastic elastomer
EP1006150B1 (en) Preferred process for silicon hydride addition and preferred degree of polymerization for silicon hydride for thermoplastic vulcanizates
US4673620A (en) Elastomeric thermoplastic low voltage insulation on conductive substrate
JPH0314045B2 (en)
JP5100342B2 (en) Rubber composition and use thereof
JPS6155203B2 (en)
JP4872435B2 (en) Oil-extended rubber and method for producing the same
JPS5914497B2 (en) Ethylene copolymer rubber composition
JP5611849B2 (en) Ethylene / α-olefin / non-conjugated polyene copolymer and thermoplastic elastomer containing the same
JPS6036164B2 (en) ethylene copolymer
JPS625187B2 (en)
JP3911707B2 (en) Seal packing
JPH11116811A (en) Vulcanizable rubber composition
JP5082543B2 (en) Method for producing vulcanized rubber
JPS6411215B2 (en)
JPH01108239A (en) Modified polysiloxane-containing heat-resistant rubber composition
JPS629259B2 (en)
JPH0723414B2 (en) Method for producing ethylene-α-olefin copolymer
JPS60181148A (en) Rubber composition having excellent high-frequency vulcanization property
JPS6295337A (en) Vulcanized rubber composition
JPH0146536B2 (en)
JPH0680128B2 (en) Vulcanizable epichlorohydrin rubber composition
JPH0680129B2 (en) Vulcanizable acrylic rubber composition