JPS6155199B2 - - Google Patents

Info

Publication number
JPS6155199B2
JPS6155199B2 JP12340184A JP12340184A JPS6155199B2 JP S6155199 B2 JPS6155199 B2 JP S6155199B2 JP 12340184 A JP12340184 A JP 12340184A JP 12340184 A JP12340184 A JP 12340184A JP S6155199 B2 JPS6155199 B2 JP S6155199B2
Authority
JP
Japan
Prior art keywords
information
memory
transistor
line
memory transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12340184A
Other languages
Japanese (ja)
Other versions
JPS6035396A (en
Inventor
Toshio Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59123401A priority Critical patent/JPS6035396A/en
Publication of JPS6035396A publication Critical patent/JPS6035396A/en
Publication of JPS6155199B2 publication Critical patent/JPS6155199B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)
  • Read Only Memory (AREA)

Description

【発明の詳細な説明】 この発明は半導体メモリ装置の駆動方法にかか
り、とくに不揮発性のランダム・アクセス・メモ
リを実現する絶縁ゲート型電界効果半導体装置の
駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving a semiconductor memory device, and more particularly to a method for driving an insulated gate field effect semiconductor device that realizes a nonvolatile random access memory.

半導体集積回路構造の記憶装置(ICメモリ)
は常に高密度・大集積・高速・低消費電力を発展
の思想として有する。又、メモリ作用は被選択ア
ドレスに情報“1”、“0”を導入できるランダ
ム・アクセス・メモリ(RAM)が汎用性の点で
理想とされる。従来、RAM型ICメモリは、フリ
ツプ・フロツプ、ダイナミツクMOSトランジス
タ(3素子型)、C負荷型1MOSトランジスタ
(1Tr型)をメモリセルとして用いて実用化され
てきた。
Memory device with semiconductor integrated circuit structure (IC memory)
has always had high density, large integration, high speed, and low power consumption as its development philosophy. Furthermore, as for the memory function, a random access memory (RAM) that can introduce information "1" and "0" to a selected address is ideal in terms of versatility. Conventionally, RAM-type IC memories have been put into practical use using flip-flops, dynamic MOS transistors (three-element type), and C-load type 1MOS transistors (1Tr type) as memory cells.

しかし乍らこれらのICメモリは回路構造が複
雑であるのみならず、情報の保持に電力消費が必
要であるため高密度・大集積化に本質的な制限を
受ける。これを解決する可能性のあるメモリセル
として絶縁ゲート膜中の捕獲中心又は浮遊ゲート
に電荷を注入蓄積し、蓄積電荷の不揮発性を利用
する不揮発性メモリが期待されている。既知のこ
の程の不揮発性メモリは、情報保持に電力消費を
不要とするものではあるが、情報“0”又は情報
“1”の書込時にアドレスの選択方法を変更する
必要があるためRAMとしての有用性はなく、専
ら選択書込を行う情報を“1”もしくは“0”の
一方とし、他方は全ビツト一勢に行うプログラマ
ブル・リード・オンリ・メモリ(PROM)として
発展せられている。
However, these IC memories not only have a complicated circuit structure, but also require power consumption to retain information, which essentially limits their ability to achieve high density and large scale integration. A nonvolatile memory that injects and stores charges into a trap center or a floating gate in an insulated gate film and utilizes the nonvolatility of the stored charges is expected to be a memory cell that may solve this problem. Although such known non-volatile memory does not require power consumption to retain information, it is difficult to use as RAM because it is necessary to change the address selection method when writing information “0” or information “1”. However, it has been developed as a programmable read-only memory (PROM) in which the information to be selectively written is either "1" or "0", and the other is written to all bits at once.

このように従来技術によれば、ICメモリの理
想的機能として要望される不揮性RAMは技術的
未解決の範囲にあつた。
As described above, according to the prior art, non-volatile RAM, which is desired as an ideal function of IC memory, has been technically unresolved.

この発明の目的は高密度・大集積・低消費電
力・の不揮発性RAMを実現する半導体メモリ装
置の好ましい駆動方法を提供することである。
An object of the present invention is to provide a preferred method for driving a semiconductor memory device that realizes a nonvolatile RAM with high density, large integration, and low power consumption.

本発明の特徴は、行列線が交叉するマトリクス
交点に各々デコードトランジスタとゲート閾値が
転移するメモリトランジスタとの直列回路を配置
し、前記デコードトランジスタのソースもしくは
ドレイン領域の前記メモリトランジスタに接続さ
れない側が行方向に共通接続され、かつゲートが
列方向に共通接続されており、前記メモリトラン
ジスタのドレインもしくはソース領域の前記デコ
ードトランジスタに接続されない側は全て共通に
接続されかつ、ゲートは全て共通接続され情報線
として導出されており、前記行列線を選択して所
定のアドレスにおけるメモリトランジスタの浮遊
ゲートに電子および正孔のうちの一方を前記情報
線の電位を制御することによつて蓄積し、該所定
のアドレスにおける該メモリトランジスタの情報
を変更する場合は、前記行列線を選択して前記浮
遊ゲートに電子および正孔のうちの他方を、選択
されないアドレスにおけるメモリトランジスタに
は影響を及ぼさない程度の電位を前記情報線に印
加することによつて、導入して行う半導体メモリ
装置の駆動方法にある。このように、この発明の
半導体装置はメモリセルが2個のトランジスタの
みで構成され、情報信号線を制御することにより
選択されたアドレスに情報“0”および情報
“1”を選択書込でき、且つメモリトランジスタ
が不揮発性メモリであるため、メモリ部の周辺回
路構成およびメモリセル自体の回路構成がきわめ
て簡易で高密度・大集積化の容易なRAMを実現
し、情報保持期間の消費電力を零にまで低減する
ことができ、かつ高い電圧を使用することなく所
定のメモリセルの選択的は電気的書替え・消去が
可能となる。
A feature of the present invention is that a series circuit of a decode transistor and a memory transistor whose gate threshold is transferred is arranged at each matrix intersection where matrix lines intersect, and the side of the source or drain region of the decode transistor that is not connected to the memory transistor is connected to the row. The information lines are connected in common in the direction, and their gates are commonly connected in the column direction, and the sides of the drain or source regions of the memory transistors that are not connected to the decode transistor are all connected in common, and the gates are all connected in common. The matrix line is selected and one of electrons and holes is accumulated in the floating gate of the memory transistor at a predetermined address by controlling the potential of the information line. When changing the information of the memory transistor at an address, select the matrix line and apply the other of electrons and holes to the floating gate to a level that does not affect the memory transistor at the unselected address. The present invention provides a method for driving a semiconductor memory device, which is performed by applying a voltage to the information line. As described above, in the semiconductor device of the present invention, the memory cell is composed of only two transistors, and information "0" and information "1" can be selectively written to a selected address by controlling the information signal line. In addition, since the memory transistor is a nonvolatile memory, the peripheral circuit configuration of the memory section and the circuit configuration of the memory cell itself are extremely simple, making it possible to realize a RAM that is easy to achieve high density and large integration, and reduces power consumption to zero during the information retention period. Moreover, it is possible to selectively electrically rewrite and erase predetermined memory cells without using a high voltage.

次にこの発明をよりよく理解するために、この
発明の実施例につき図を用いて説明する。
Next, in order to better understand the present invention, embodiments of the present invention will be described using figures.

第1図AおよびBはこの発明の一実施例の回路
図およびメモリセルの断面図を示す。この実施例
は行線D1,D2と列線W1,W2とが形成する行列マ
トリクス各交点にメモリセルとしてデコードトラ
ンジスタQDとメモリトランジスタQMとから成る
直列回路をそれぞれ導入してある。この直列回路
はデコードトランジスタQDのゲート電極を所定
の列線W1k、ドレインおよびソースの一方を所定
の行線D1に他方をメモリトランジスタQMのドレ
インおよびソースの一方に接続し、メモリトラン
ジスタQMのドレインおよびソースの他方を基準
線GNDに接続しゲート電極を各アドレスのメモ
リトランジスタと共に共通の情報線DLに接続す
るものである。又、全トランジスタの基体電極
SUBは共通であり、基準線GNDとの間に所定の
バイアスが印加される。
FIGS. 1A and 1B show a circuit diagram and a cross-sectional view of a memory cell according to an embodiment of the present invention. In this embodiment, a series circuit consisting of a decode transistor Q D and a memory transistor Q M is introduced as a memory cell at each intersection of a matrix formed by row lines D 1 , D 2 and column lines W 1 , W 2 . be. This series circuit connects the gate electrode of the decode transistor Q D to a predetermined column line W 1k , one of its drain and source to a predetermined row line D 1 , and the other to one of the drain and source of a memory transistor Q M . The other of the drain and source of Q M is connected to the reference line GND, and the gate electrode is connected to the common information line DL together with the memory transistors at each address. Also, the base electrode of all transistors
SUB is common, and a predetermined bias is applied between it and the reference line GND.

メモリセルの好ましい集積回路構造は、第1図
Bに示す如く100を主面とする比抵抗10Ω−cm
のP型シリコン単結晶基体101の一表面の不活
性部に表面濃度8×1015〜5×1016cm-3のP型領
域102を有し、この領域に囲まれる活性部に表
面濃度1020〜1021cm-3の燐拡散を施してN+型領
域103,104,105を設け、表面絶縁保護
膜106の上面に伸び出すアルミニウムの電極配
線107,108,109,110を有する。基
本101の活性部表面に被着する約500Åの二酸
化硅素の絶縁被膜111と、ドレイン及びソース
のN+型領域103,104および電極配線10
8に導電接続する多結晶シリコンのゲート電極1
12は絶縁ゲート型デコードトランジスタQD
構成し、N+領域103からの導出電極配線10
7が行線D1に接続し、電極配線108は列線W1
に接続する。又、絶縁被膜111と、ドレイン及
びソースとなるN+型領域104,105と、N
+型領域104の一部に接して低耐圧のPNダイ
オードを形成する表面濃度5×1016〜1018cm-3
P+型領域113と、絶縁被膜111の上面に被
着する約1000Åのシリコン窒化物又はアルミナを
主成分とする他の絶縁被膜114と、これらの絶
縁被膜の境界に埋め込まれた浮遊ゲート115
と、浮遊ゲート115に他の絶縁被膜114を介
して容量結合するゲート電極109とで不揮発性
のメモリトランジスタQが構成され、ゲート電極
109が情報線DLに接続し、N+型領域105
の導出電極配線110が基準線GNDに接続し、
N+領域104はデコードトランジスタ及びメモ
リトランジスタに共通の領域として用いられて直
列回路を形成している。基体101の裏面には基
体電極116が設けられ基体端子SUBとなる。
浮遊ゲートを有するNチヤンネル型のメモリトラ
ンジスタはゲート電極−絶縁被膜−浮遊ゲート−
絶縁被膜−半導体基体から成るMI1MI2S型のゲー
ト構造を備えている。本実施例ではかかるメモリ
トランジスタは浮遊ゲート115の下にP+型領
域113を有しているが、本発明はこのP+型領
域113を有するものに限定されるものではな
く、まずこのP+型領域113を有しないものに
ついて説明する。ソース電位VS、ドレイン電位
D、基体電位Vsub、ゲート電極の電位VGに対
して、VS=VD=VsuB=OVとし、VGに約1秒
の電圧印加を行つたのちにメモリトランジスタの
ゲート閾値VTを測定すると、Nチヤンネル型メ
モリトランジスタではたとえば初期のVTが正の
Gに対して+50Vを臨界値+VCとして負電荷を
蓄積し、−40Vを臨界値−VCとして負電荷を放出
する間接トンネル注入型の電荷蓄積作用を示す。
一方、第1図Bに示した実施例では、I1にシリコ
ン窒化膜又はアルミナ膜を有する絶縁膜を用い、
その下にP+領域113からなる低耐圧のダイオ
ードを形成した。このように、P+型領域113
の低耐圧ダイオードがある場合には、メモリセル
は所定の行列線を選択して浮遊ゲート直下の低耐
圧のダイオードを降伏すると、注入型の臨界値+
C,−VCに到達しないゲート電圧VGでもゲート
閾値を転移する。この特性はダイオードの逆方向
におけるアバランシエ降伏で発性する電子および
正孔がゲート電界に応じて浮遊ゲート方向に引か
れるために起る一種のアバランシエ注入動作であ
る。この特性を利用することはメモリトランジス
タのゲート電極の電位を制御するのみで選択され
たアドレスのメモリセルに情報“1”又は“0”
を選択書込することができ、他のアドレスではデ
コードトランジスタが作用しないためダイオード
の降伏が起らず、単にメモリトランジスタのゲー
ト電極に臨界値以下の電圧が印加されるのみであ
るため情報かく乱を受けない。
A preferred integrated circuit structure of the memory cell has a specific resistance of 10 Ω-cm with a principal plane of 100 as shown in FIG. 1B.
A P-type region 102 with a surface concentration of 8×10 15 to 5×10 16 cm -3 is provided in an inactive region on one surface of a P-type silicon single crystal substrate 101 , and an active region surrounded by this region has a surface concentration of 10 Phosphorus diffusion of 20 to 10 21 cm -3 is performed to provide N+ type regions 103 , 104 , 105 , and aluminum electrode wirings 107 , 108 , 109 , 110 extending over the upper surface of the surface insulating protective film 106 are provided. An insulating film 111 of about 500 Å of silicon dioxide deposited on the surface of the active part of the base 101, N+ type regions 103 and 104 for drain and source, and electrode wiring 10
Polycrystalline silicon gate electrode 1 conductively connected to 8
Reference numeral 12 constitutes an insulated gate type decode transistor QD , and a lead-out electrode wiring 10 from the N+ region 103
7 is connected to the row line D 1 , and the electrode wiring 108 is connected to the column line W 1
Connect to. Further, the insulating film 111, the N+ type regions 104 and 105 which become the drain and the source, and the N
A P+ type region 113 with a surface concentration of 5×10 16 to 10 18 cm -3 forms a low breakdown voltage PN diode in contact with a part of the + type region 104 , and a silicon layer of about 1000 Å is deposited on the upper surface of the insulating film 111 . Another insulating film 114 mainly composed of nitride or alumina and a floating gate 115 embedded in the boundary between these insulating films.
and a gate electrode 109 capacitively coupled to the floating gate 115 via another insulating film 114 constitute a nonvolatile memory transistor Q. The gate electrode 109 is connected to the information line DL, and the N+ type region 105
The lead-out electrode wiring 110 is connected to the reference line GND,
N+ region 104 is used as a common region for decode transistors and memory transistors to form a series circuit. A base electrode 116 is provided on the back surface of the base 101 and serves as a base terminal SUB.
An N-channel memory transistor with a floating gate has a gate electrode, an insulating film, a floating gate, and a floating gate.
It has an MI 1 MI 2 S type gate structure consisting of an insulating film and a semiconductor substrate. In this embodiment, such a memory transistor has a P + type region 113 under the floating gate 115, but the present invention is not limited to having this P + type region 113 . An example without the mold region 113 will be explained. For the source potential V S , drain potential V D , base potential V sub , and gate electrode potential V G , set V S = V D = Vsu B = OV, and after applying a voltage to V G for about 1 second. When the gate threshold value V T of a memory transistor is measured in an N-channel memory transistor, for example, in an N-channel memory transistor, when the initial V T is positive V G , negative charge is accumulated with +50V as the critical value +V C , and −40 V as the critical value − It exhibits an indirect tunnel injection type charge accumulation effect that releases negative charges as V C .
On the other hand, in the embodiment shown in FIG. 1B, an insulating film having a silicon nitride film or an alumina film is used for I1 ,
A low breakdown voltage diode made of P + region 113 was formed below it. In this way, the P + type region 113
When there is a low breakdown voltage diode of
Even when the gate voltage V G does not reach V C or -V C , the gate threshold value is transferred. This characteristic is a kind of avalanche injection operation that occurs because electrons and holes generated by avalanche breakdown in the reverse direction of the diode are drawn toward the floating gate in response to the gate electric field. By using this characteristic, information "1" or "0" can be sent to the memory cell at the selected address by simply controlling the potential of the gate electrode of the memory transistor.
At other addresses, the decode transistor does not work, so diode breakdown does not occur, and a voltage below the critical value is simply applied to the gate electrode of the memory transistor, so information is not disturbed. I don't accept it.

第2図は上述の実施例への選択書込・読出動作
のための電圧波形を示す。アドレスの選択は当該
アドレスへの行列線に駆動電圧VD,VWを与え、
情報線の電位VDLを制御して情報“1”又は
“0”を選択書込し、且つメモリセルを通して列
線から流れ込む電流を出力Ioutとして受けるもの
である。即ち、基体をOVの電位に保ち、時刻t1
〜t2で選択されたアドレスに約30Vの駆動電圧V
D,VWを与え情報線の電位VDLを約30Vとし、基
準線GNDを回路接続から遮断もしくは+10V程度
基体に対して上昇するとメモリトランジスタが不
導通となり選ばれたアドレスのメモリトランジス
タのN+型領域の一部に形成された低耐圧のダイ
オードが約+15Vでアバランシエ降伏する。この
降伏点には情報線の電位でメモリトランジスタの
ゲート電極から負電荷を誘引する電界が与えられ
て居り、このため降伏点から電子が浮遊ゲートに
向つて注入される。この時間には選択されない他
のアドレスのメモリトランジスタでは、デコード
トランジスタが不導通であるかもしくは導通状態
であつてもメモリトランジスタのN+型領域の電
位がOVであるため選択されないアドレスのダイ
オードの降伏現象が起らず、メモリトランジスタ
のゲート閾値を転移するための浮遊ゲートへの電
荷の送受は行なわれない。この選択書込により浮
遊ゲートに負電荷が蓄積しメモリトランジスタの
ゲート閾値は約8V程度正方向に転移する。ゲー
ト閾値の増大による情報書込を情報“0”と定義
すると、この情報“0”は時刻t3〜t4の時間巾の
+5Vの駆動電圧VD,VWを同一アドレスへの行
列線に与え、同時に情報線に+5Vの電位VDL
与えることにより当該アドレスからの“0”出力
電流はメモリトランジスタのゲート閾値が読み出
し信号としての電位VDLより高いため零電流であ
る。
FIG. 2 shows voltage waveforms for selective write/read operations in the embodiments described above. To select an address, apply driving voltages V D and V W to the matrix line to the address,
It controls the potential V DL of the information line to selectively write information "1" or "0", and receives the current flowing from the column line through the memory cell as the output Iout. That is, the substrate is kept at a potential of OV, and at time t 1
Drive voltage V of about 30V to the address selected at ~t 2
D and VW are applied, and the potential VDL of the information line is set to about 30V, and when the reference line GND is cut off from the circuit connection or rises by about +10V with respect to the substrate, the memory transistor becomes non-conductive and the memory transistor at the selected address is N+ type. A low voltage diode formed in a part of the area undergoes avalanche breakdown at approximately +15V. At this breakdown point, an electric field is applied at the potential of the information line to induce negative charges from the gate electrode of the memory transistor, and therefore electrons are injected from the breakdown point toward the floating gate. In memory transistors at other addresses that are not selected at this time, the potential of the N+ type region of the memory transistor is OV even if the decode transistor is non-conductive or conductive, so a breakdown phenomenon occurs in the diode at the address that is not selected. does not occur, and no charge is transferred to or from the floating gate to transfer the gate threshold of the memory transistor. Due to this selective writing, negative charges are accumulated in the floating gate, and the gate threshold of the memory transistor shifts to a positive direction of about 8V. If information writing due to an increase in the gate threshold is defined as information "0", this information "0" means that the drive voltages V D and V W of +5V in the time width from time t 3 to t 4 are applied to the matrix line to the same address. By simultaneously applying a +5V potential V DL to the information line, the "0" output current from the address is zero current because the gate threshold of the memory transistor is higher than the potential V DL as the read signal.

又、時刻t5〜t6の時間に選択されたアドレスへ
の行列線に情報“0”書込と同様に約+30Vの駆
動電圧VD,VWを与え、同時に情報線の電位VDL
を0〜−20Vにすると、このアドレスのメモリト
ランジスタの浮遊ゲートに正電荷蓄積が誘起さ
れ、ゲート閾値が下降して情報“1”の選択書込
が成される。この情報“1”の書込は選択された
アドレスのメモリトランジスタの低耐圧ダイオー
ドがアバランシエ降伏し、ゲート電極の電位が低
いため浮遊ゲートに向つて正孔が引かれる電界が
作用するために起り、当該アドレスのメモリトラ
ンジスタに情報“0”が書き込まれているときに
は急速に情報“1”に変更される。又、ゲート電
極の電位により情報“1”のゲート閾値の負方向
への転移が制御され、情報線の電位をOVとして
情報“1”書込の信号とするとメモリトランジス
タのゲート閾値は−1〜+1Vとなり、−20Vとす
ると−1〜−5V程度となり情報“1”のレベル
を制御することができる。
Further, drive voltages V D and V W of approximately +30V are applied to the matrix line at the selected address from time t 5 to t 6 in the same way as when writing information "0", and at the same time, the potential of the information line V DL is applied.
When the voltage is set to 0 to -20V, positive charge accumulation is induced in the floating gate of the memory transistor at this address, the gate threshold value is lowered, and information "1" is selectively written. This writing of information "1" occurs because the low breakdown voltage diode of the memory transistor at the selected address undergoes avalanche breakdown, and because the potential of the gate electrode is low, an electric field acts that draws holes toward the floating gate. When information "0" is written in the memory transistor at the address, the information is rapidly changed to "1". Further, the transition of the gate threshold value of information "1" in the negative direction is controlled by the potential of the gate electrode, and when the potential of the information line is set to OV and the signal for writing information "1" is used, the gate threshold value of the memory transistor is -1 to When it is +1V and -20V, it becomes about -1 to -5V, and the level of information "1" can be controlled.

時刻t7〜t8で時刻t3〜t4と同様に再び選択読出動
作を行い、選択アドレスに+5Vの駆動電圧VD
Wを与えると、同時に情報線を+5Vで駆動する
と情報“1”の書き込まれたメモリトランジスタ
はゲート閾値が5V以下であるため導通状態とな
つて、当該アドレスへの行線から基準線に流れる
“1”出力電流を得ることができる。メモリトラ
ンジスタの浮遊ゲート直下のN+型領域に形成さ
れる低耐圧のダイオードはドレインおよびソース
の一方の少くとも一部に設けられ、デコードトラ
ンジスタのドレイン接合耐圧より低い逆耐圧特性
を有する。このためダイオードの形成は前述の実
施例の如く高濃度のP型領域をN+型領域に接触
せしめるほか、浮遊ゲートと基体との間の絶縁被
膜をデコードトランジスタの絶縁ゲート膜に比し
て薄くしても好ましい特性が得られる。
At time t7 to t8 , the selective read operation is performed again in the same manner as time t3 to t4 , and the drive voltage V D of +5V is applied to the selected address.
When V W is applied, and at the same time the information line is driven with +5V, the memory transistor in which information "1" is written becomes conductive because the gate threshold is less than 5V, and the flow flows from the row line to the address to the reference line. A “1” output current can be obtained. A low breakdown voltage diode formed in the N+ type region immediately below the floating gate of the memory transistor is provided at least in part of one of the drain and source, and has reverse breakdown voltage characteristics lower than the drain junction breakdown voltage of the decode transistor. For this reason, the diode is formed not only by bringing the highly doped P-type region into contact with the N+-type region as in the previous embodiment, but also by making the insulating film between the floating gate and the substrate thinner than the insulating gate film of the decode transistor. Favorable properties can be obtained even if the

更に、情報“1”の書込のための情報線の電位
は必らずしも負電圧を必要とすることなくメモリ
トランジスタの情報“0”を情報“1”に選択書
替え可能である。情報“1”書込によるメモリト
ランジスタのゲート閾値がデイプレツシヨン領
域、情報“0”書込によるゲート閾値がエンハン
スメント領域となるように情報線の電位およびダ
イオード耐圧が設定されるときには読出動作での
情報線の電位は基準線と同電位とすることができ
る。
Furthermore, the potential of the information line for writing information "1" does not necessarily require a negative voltage, and information "0" in the memory transistor can be selectively rewritten to information "1". When the potential of the information line and the diode breakdown voltage are set so that the gate threshold of the memory transistor by writing information "1" is in the depletion region and the gate threshold by writing information "0" is in the enhancement region, the information line in the read operation is set. The potential of can be set to the same potential as the reference line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図AおよびBはこの発明の一実施例の回路
図およびメモリセルの断面図、第2図はこの発明
の一実施例の動作を示す電圧波形図であり、QD
はデコードトランジスタ、QMはメモリトランジ
スタ、D1,D2は行線、W1,W2は列線、DLは情
報線、GNDは基準線、SUBは基体電極、101
はP型シリコン単結晶基体、103,104,1
05はN+型領域、111および114は絶縁被
膜、115は浮遊ゲートである。
FIGS. 1A and 1B are a circuit diagram and a cross-sectional view of a memory cell of an embodiment of the present invention, and FIG. 2 is a voltage waveform diagram showing the operation of an embodiment of the invention, with Q D
is a decoding transistor, Q M is a memory transistor, D 1 and D 2 are row lines, W 1 and W 2 are column lines, DL is an information line, GND is a reference line, SUB is a base electrode, 101
is a P-type silicon single crystal substrate, 103,104,1
05 is an N+ type region, 111 and 114 are insulating films, and 115 is a floating gate.

Claims (1)

【特許請求の範囲】[Claims] 1 行列線が交叉するマトリクス交点に各々デコ
ードトランジスタとゲート閾値が転移するメモリ
トランジスタとの直列回路を配置し、前記デコー
ドトランジスタのソースもしくはドレイン領域の
前記メモリトランジスタに接続されない側が行方
向に共通接続され、かつゲートが列方向に共通接
続されており、前記メモリトランジスタのドレイ
ンもしくはソース領域の前記デコードトランジス
タに接続されない側は全て共通に接続されかつ、
ゲートは全て共通接続され情報線として導出され
ており、前記行列線を選択して所定のアドレスに
おけるメモリトランジスタの浮遊ゲートに電子お
よび正孔のうちの一方を前記情報線の電位を制御
することによつて蓄積し、該所定のアドレスにお
ける該メモリトランジスタの情報を変更する場合
は、前記行列線を選択して前記浮遊ゲートに電子
および正孔のうちの他方を、選択されないアドレ
スにおけるメモリトランジスタには影響を及ぼさ
ない程度の電位を前記情報線に印加することによ
つて、導入して行うことを特徴とする半導体メモ
リ装置の駆動方法。
1 A series circuit of a decode transistor and a memory transistor whose gate threshold is transferred is arranged at each matrix intersection where the matrix lines intersect, and the side of the source or drain region of the decode transistor that is not connected to the memory transistor is commonly connected in the row direction. , and the gates are commonly connected in the column direction, and the sides of the drain or source regions of the memory transistors that are not connected to the decode transistor are all commonly connected, and
The gates are all commonly connected and led out as an information line, and the matrix line is selected and one of electrons and holes is sent to the floating gate of the memory transistor at a predetermined address to control the potential of the information line. Therefore, when storing and changing the information of the memory transistor at the predetermined address, select the matrix line and transfer the other of electrons and holes to the floating gate and to the memory transistor at the unselected address. 1. A method of driving a semiconductor memory device, characterized in that the method is introduced by applying a potential to the information line to a level that does not have any influence.
JP59123401A 1984-06-15 1984-06-15 Driving method of semiconductor memory device Granted JPS6035396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123401A JPS6035396A (en) 1984-06-15 1984-06-15 Driving method of semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123401A JPS6035396A (en) 1984-06-15 1984-06-15 Driving method of semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP49113417A Division JPS6025909B2 (en) 1974-10-02 1974-10-02 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS6035396A JPS6035396A (en) 1985-02-23
JPS6155199B2 true JPS6155199B2 (en) 1986-11-26

Family

ID=14859640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123401A Granted JPS6035396A (en) 1984-06-15 1984-06-15 Driving method of semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6035396A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8609293D0 (en) * 1986-03-18 1986-05-21 Exxon Chemical Patents Inc Liquid fuel compositions
GB8618397D0 (en) * 1986-07-29 1986-09-03 Exxon Chemical Patents Inc Liquid fuel compositions
JPH01103698A (en) * 1987-07-28 1989-04-20 Sumitomo Chem Co Ltd Fuel oil composition
JPH01103699A (en) * 1987-07-28 1989-04-20 Sumitomo Chem Co Ltd Fuel oil composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844586A (en) * 1971-10-13 1973-06-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844586A (en) * 1971-10-13 1973-06-26

Also Published As

Publication number Publication date
JPS6035396A (en) 1985-02-23

Similar Documents

Publication Publication Date Title
JP2710521B2 (en) Semiconductor memory cell and memory array including inversion layer
US7577027B2 (en) Multi-state memory cell with asymmetric charge trapping
US5350938A (en) Nonvolatile semiconductor memory circuit with high speed read-out
US6240016B1 (en) Method to reduce read gate disturb for flash EEPROM application
JPH09162314A (en) Non-volatile semiconductor memory device and string method
JP2633252B2 (en) Semiconductor storage device
JPS599440Y2 (en) semiconductor memory element
JPH09213094A (en) Semiconductor memory and information reading method for semiconductor memory
KR102658527B1 (en) Semiconductor storage device and writing method thereof
JPS63188896A (en) Nonvolatile semiconductor memory
US6510085B1 (en) Method of channel hot electron programming for short channel NOR flash arrays
TW420806B (en) Non-volatile semiconductor memory device
JPS6155199B2 (en)
US5408429A (en) Method of altering a non-volatile semiconductor memory device
JP4641697B2 (en) Method for providing a constant electric field reduced during erasure of EEPROM for improved reliability
JPH0640589B2 (en) Nonvolatile semiconductor memory device
US6507521B2 (en) Semiconductor memory system
JPS6343902B2 (en)
JPS6025909B2 (en) semiconductor equipment
JP3094905B2 (en) Nonvolatile semiconductor memory device
JPS6035758B2 (en) non-volatile semiconductor memory
JPH02114674A (en) Semiconductor non-volatile memory
JP3615348B2 (en) Nonvolatile semiconductor memory device
JPS609673B2 (en) semiconductor storage device
JPH0630398B2 (en) Nonvolatile dynamic memory cell