JPS6154813B2 - - Google Patents

Info

Publication number
JPS6154813B2
JPS6154813B2 JP3227377A JP3227377A JPS6154813B2 JP S6154813 B2 JPS6154813 B2 JP S6154813B2 JP 3227377 A JP3227377 A JP 3227377A JP 3227377 A JP3227377 A JP 3227377A JP S6154813 B2 JPS6154813 B2 JP S6154813B2
Authority
JP
Japan
Prior art keywords
parts
temperature
comparative example
pmaa
cis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3227377A
Other languages
Japanese (ja)
Other versions
JPS53118496A (en
Inventor
Hikari Watanabe
Yoichi Murakami
Hiroshi Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP3227377A priority Critical patent/JPS53118496A/en
Publication of JPS53118496A publication Critical patent/JPS53118496A/en
Publication of JPS6154813B2 publication Critical patent/JPS6154813B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は1・3ペンタジエンと無水マレイン酸
とのデイールスアルダ−付加によつて得られる3
−メチルテトラヒドロ無水フタル酸の4つの立体
異性体の中の1つである。1・2・3・6−テト
ラヒドロ−シス−3−メチル−シス−シス−無水
フタル酸(以下PMAAと略記する)の有する空
気硬化付与性を有効に生かしたアルキド樹脂の製
造方法に関するものである。 PMAAが空気硬化付与性を有することは一般
に知られている。また、200℃以上の温度では、
PMAAのシス構造がトランス構造に転位する為
に空気硬化付与性が失なわれることも公知であ
る。従つてPMAAの空気硬化付与性の特徴を生
かそうとすれば、200℃以下好ましくは180℃以下
の温度で反応させる必要がある。しかしながらア
ルキド樹脂の製造には、一般に200℃以上の温度
が必要であり、180℃以下の反応温度では長時間
を要し、経済的でない。そこで我々はPMAAの
空気硬化付与性を生かしたアルキド樹脂を経済的
に短時間で製造する方法について種々検討した結
果、PMAAを含まないカルボン酸原料とアルコ
ール原料とを200℃以上好ましくは220〜260℃の
温度で予備縮合させた後に、該予備縮合物を180
℃以下の温度に冷却し、その後でPMAAを180℃
以下の温度(好ましくは150〜180℃)で縮合反応
を進行終了させることにより大巾な反応時間の短
縮が可能となり、かつPMAAの不飽和基の特異
な反応性を有効に生かせることを見い出した。中
長油アルキド樹脂は油の持つ空気硬化性を利用し
て常温乾燥用塗料に使用されているが、PMAA
を導入することで更に空気硬化性増し乾燥性の優
れたアルキド樹脂ができる。短油アルキド樹脂〜
オイルフリーアルキド樹脂など焼付用アミノアル
キド樹脂塗料に用いる場合もPMAAを導入する
ことで塗膜の硬度、可撓性が改良される。反応時
間をさらに短縮しPMAAの不飽和基の反応性保
持をより有効にする為に、1分子中にエポキシ基
を1個以上有する化合物を加える事により反応時
間をさらに短縮する事が可能となり、しかも使用
するエポキシ基を有する化合物を選択することに
より、エポキシ化合物の持つ特性(例えばビスフ
エノール型エポキシ樹脂を用いれば塗膜の耐蝕
性、付着性、耐水性、等が向上する)を付与する
ことができる。 本発明のアルキド樹脂の製造法は、PMAAを
含有することが必須である以外は他に制限はな
く、油脂を含む純アルキド樹脂、変性アルキド樹
脂(フエノール変性、ロジン変性、ウレタン変性
など)、油分を全く含まないオイルフリーアルキ
ド樹脂などに利用される。従つて一般に使用され
る原料を使用することが出来る。又、反応に際し
ては溶剤法、熔融法いづれの方法によつても良い
が、反応時間的には溶剤法が有利である。 PMAAの使量はアルキド樹脂中の0.1重量%以
上であり、好ましくは0.5〜10重量%である。 PMAAを添加する前の予備縮合反応は200℃以
上好ましくは220〜260℃の温度で行い、酸価につ
いては20以下迄反応を進めるのが良い。 PMAAと同時に180℃以下の温度で反応させる
エポキシ化合物とは1分子中にエポキシ基を1個
以上有する物質であり、例えばカージユラE10
(シエル化学製、バーサデイツク酸のグリシジル
エステル)、ビスフエノールA型エポキシ樹脂
(大日本インキ化学工業株式会社製のエピクロン
840、エピクロン1050、エピクロン4050など)、ス
チレンオキサイド、アリルグリシジルエーテル、
エチレンオキサイド、プロピレンオキサイド、ア
ロシメンジオキサイド、AOE(ダイセル株式会
社製、α−オレフインとの反応によつて得られる
長鎖モノエポキシド)などが使用できる。 次に本発明の内容を実施例を具体的に説明する
が、本発明はこれら実施例によつて制限されるも
のではない。なお、実施例において用いた原材料
の配合部数は特に指定しない場合は重量部であ
る。 比較例 1 温度計、撹忰機、水分離器、不活性ガス導入管
を装備した反応容器中に大豆油650部、ペンタエ
リスリトール135部、水酸化リチウム0.3部を仕込
み、不活性ガス雰囲気中で撹忰しながら昇温し
250℃の温度で1時間保ちエステル交換反応を行
つた後、200℃まで降温した。 次いで、無水フタル酸245部キシレン30部を仕
込み、縮合水を除きながら2時間で240℃まで昇
温した。その温度に7時間保ち反応を終了した。
ミネラルターペンで不揮発分70%に希釈したとこ
ろ、酸価4.0、ガードナー粘度(以下粘度と略記
する)Z−Zであつた。得られたアルキド樹脂溶
液に25%ナフテン酸鉛及び5%ナフテン酸コバル
トをアルキド樹脂固形分に対して、それぞれ1
%、2%を添加したクリヤー塗料の塗膜性能を表
−1に示す。 比較例 2 比較例1の無水フタル酸245部をPMAA50部と
無水フタル酸199.6部に代替した以外は同様にし
て240℃の温度で7時間縮合反応を行つた。その
結果得られた樹脂はミネラルターペンで不揮発分
70%に希釈したところ、酸価4.5、粘度Y−Zで
あつた。得られた樹脂溶液を用いて比較例1と同
じ方法で作つた塗料は比較例1よりもやゝ乾燥性
の劣るものであつた。その結果は表−1に示す。 比較例 3 比較例2と同一原料組成でキシレンのみ100部
に増量し180℃の温度で縮合反応を行つたところ
45時間を要した。この樹脂はミネラルターペンで
不揮発分70%に希釈したところ、酸価5.0、粘度
Wであつた。得られた樹脂溶液を用いて比較例1
と同じ方法で作つた塗料は比較例1よりも乾燥性
が優れていた。その結果は表−1に示す。 実施例 1 比較例2と同一原料組成であるが、PMAA投
入までは、PMAAを除く組成で比較例2と同様
の操作で、予備縮合反応を行つた。240℃での反
応時間は3時間であつた。その時の酸価は9.5で
あつた。その後180℃の温度まで降温した後
PMAA50部、キシレン70部を加え170℃の温度で
10時間縮合反応を進めミネラルターペンで不揮発
分70%に希釈した。その結果は酸価6.5、粘度V
であつた。この樹脂溶液を用いて比較例−1と同
じ方法で作つた塗料は比較例2及び3よりも乾燥
性が優れていた。その結果は表−1に示す。 実施例 2 比較例1と同様の装置に大豆油600部、ペンタ
エリスリトール158部、水酸化リチウム0.3部を仕
込み、不活性ガス雰囲気中、撹拌しながら昇温し
250℃の温度に1時間保ちエステル交換反応を行
つた後200℃迄降温した。次いで無水フタル酸230
部、キシレン30部を加え縮合水を除きながら2時
間を要して240℃の温度まで昇温し、その温度で
3時間了備縮合反応を行つた。その時の酸価は
8.5であつた。次いで180℃まで降温した後カーシ
ユラE10 150部、PMAA 50部を加え170℃の温度
で3時間反応を行いミネラルターペンで不揮発分
70%に希釈したところ酸価5.2、粘度V−Wであ
つた。得られた樹脂溶液を用いて比較例1と同じ
方法で作つた塗料は乾燥性の優れたものであつ
た。その結果は表1に示す。 実施例 3 比較例1と同様の装置に、大豆油750部、ペン
タエリスリトール87部、水酸化リチウム0.35部を
仕込み、不活性ガス雰囲気中撹拌しながら昇温し
250℃の温度で1時間保ちエステル交換反応を行
つた後200℃まで降温した。次いで無水フタル酸
117.5部、キシレン30部を加え、縮合水を除きな
がら2時間を要して240℃の温度まで昇温し、そ
の温度で3時間保つた。この時の酸価は8.0であ
つた。その後180℃の温度まで降温した後、
PMAA75部、エピクロン1050(大日本インキ化
学工業KK製のビスフエノール型エポキシ樹脂)
150部、キシレン100部を加え170℃で10時間縮合
反応を行いミネラルターペンで不揮発分70%に希
釈した。その結果は酸価6.5、粘度Z2−Z3であつ
た。得られた樹脂溶液を用いて比較例1と同じ方
法で作つた塗料は乾燥性、耐蝕性の優れたもので
あつた。その結果は表−1に示す。 比較例 4 比較例1と同じ装置に大豆油400部、メチル安
息香酸161部、ペンタエリスリトール207部、水酸
化リチウム0.2部を仕込み、不活性ガス雰囲気中
撹拌しながら昇温し250℃の温度で1時間保つた
後200℃まで降温した。次いで無水フタル酸288
部、キシレン35部を加え縮合水を除きながら2時
間を要して230℃まで昇温し、その温度で5時間
縮合反応を進めスワゾール310(丸善石油製溶
剤)で不揮発分50%に希釈した。その結果は酸価
7.3、粘度W−Xであつた。得られた樹脂溶液を
用いて比較例1と同じ方法で作つた塗料の性能は
表−1に示す。 実施例 4 比較例1と同じ装置で、比較例4の組成のう
ち、無水フタル酸288部をPMAA30部と無水フタ
ル酸260.8部に代替した以外は同一組成とし、
PMAAを除く組成で比較例4と同じように250℃
の温度で1時間保つた後180℃に降温し、無水フ
タル酸260.8部、キシレン35部を加え、2時間を
要して230℃まで昇温し、その温度で3時間予備
縮合反応を行つた。その時の酸価は15・0であつ
た。 その後180℃まで降温した後PMAA30部、キシ
レン100部を加え170℃の温度で5時間反応し、ス
ワゾール310で不揮発分50%に希釈した。その結
果は酸価8.5、粘度R−Sであつた。得られた樹
脂溶液を用いて比較例1と同じ方法で作つた塗料
は比較例4よりも乾燥性が優れていた。その結果
は表−1に示す。 比較例 5 比較例1と同様の装置にイソフタル酸423部、
アジピン酸227部、トリメチロールプロパン256
部、ネオペンチルグリコール299部、ジ−n−プ
チルチンオキサイド0.25部を仕込み、不活性ガス
雰囲気中撹拌しながら150℃まで昇温した。縮合
水を除きながら5時間を要して220℃まで昇温
し、その温度で10時間保ち縮合保応を行い、スワ
ゾール1500(丸善石油製の溶剤)/セロソルブア
セテート=9/1(重量比)の溶剤で不揮発分60
%に希釈した。その結果は酸価3.0、粘度Z2であ
つた。実施例5と比較する為に、この樹脂溶液の
固形分100部に対しキシレンで不揮発分60%に希
釈したエピクロン1050を16.7部混合したものを用
いたアミノアルキド樹脂系塗料の性能は表−2に
示す。 実施例 5 比較例5に於てイソフタル酸423部をPMAA25
部とイソフタル酸400部に代替した以外は同一組
成で、先づPMAAを除く組成で不活性ガス雰囲
気中撹拌しながら150℃から220℃まで5時間を要
して昇温し、その温度で8時間保ち、予備縮合反
応を行つた。その時の酸価は9.0であつた。次い
で180℃まで降温した後、PMAA25部、エピクロ
ン1050 110部を加え、170℃で3時間反応後スワ
ゾール1500/セロソルブアセテート=9/1の溶
剤で不揮発分50%に希釈した。その結果は酸価
4.5、粘度Z4であつた。得られた樹脂溶液を用い
たアミノアルキド樹脂系塗料は比較例5よりも耐
蝕性、硬度、可撓性が優れていた。その結果は表
−2に示す。
The present invention relates to 3-pentadiene obtained by Diers-Alder addition of 1,3-pentadiene and maleic anhydride.
-One of the four stereoisomers of methyltetrahydrophthalic anhydride. This invention relates to a method for producing an alkyd resin that effectively takes advantage of the air curing properties of 1,2,3,6-tetrahydro-cis-3-methyl-cis-cis-phthalic anhydride (hereinafter abbreviated as PMAA). . It is generally known that PMAA has air curing properties. In addition, at temperatures above 200℃,
It is also known that air curing properties are lost because the cis structure of PMAA is rearranged to a trans structure. Therefore, in order to take advantage of PMAA's ability to provide air curing, it is necessary to carry out the reaction at a temperature of 200°C or lower, preferably 180°C or lower. However, production of alkyd resin generally requires a temperature of 200°C or higher, and a reaction temperature of 180°C or lower takes a long time and is not economical. Therefore, we investigated various ways to economically produce alkyd resin in a short time by taking advantage of the air curing properties of PMAA, and found that the carboxylic acid raw material and the alcohol raw material, which do not contain PMAA, are heated at a temperature of 200°C or higher, preferably 220 to 260°C. After precondensation at a temperature of 180 °C, the precondensate
Cool down to a temperature below 180°C and then heat the PMAA to 180°C.
We have discovered that by completing the condensation reaction at the following temperature (preferably 150 to 180°C), it is possible to significantly shorten the reaction time and to effectively utilize the unique reactivity of the unsaturated groups in PMAA. . Medium-length oil alkyd resins are used in paints that dry at room temperature by taking advantage of the air-curing properties of oil, but PMAA
By introducing this, an alkyd resin with even higher air curability and excellent drying properties can be produced. Short oil alkyd resin ~
When used in baking amino alkyd resin paints such as oil-free alkyd resins, the hardness and flexibility of the paint film can be improved by introducing PMAA. In order to further shorten the reaction time and more effectively retain the reactivity of the unsaturated groups in PMAA, it is possible to further shorten the reaction time by adding a compound that has one or more epoxy groups in one molecule. Moreover, by selecting the compound having an epoxy group to be used, it is possible to impart the characteristics of an epoxy compound (for example, if a bisphenol type epoxy resin is used, the corrosion resistance, adhesion, water resistance, etc. of the coating film will be improved). I can do it. The method for producing the alkyd resin of the present invention is not limited to any other method except that it must contain PMAA; pure alkyd resin containing oil, modified alkyd resin (phenol modification, rosin modification, urethane modification, etc.), oil content It is used for oil-free alkyd resins that do not contain any Therefore, commonly used raw materials can be used. Further, the reaction may be carried out by either a solvent method or a melt method, but the solvent method is advantageous in terms of reaction time. The amount of PMAA used is 0.1% by weight or more, preferably 0.5-10% by weight in the alkyd resin. The precondensation reaction before adding PMAA is preferably carried out at a temperature of 200°C or higher, preferably 220 to 260°C, and the reaction is preferably allowed to proceed until the acid value reaches 20 or lower. Epoxy compounds that are reacted together with PMAA at temperatures below 180°C are substances that have one or more epoxy groups in one molecule, such as Cardiura E10.
(manufactured by Ciel Chemical Co., Ltd., glycidyl ester of versatile acid), bisphenol A type epoxy resin (manufactured by Dainippon Ink and Chemicals Co., Ltd., Epiclon)
840, Epiclon 1050, Epiclon 4050, etc.), styrene oxide, allyl glycidyl ether,
Ethylene oxide, propylene oxide, allocimene dioxide, AOE (manufactured by Daicel Corporation, long-chain monoepoxide obtained by reaction with α-olefin), and the like can be used. EXAMPLES Next, the content of the present invention will be specifically explained using examples, but the present invention is not limited to these examples. Note that the blended parts of raw materials used in the examples are parts by weight unless otherwise specified. Comparative Example 1 650 parts of soybean oil, 135 parts of pentaerythritol, and 0.3 parts of lithium hydroxide were placed in a reaction vessel equipped with a thermometer, a stirrer, a water separator, and an inert gas introduction tube, and the mixture was heated in an inert gas atmosphere. Raise the temperature while stirring
After maintaining the temperature at 250°C for 1 hour to carry out the transesterification reaction, the temperature was lowered to 200°C. Next, 245 parts of phthalic anhydride and 30 parts of xylene were charged, and the temperature was raised to 240°C over 2 hours while removing condensed water. The reaction was kept at that temperature for 7 hours to complete the reaction.
When diluted with mineral turpentine to a non-volatile content of 70%, the acid value was 4.0 and the Gardner viscosity (hereinafter abbreviated as viscosity) was Z-Z. To the obtained alkyd resin solution, 25% lead naphthenate and 5% cobalt naphthenate were added to the alkyd resin solid content at 1% each.
Table 1 shows the coating film performance of clear paints containing 2% and 2%. Comparative Example 2 A condensation reaction was carried out in the same manner as in Comparative Example 1, except that 245 parts of phthalic anhydride was replaced with 50 parts of PMAA and 199.6 parts of phthalic anhydride at a temperature of 240°C for 7 hours. The resulting resin contains mineral turpentine and non-volatile content.
When diluted to 70%, the acid value was 4.5 and the viscosity was YZ. A paint made using the obtained resin solution in the same manner as in Comparative Example 1 had slightly poorer drying properties than Comparative Example 1. The results are shown in Table-1. Comparative Example 3 Using the same raw material composition as Comparative Example 2, only xylene was increased to 100 parts and the condensation reaction was carried out at a temperature of 180°C.
It took 45 hours. When this resin was diluted with mineral turpentine to a non-volatile content of 70%, it had an acid value of 5.0 and a viscosity of W. Comparative Example 1 using the obtained resin solution
A paint made in the same manner as Comparative Example 1 had better drying properties. The results are shown in Table-1. Example 1 The same raw material composition as Comparative Example 2 was used, but a precondensation reaction was performed in the same manner as in Comparative Example 2 except that PMAA was added. The reaction time at 240°C was 3 hours. The acid value at that time was 9.5. After that, the temperature dropped to 180℃.
Add 50 parts of PMAA and 70 parts of xylene at a temperature of 170°C.
The condensation reaction was continued for 10 hours and diluted with mineral turpentine to a non-volatile content of 70%. The result is acid value 6.5, viscosity V
It was hot. A paint made using this resin solution in the same manner as Comparative Example 1 had better drying properties than Comparative Examples 2 and 3. The results are shown in Table-1. Example 2 600 parts of soybean oil, 158 parts of pentaerythritol, and 0.3 parts of lithium hydroxide were charged into the same equipment as in Comparative Example 1, and the temperature was raised while stirring in an inert gas atmosphere.
The temperature was maintained at 250°C for 1 hour to carry out the transesterification reaction, and then the temperature was lowered to 200°C. Then phthalic anhydride 230
The mixture was heated to 240° C. over 2 hours while adding 30 parts of xylene and removing condensation water, and the condensation reaction was carried out at that temperature for 3 hours. The acid value at that time is
It was 8.5. After the temperature was lowered to 180℃, 150 parts of Cursula E10 and 50 parts of PMAA were added, and the reaction was carried out for 3 hours at a temperature of 170℃.
When diluted to 70%, the acid value was 5.2 and the viscosity was V-W. A paint made using the obtained resin solution in the same manner as in Comparative Example 1 had excellent drying properties. The results are shown in Table 1. Example 3 750 parts of soybean oil, 87 parts of pentaerythritol, and 0.35 parts of lithium hydroxide were charged into the same apparatus as in Comparative Example 1, and the temperature was raised while stirring in an inert gas atmosphere.
The temperature was maintained at 250°C for 1 hour to carry out the transesterification reaction, and then the temperature was lowered to 200°C. Then phthalic anhydride
117.5 parts and 30 parts of xylene were added, and the temperature was raised to 240° C. over 2 hours while removing condensed water, and maintained at that temperature for 3 hours. The acid value at this time was 8.0. After that, the temperature dropped to 180℃,
75 parts of PMAA, Epicron 1050 (bisphenol type epoxy resin manufactured by Dainippon Ink & Chemicals KK)
150 parts and 100 parts of xylene were added, a condensation reaction was carried out at 170°C for 10 hours, and the nonvolatile content was diluted to 70% with mineral turpentine. The results were an acid value of 6.5 and a viscosity of Z2 - Z3 . A paint made using the obtained resin solution in the same manner as in Comparative Example 1 had excellent drying properties and corrosion resistance. The results are shown in Table-1. Comparative Example 4 400 parts of soybean oil, 161 parts of methylbenzoic acid, 207 parts of pentaerythritol, and 0.2 parts of lithium hydroxide were placed in the same equipment as in Comparative Example 1, and heated to 250°C while stirring in an inert gas atmosphere. After keeping it for 1 hour, the temperature was lowered to 200°C. Then phthalic anhydride 288
35 parts of xylene was added and the temperature was raised to 230°C over 2 hours while removing condensed water, and the condensation reaction was continued at that temperature for 5 hours and diluted to 50% non-volatile content with Swazol 310 (solvent manufactured by Maruzen Sekiyu). . The result is the acid value
7.3, viscosity W-X. Table 1 shows the performance of a paint made using the obtained resin solution in the same manner as in Comparative Example 1. Example 4 The same equipment as Comparative Example 1 was used, except that 288 parts of phthalic anhydride was replaced with 30 parts of PMAA and 260.8 parts of phthalic anhydride.
250℃ as in Comparative Example 4 with the composition excluding PMAA.
After keeping the temperature at 1 hour, the temperature was lowered to 180°C, 260.8 parts of phthalic anhydride and 35 parts of xylene were added, the temperature was raised to 230°C over 2 hours, and a precondensation reaction was carried out at that temperature for 3 hours. . The acid value at that time was 15.0. Thereafter, the temperature was lowered to 180°C, 30 parts of PMAA and 100 parts of xylene were added, and the mixture was reacted at a temperature of 170°C for 5 hours, and diluted with Swasol 310 to a non-volatile content of 50%. The results were an acid value of 8.5 and a viscosity of R-S. A paint made using the obtained resin solution in the same manner as Comparative Example 1 had better drying properties than Comparative Example 4. The results are shown in Table-1. Comparative Example 5 423 parts of isophthalic acid was added to the same apparatus as in Comparative Example 1.
Adipic acid 227 parts, trimethylolpropane 256 parts
1 part, 299 parts of neopentyl glycol, and 0.25 part of di-n-butyltin oxide were charged, and the temperature was raised to 150° C. with stirring in an inert gas atmosphere. While removing condensation water, the temperature was raised to 220°C over 5 hours, kept at that temperature for 10 hours to perform condensation retention, and Swazol 1500 (solvent manufactured by Maruzen Sekiyu) / Cellosolve Acetate = 9/1 (weight ratio) Non-volatile content in solvents of 60
diluted to %. The results were an acid value of 3.0 and a viscosity of Z2 . For comparison with Example 5, the performance of an aminoalkyd resin paint using a mixture of 16.7 parts of Epiclon 1050 diluted to 60% non-volatile content with xylene per 100 parts of the solid content of this resin solution is shown in Table 2. Shown below. Example 5 In Comparative Example 5, 423 parts of isophthalic acid was replaced with 25 parts of PMAA.
The composition was the same except that 400 parts of isophthalic acid was substituted, and first the temperature was raised from 150 °C to 220 °C over 5 hours with stirring in an inert gas atmosphere, and at that temperature 8 A precondensation reaction was carried out for a certain period of time. The acid value at that time was 9.0. After the temperature was lowered to 180°C, 25 parts of PMAA and 110 parts of Epiclon 1050 were added, and after reacting at 170°C for 3 hours, the mixture was diluted to a non-volatile content of 50% with a solvent of Swazol 1500/Cellosolve Acetate = 9/1. The result is the acid value
4.5, and the viscosity was Z4 . The amino alkyd resin paint using the obtained resin solution was superior to Comparative Example 5 in corrosion resistance, hardness, and flexibility. The results are shown in Table-2.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 1・2・3・6−テトラヒドロ−シス−3−
メチル−シス−シス−無水フタル酸をカルボン酸
原料の一部とするアルキド樹脂の製造に際して、
予め1・2・3・6テトラヒドロ−シス−3−メ
チル−シス−シス−無水フタル酸を含まないカル
ボン酸原料とアルコール原料とを予備縮合反応を
行つた後に、180℃以下の温度で1・2・3・6
−テトラヒドロ−シス−3−メチル−シス−シス
無水フタル酸を添加し縮合反応を行なう事を特徴
とするアルキド樹脂の製造方法。
1 1,2,3,6-tetrahydro-cis-3-
When producing an alkyd resin using methyl-cis-cis-phthalic anhydride as part of the carboxylic acid raw material,
After precondensing a carboxylic acid raw material that does not contain 1,2,3,6tetrahydro-cis-3-methyl-cis-cis-phthalic anhydride and an alcohol raw material, 1. 2・3・6
A method for producing an alkyd resin, which comprises adding -tetrahydro-cis-3-methyl-cis-cis phthalic anhydride to carry out a condensation reaction.
JP3227377A 1977-03-25 1977-03-25 Production alkyd resin Granted JPS53118496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3227377A JPS53118496A (en) 1977-03-25 1977-03-25 Production alkyd resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3227377A JPS53118496A (en) 1977-03-25 1977-03-25 Production alkyd resin

Publications (2)

Publication Number Publication Date
JPS53118496A JPS53118496A (en) 1978-10-16
JPS6154813B2 true JPS6154813B2 (en) 1986-11-25

Family

ID=12354368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3227377A Granted JPS53118496A (en) 1977-03-25 1977-03-25 Production alkyd resin

Country Status (1)

Country Link
JP (1) JPS53118496A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343477B1 (en) * 2000-04-17 2002-07-18 김갑종 Formulation of low viscosity unsaturated polyester resin for repairing the sewage pipe by non-digging method

Also Published As

Publication number Publication date
JPS53118496A (en) 1978-10-16

Similar Documents

Publication Publication Date Title
US2759901A (en) Partial esters of epoxide resins
US2493486A (en) Tall oil esters
EP0240083B1 (en) Colourless ketimines, their preparation and their use as cross-linking agents
JPS6320251B2 (en)
US6150458A (en) Process for preparing esters of (meth) acrylic acid
US4474941A (en) Alkyd resins containing functional epoxides
US4322324A (en) Ampho-ionic group-containing alkyd resins
KR970004670B1 (en) Cross-linking agent and curable composition
US4206098A (en) High solids polyester-amide-imide wire enamels
JPS6154813B2 (en)
US4335027A (en) Air-driable alkyd resins and process for their preparation
JP2005194494A (en) Method for producing aqueous polyester resin composition, thermosetting water-borne coating composition obtained by using aqueous polyester resin composition and coating material obtained by using thermosetting water-borne coating composition
KR20010080961A (en) Epoxy functional polyester resins having an increased molecular weight, process for their preparation, and outdoor durable coating compositions comprising them
US3027340A (en) Dicarboxylic acid modified triglyceride oil-epoxide compositions
US3586653A (en) Process of manufacturing alkyd resins from unsaturated fatty acids,phthalic anhydrides and glycidol
JP2788982B2 (en) Polyglycidyl polyether resin
JP2539632B2 (en) Saturated polyester containing terminal carboxyl group and imide group
DE2044988A1 (en) Flexibilized epoxy resins
US2971932A (en) Oil-modified alkyd composition with halogenated coal acids
USRE24047E (en) Epoxide esters containing free epoxy
JPS6253535B2 (en)
JPH0157707B2 (en)
JP4061536B2 (en) Silane-modified polyester resin, method for producing the same, and coating resin composition
US3533972A (en) Polyurethane coatings
US3350331A (en) Unsaturated polyester resin formed from an aromatic glycol and articles coated therewith