JPS6154744B2 - - Google Patents

Info

Publication number
JPS6154744B2
JPS6154744B2 JP57212534A JP21253482A JPS6154744B2 JP S6154744 B2 JPS6154744 B2 JP S6154744B2 JP 57212534 A JP57212534 A JP 57212534A JP 21253482 A JP21253482 A JP 21253482A JP S6154744 B2 JPS6154744 B2 JP S6154744B2
Authority
JP
Japan
Prior art keywords
temperature
pressure
hot isostatic
hours
isostatic pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57212534A
Other languages
Japanese (ja)
Other versions
JPS59102868A (en
Inventor
Makoto Mishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57212534A priority Critical patent/JPS59102868A/en
Publication of JPS59102868A publication Critical patent/JPS59102868A/en
Publication of JPS6154744B2 publication Critical patent/JPS6154744B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、熱間静水圧プレス処理によりMn
−Znフエルト及びNi−Znフエライト等のソフト
フエライトを製造するとき、処理時のヒビや割れ
の発生を防止した熱間静水圧プレス処理方法に関
する。 今日、Mn−Znフエルト及びNi−Znフエライト
等のソフトフエライトを製造するとき、材料の高
密度化及び結晶の微細化を計るため、熱間静水圧
プレス処理する方法が広く採用されている。 従来の熱間静水圧プレス方法は、耐熱容器内に
還元防止用酸化物粉末を充填し、この粉末内に予
備焼結した被処理材を埋め込み蓋置きし、不活性
ガスを圧力媒体とする内熱式高圧炉内に挿入し、
例えば、温度1100℃〜1300℃、圧力700bar〜
1200barまで、同時間で昇温昇圧したのち、一定
時間これを保持して高温高圧処理する方法が取ら
れてきた。 ところが、最近のソフトフエライト製品の大型
化に伴ない、従来の熱間静水圧プレス処理によつ
て、被処理材にヒビや割れが発生し、歩留が著し
く低下する問題が生じてきた。 この発明は、熱間静水圧プレス処理によりMn
−Znフエルト及びNi−Znフエライト等のソフト
フエライトを製造するときに発生するヒビや割れ
を防止した熱間静水圧プレス処理方法を目的とす
る。 最近のソフトフエライト製品の大型化に伴な
い、従来の熱間静水圧プレス処理によつて、被処
理材にヒビや割れが発生し、歩留が著しく低下す
る問題を検討したところ、板状のソフトフエライ
トの各一辺が10mm以上で体積が4cm3以上のものに
なると、従来の温度圧力同時上昇方式では被処理
材が塑性変形し難くヒビや割れが発生しやすくな
るため、従来の熱間静水圧プレス方法にかえて、
被処理材が塑性変形し易い温度まで昇温したの
ち、昇圧することにより、ヒビや割れの発生を防
止できることを知見した。 すなわち、この発明は、各一辺寸法が10mm以
上、体積が4cm3以上のソフトフエライトからなる
板状成形体を予備焼結したのち、予備焼結体を以
下の昇温、昇圧、保持時間、処理条件で熱間静水
圧プレス処理することを要旨とするソフトフエラ
イトの熱間静水圧プレス方法である。 a 室温より処理温度まで3時間〜5時間で昇
温、 b 昇温時、900℃〜1100℃までは300bar未満で
加圧、 c 900℃〜1100℃を越えるとき、300bar未満よ
り処理圧力まで0.5時間〜3時間で昇圧、 d 処理温度、処理圧力に0.5〜5時間保持して
熱間静水圧プレス処理。 この発明において、ソフトフエライトはいずれ
の組成であつてもヒビ、割れの防止が可能である
が、Fe2O352モル%の場合、MnO25モル%以上、
ZnO23モル%以下の含有のMn−Znフエライト及
びNi−Znフエライトが好ましい。 また、熱間静水圧プレス処理前に予備焼結する
が、被処理材がMn−Znフエライトの場合は酸素
0.5〜10%含有の不活性ガス雰囲気で1150℃〜
1350℃の温度条件が好ましく、Ni−Znフエライ
トの場合は酸素雰囲気中で1150℃〜1250℃の温度
条件が好ましい。 この発明における熱間静水圧プレスの処理温
度、処理圧力は、ソフトフエライトの組成により
異なるが、処理温度は1000℃〜1300℃、処理圧力
は700bar〜1200barが好ましい。 また、熱間静水圧プレスを施す予備焼結体の寸
法体積を限定した理由は、上述した知見に基づく
もので、各一辺が10mm未満、体積が4cm3未満のも
のは、従来の熱間静水圧プレス処理でもヒビや割
れが発生しないためである。 以下に、熱間静水圧プレス条件の限定理由を説
明する。 熱間静水圧プレス処理温度が1000℃未満である
と、熱間静水圧プレスの加圧効果が得られず、ま
た、1300℃を越える温度では予備焼結時より粒成
長し、被処理材の物性変化を招来するため好まし
くない。 室温より処理温度の1000℃〜1300℃までの昇温
時間が3時間未満の場合、かかる体積の大きい被
処理材の熱伝導が悪く内部まで十分に昇温され
ず、また、5時間を越えるとこの効果が飽和し、
生産効率上好ましくない。 熱間静水圧プレス処理圧力が700bar未満である
と、熱間静水圧プレス効果が得られず、また、
1200barを越える圧力では加圧力が過大となり、
さらに装置自体の過大が問題となり好ましくな
い。 この処理圧力までの昇圧過程において、被処理
材の温度が900℃〜1100℃となるまでに300bar以
上の圧力で加圧すると、被処理材が塑性変形する
領域に入る前に加圧されてヒビや割れの原因とな
るため、被処理材の温度が900℃〜1100℃となる
までは、300bar未満で加圧する必要がある。 つぎに、300bar未満より処理圧力の700bar〜
1200barまで昇圧するのに、0.5時間未満である
と、急激に昇圧することになり、被処理材にヒビ
や割れが発生し易く、また、3時間を越える昇圧
時間ではヒビや割れ防止効果が飽和し生産効率が
低下し好ましくない。 温度1000℃〜1300℃、圧力700bar〜1200barで
の熱間静水圧プレス処理保持時間は、0.5時間未
満では昇圧時間及び加圧による気孔の拡散が不十
分であり、対流による熱の分布が不均一であり、
また、5時間を越えると結晶の異常成長を招き好
ましくない。 被処理材の成形体が板状で各一辺が10mm以上
で、体積が15cm3以上の場合は、予備焼結後、少な
くとも対抗する2主表面の表面層を片面当り0.2
mm以上研削除去したのち、この発明による熱間静
水圧プレス処理を施すと、割れ防止にさらに顕著
な効果が得られる。 以下にこの発明を実施例により説明する。 実施例 1 Mn−Znフエライトの配合原料として、
MnO27.0モル%、ZnO21.0モル%、Fe2O352.0モ
ル%を、分散媒体に水を用いてボール・ミルで撹
拌混合し、乾燥させて空気中で仮焼成後、再びボ
ール・ミルで20時間の湿式粉砕を行ない粒度約1
μmの粉体にし、PVA等のバインダーを添加し
て造粒したのち、この原料粉末を用いて第1表に
示す寸法の成形体にプレス成形した。成形体の
各々100個を、0.1〜21.0%酸素を含有する窒素ガ
ス中で、1200℃、3時間の予備焼結を施した。焼
結後の冷却は純窒素ガス中で行なつた。 得られた予備焼結体を、−28メツシユのZrO2
末を充填した容器内に埋入し、上部に蓋置きした
のち内熱式高温高圧炉内に挿入し、第2図に示す
如く(曲線4温度、曲線5圧力)、室温より1100
℃まで4時間で昇温し、昇温時、1000℃までは
280barで加圧し、1000℃を越えるとき、280barよ
り1000barまで2時間で昇圧し、1100℃の温度、
1000barの圧力で1時間保持して熱間静水圧プレ
ス処理した。 比較のため、同一の予備焼結体を、第1図に示
す如く(曲線1温度、曲線2圧力)、処理温度
1100℃、処理圧力1000barまで4時間で昇温昇圧
させ、その後同条件の処理温度、処理圧力に1時
間保持する熱間静水圧プレス処理を施した。 得られた本発明及び比較例の試料の全個数につ
いて外観検査を行ない、その結果を第1表に示
す。
In this invention, Mn is produced by hot isostatic pressing.
- It relates to a hot isostatic pressing method that prevents the occurrence of cracks and cracks during processing when manufacturing soft ferrite such as Zn felt and Ni-Zn ferrite. Today, when producing soft ferrite such as Mn--Zn felt and Ni--Zn ferrite, hot isostatic pressing is widely used in order to increase the density of the material and make the crystals finer. The conventional hot isostatic pressing method involves filling a heat-resistant container with oxide powder for preventing reduction, embedding the pre-sintered material in the powder, placing the lid on the container, and using an inert gas as the pressure medium. Insert into a thermal high pressure furnace,
For example, temperature 1100℃ ~ 1300℃, pressure 700bar ~
The method used has been to raise the temperature and pressure to 1200 bar over the same period of time, and then hold this temperature for a certain period of time to perform high-temperature and high-pressure treatment. However, with the recent increase in the size of soft ferrite products, the problem has arisen that the conventional hot isostatic pressing treatment causes cracks and cracks in the treated material, resulting in a significant decrease in yield. In this invention, Mn is produced by hot isostatic pressing.
- The object of the present invention is to provide a hot isostatic press treatment method that prevents cracks and cracks that occur when producing soft ferrite such as Zn felt and Ni-Zn ferrite. With the recent increase in the size of soft ferrite products, we investigated the problem of cracks and fractures occurring in the processed material due to conventional hot isostatic pressing, resulting in a significant decrease in yield. When each side of soft ferrite is 10 mm or more and the volume is 4 cm 3 or more, the material to be treated is difficult to plastically deform using the conventional simultaneous rise in temperature and pressure method, and cracks and fractures are likely to occur. Instead of using the hydraulic press method,
It has been discovered that the occurrence of cracks and cracks can be prevented by raising the temperature of the treated material to a temperature at which it is likely to undergo plastic deformation and then increasing the pressure. That is, in this invention, after pre-sintering a plate-shaped molded body made of soft ferrite with each side dimension of 10 mm or more and a volume of 4 cm 3 or more, the pre-sintered body is subjected to the following heating, pressure raising, holding time, and treatment. This is a hot isostatic pressing method for soft ferrite, the gist of which is hot isostatic pressing under certain conditions. a) Raise the temperature from room temperature to the processing temperature in 3 to 5 hours, b. Pressurize at less than 300 bar from 900℃ to 1100℃ when increasing the temperature, c. Increase the processing pressure by 0.5 from less than 300bar when the temperature exceeds 900℃ to 1100℃. The pressure was increased over 3 hours, and hot isostatic pressing was carried out by maintaining the temperature and pressure for 0.5 to 5 hours. In this invention, soft ferrite can be prevented from cracking regardless of its composition, but in the case of Fe 2 O 3 52 mol %, MnO 25 mol % or more,
Mn--Zn ferrite and Ni--Zn ferrite containing 3 mol % or less of ZnO are preferred. In addition, pre-sintering is performed before hot isostatic pressing, but if the material to be treated is Mn-Zn ferrite, oxygen
1150℃~ in an inert gas atmosphere containing 0.5~10%
A temperature condition of 1350°C is preferable, and in the case of Ni-Zn ferrite, a temperature condition of 1150°C to 1250°C in an oxygen atmosphere is preferable. The processing temperature and processing pressure of the hot isostatic press in this invention vary depending on the composition of the soft ferrite, but the processing temperature is preferably 1000°C to 1300°C and the processing pressure is 700 bar to 1200 bar. In addition, the reason for limiting the size and volume of the pre-sintered compact subjected to hot isostatic pressing is based on the above-mentioned knowledge . This is because no cracks or cracks occur even during hydraulic press treatment. The reasons for limiting the hot isostatic pressing conditions will be explained below. If the hot isostatic pressing temperature is less than 1000°C, the pressurizing effect of hot isostatic pressing will not be obtained, and if the temperature exceeds 1300°C, grain growth will occur during preliminary sintering and the material to be processed will deteriorate. This is not preferable because it causes changes in physical properties. If the heating time from room temperature to the processing temperature of 1000°C to 1300°C is less than 3 hours, the heat conduction of the large volume of the treated material will be poor and the temperature will not be raised sufficiently to the inside, and if it exceeds 5 hours, This effect saturates,
Unfavorable in terms of production efficiency. If the hot isostatic press treatment pressure is less than 700 bar, the hot isostatic press effect cannot be obtained, and
If the pressure exceeds 1200 bar, the pressurizing force will be excessive.
Furthermore, the device itself becomes too large, which is undesirable. In the process of increasing the pressure to this processing pressure, if a pressure of 300 bar or more is applied before the temperature of the material to be treated reaches 900°C to 1100°C, the material will be pressurized and cracked before it enters the plastic deformation region. To avoid this, it is necessary to apply pressure at less than 300 bar until the temperature of the material to be treated reaches 900°C to 1100°C. Next, from less than 300bar, the processing pressure is 700bar~
If it takes less than 0.5 hours to increase the pressure to 1200 bar, the pressure will increase rapidly and cracks and cracks will easily occur in the treated material, and if the pressure increases for more than 3 hours, the effect of preventing cracks and cracks will be saturated. This is undesirable as it reduces production efficiency. If the holding time for hot isostatic pressing at a temperature of 1000℃ to 1300℃ and a pressure of 700bar to 1200bar is less than 0.5 hours, the pressure increase time and pore diffusion due to pressurization will be insufficient, resulting in uneven heat distribution due to convection. and
Further, if the heating time exceeds 5 hours, abnormal growth of crystals may occur, which is not preferable. If the molded material to be treated is plate-shaped, each side is 10 mm or more, and the volume is 15 cm 3 or more, after preliminary sintering, the surface layer of at least two opposing main surfaces is 0.2 mm or more per side.
If the hot isostatic press treatment according to the present invention is applied after removing more than a millimeter of sand, a more significant effect in preventing cracking can be obtained. This invention will be explained below with reference to Examples. Example 1 As a raw material for Mn-Zn ferrite,
7.0 mol% of MnO, 1.0 mol% of ZnO, and 52.0 mol% of Fe 2 O 3 were stirred and mixed in a ball mill using water as a dispersion medium, dried and calcined in air, and then milled again in a ball mill. After 20 hours of wet grinding, the particle size was approximately 1.
After pulverizing the powder into μm-sized powder and granulating it by adding a binder such as PVA, the raw material powder was press-molded into a compact having the dimensions shown in Table 1. 100 pieces of each molded body were pre-sintered at 1200°C for 3 hours in nitrogen gas containing 0.1 to 21.0% oxygen. Cooling after sintering was performed in pure nitrogen gas. The obtained preliminary sintered body was embedded in a container filled with ZrO 2 powder of -28 mesh, a lid was placed on top, and the body was inserted into an internally heated high-temperature and high-pressure furnace, as shown in Fig. 2. curve 4 temperature, curve 5 pressure), 1100 from room temperature
℃ in 4 hours, and when heating up to 1000℃
When pressurized at 280bar and exceeds 1000℃, the pressure is increased from 280bar to 1000bar in 2 hours, the temperature is 1100℃,
Hot isostatic pressing was carried out at a pressure of 1000 bar for 1 hour. For comparison, the same pre-sintered body was treated at different temperatures as shown in Figure 1 (curve 1 temperature, curve 2 pressure).
The temperature and pressure were increased to 1100° C. and a processing pressure of 1000 bar over 4 hours, and then a hot isostatic press treatment was performed in which the same processing temperature and processing pressure were maintained for 1 hour. All of the obtained samples of the present invention and comparative examples were visually inspected, and the results are shown in Table 1.

【表】 実施例 2 Ni−Znフエライトの配合原料として、NiO17.6
モル%、ZnO32.6モル%、Fe2O349.8モル%を、
分散媒体に水を用いてボール・ミルで撹拌混合
し、乾燥させて空気中で仮焼成後、再びボール・
ミルで20時間の湿式粉砕を行ない粒度約1μmの
粉体にし、PVA等のバインダーを添加して造粒
したのち、この原料粉末を用いて第2表に示す寸
法の成形体にプレス成形した。成形体の各々100
個を、酸素雰囲気中で、1200℃、3時間の予備焼
結を施した。焼結後の冷却は純酸素ガス中で行な
つた。 得られた予備焼結体を、−28メツシユのZrO2
末を充填した容器内に埋入し、上部に蓋置きした
のち内熱式高温高圧炉内に挿入し、第3図に示す
如く(曲線6温度、曲線7圧力)、室温より1200
℃まで4時間で昇温し、昇温時、1050℃までは
265barで加圧し、1050℃を越えるとき、265barよ
り1000barまで2時間で昇圧し、1200℃の温度、
1000barの圧力で1時間保持して熱間静水圧プレ
ス処理した。 比較のため、同一の予備焼結体を、第1図に示
す如く(曲線3温度、曲線2圧力)、処理温度
1200℃、処理圧力1000barまで4時間で昇温昇圧
させ、その後同条件の処理温度、処理圧力に1時
間保持する熱間静水圧プレス処理を施した。 得られた本発明及び比較例の試料の全個数につ
いて外観検査を行ない、その結果を第2表に示
す。
[Table] Example 2 NiO17.6 as a raw material for Ni-Zn ferrite
mol%, ZnO3 2.6 mol%, Fe 2 O 3 49.8 mol%,
Water is used as a dispersion medium, and the mixture is stirred and mixed in a ball mill, dried, and calcined in the air.
The powder was wet-pulverized in a mill for 20 hours to obtain a powder with a particle size of approximately 1 μm, and after adding a binder such as PVA and granulating it, this raw material powder was press-molded into compacts having the dimensions shown in Table 2. 100 each of molded bodies
The pieces were pre-sintered at 1200°C for 3 hours in an oxygen atmosphere. Cooling after sintering was performed in pure oxygen gas. The obtained preliminary sintered body was embedded in a container filled with ZrO 2 powder of -28 mesh, a lid was placed on top, and the body was inserted into an internally heated high-temperature and high-pressure furnace, as shown in Fig. 3. curve 6 temperature, curve 7 pressure), 1200 from room temperature
℃ in 4 hours, and when heating up to 1050℃
When pressurized at 265bar and exceeds 1050℃, the pressure is increased from 265bar to 1000bar in 2 hours, the temperature is 1200℃,
Hot isostatic pressing was carried out at a pressure of 1000 bar for 1 hour. For comparison, the same pre-sintered body was treated at different temperatures as shown in Figure 1 (curve 3 temperature, curve 2 pressure).
The temperature and pressure were increased to 1200° C. and a processing pressure of 1000 bar over 4 hours, and then a hot isostatic press treatment was performed in which the same processing temperature and processing pressure were maintained for 1 hour. Visual inspection was performed on all of the obtained samples of the present invention and comparative examples, and the results are shown in Table 2.

【表】 実施例から明らかように、この発明方法は従来
方法に比較して、大型板状ソフトフエライトの熱
間静水圧プレス処理時のヒビや割れ発生防止に著
しい効果があり、歩留向上品質向上に極めて有効
である。
[Table] As is clear from the examples, compared to the conventional method, the method of this invention is significantly effective in preventing the occurrence of cracks and fractures during hot isostatic pressing of large plate-shaped soft ferrite, and improves yield and quality. It is extremely effective for improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例、第2図及び第3図はこの発明
の実施例における熱間静水圧プレス処理のヒート
パターンを示すグラフである。
FIG. 1 is a graph showing the heat pattern of the hot isostatic pressing process in the conventional example, and FIGS. 2 and 3 are graphs showing the heat pattern in the hot isostatic pressing process in the embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 各一辺寸法が10mm以上、体積が4cm3以上のソ
フトフエライトからなる板状成形体を予備焼結し
たのち、予備焼結体を以下の昇温、昇圧、保持時
間、処理条件で熱間静水圧プレス処理することを
特徴とするソフトフエライトの熱間静水圧プレス
方法。 a 室温より処理温度まで3時間〜5時間で昇
温、 b 昇温時、900℃〜1100℃までは300bar未満で
加圧、 c 900℃〜1100℃を越えるとき、300bar未満よ
り処理圧力まで0.5時間〜3時間で昇圧、 d 処理温度、処理圧力に0.5〜5時間保持して
熱間静水圧プレス処理。
[Claims] 1. After pre-sintering a plate-shaped molded body made of soft ferrite with each side dimension of 10 mm or more and a volume of 4 cm 3 or more, the pre-sintered body is heated, pressurized, and held for the following times. A hot isostatic pressing method for soft ferrite characterized by hot isostatic pressing under processing conditions. a) Raise the temperature from room temperature to the processing temperature in 3 to 5 hours, b. Pressurize at less than 300 bar from 900℃ to 1100℃ when increasing the temperature, c. Increase the processing pressure by 0.5 from less than 300bar when the temperature exceeds 900℃ to 1100℃. The pressure was increased over 3 hours, and hot isostatic pressing was carried out by maintaining the temperature and pressure for 0.5 to 5 hours.
JP57212534A 1982-12-02 1982-12-02 Soft ferrite thermal hydrostatic press Granted JPS59102868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212534A JPS59102868A (en) 1982-12-02 1982-12-02 Soft ferrite thermal hydrostatic press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212534A JPS59102868A (en) 1982-12-02 1982-12-02 Soft ferrite thermal hydrostatic press

Publications (2)

Publication Number Publication Date
JPS59102868A JPS59102868A (en) 1984-06-14
JPS6154744B2 true JPS6154744B2 (en) 1986-11-25

Family

ID=16624261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212534A Granted JPS59102868A (en) 1982-12-02 1982-12-02 Soft ferrite thermal hydrostatic press

Country Status (1)

Country Link
JP (1) JPS59102868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450760U (en) * 1987-09-24 1989-03-29
JPH0349750U (en) * 1989-09-22 1991-05-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450760U (en) * 1987-09-24 1989-03-29
JPH0349750U (en) * 1989-09-22 1991-05-15

Also Published As

Publication number Publication date
JPS59102868A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
US2990602A (en) Method of hot-pressing ceramic ferroelectric materials
JPS6259564A (en) Molding aid for ceramics, molded body obtained using the same and production of ceramic product
EP1153899B1 (en) Alumina ceramic products
CN115180962B (en) High-density high-mobility oxide target material and preparation method thereof
JPS6154744B2 (en)
CN113880570B (en) Powder sintering method for reducing density of double twin crystal defects in BaTiO3 ceramic
CN107892559B (en) Simple and efficient preparation method of low-thermal-conductivity MgO-CoO solid solution pressure transmission medium
JP2525432B2 (en) Normal pressure sintered boron nitride compact
US3989794A (en) Process of manufacturing ferrite bodies of low porosity
CN115626641B (en) Preparation method of onion carbon extremely-fine particle isostatic graphite
KR101924502B1 (en) Manufacturing method of porous ceramic using a hip
Takata et al. Improvement of a Porous Material Mechanical Property by Hot Isostatic Process
JPH0940460A (en) Production of titanic acid based sintered body
JPS60231469A (en) Thermally hydrostatic press formation for soft ferrite
JPS6355114A (en) Alpha alumina and manufacture
IL42147A (en) Process for the preparation of ceramic material based on sinterable metal powders and the material obtained
JPS6054795B2 (en) Manufacturing method for high-density piezoelectric ceramics
JP2934589B2 (en) Method for producing Ni-Zn ferrite
JPS59111982A (en) Thermally hydrostatic press for piezoelectric ceramics
US2703787A (en) Method for preparing magnetic compositions
JP2000144204A (en) Production of sintered soft ferrite material
CA1052984A (en) Metal oxide power densification process
CN112885592A (en) Preparation method of material for reducing eddy current loss and hysteresis loss of iron core product
CN117049869A (en) Zinc oxide target and preparation method thereof
JPH01160876A (en) Production of superconductor parts