JPS6154473B2 - - Google Patents

Info

Publication number
JPS6154473B2
JPS6154473B2 JP10461583A JP10461583A JPS6154473B2 JP S6154473 B2 JPS6154473 B2 JP S6154473B2 JP 10461583 A JP10461583 A JP 10461583A JP 10461583 A JP10461583 A JP 10461583A JP S6154473 B2 JPS6154473 B2 JP S6154473B2
Authority
JP
Japan
Prior art keywords
heat
resin paint
drying
paint
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10461583A
Other languages
Japanese (ja)
Other versions
JPS59228979A (en
Inventor
Koji Nagata
Tetsuo Atsumi
Akio Ogiso
Minoru Mizuno
Hirotaka Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP10461583A priority Critical patent/JPS59228979A/en
Publication of JPS59228979A publication Critical patent/JPS59228979A/en
Publication of JPS6154473B2 publication Critical patent/JPS6154473B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、内面防食塗装皮膜付き熱交換管の製
造法に係り、特に熱交換器の管板に装着される、
内面に防食塗装皮膜を設けた長尺、小径の熱交換
管において、その耐熱性、耐電気防食性、耐摩耗
性等を改善した製造手法に関するものである。 従来より、火力発電所や化学工場、或いは船舶
等の復水器や、その他の各種熱交換器には、熱交
換管(伝熱管)として、黄銅にアルミニウム、砒
素、その他珪素等を添加した、所謂特殊黄銅管
や、銅、ニツケル、鉄よりなる、所謂キユプロニ
ツケル管の如き銅合金管が、広く使用されている
が、それら熱交換器においては、冷却水として海
水或いは河海水を使用する関係上、それら熱交換
管の内面には、種々の腐食が発生する。そして、
このような腐食が生じると、熱交換管内面には腐
食生成物を含む付着物が付き、熱交換器の熱貫流
率を低下させるのである。 このため、かかる熱交換管の内面防食の為の一
つの有効な手法として、本発明者らは、先に特公
昭56−45079号公報や特開昭56−166271号公報等
において、所定の防食塗膜を所定の厚さで管内面
に形成させる手法を提案しており、この手法は防
食性や作業性等の点において、他の手法に比べて
優れているところから、今日すでに実用化に至つ
ている。 而して、このような管内面に防食塗膜を形成し
た熱交換管にあつては、かかる熱交換管内を冷却
水等の冷却流体が流通せしめられる一方、該熱交
換管の外部には水蒸気等の冷却されるべき高温流
体が流されて、該熱交換管の管壁を介して、それ
らの間に熱交換が為されるようになつているとこ
ろから、前記防食塗膜には耐熱性が要求され、ま
た冷却流体として海水が用いられる場合にあつて
は、かかる海水中には漂砂が存在するところか
ら、かかる漂砂による摩耗も防止する必要があ
る。加えて、かかる熱交換管にあつては、その管
端部における防食のために、電気防食装置が取り
付けられることとなるが、そのような電気防食環
境下においても、塗膜が剥離しないようにする必
要がある。 ところで、現在、かかる内面防食塗装皮膜付き
熱交換管を製造するに際して、該熱交換管の内面
塗装用に使用される塗料としては、常乾(常温乾
燥)型の樹脂塗料が選定されている。これは、か
かる熱交換管が10〜40mmφ程度の小径で、長さが
約10m程度から約40mにも達する長尺細管であつ
て、そのような長尺細管の内面の塗装が対象にな
るところから、伝熱性において良好であると共
に、スプレー塗装性、速乾性に富む塗料を選定す
る必要があるからである。そして、そのような塗
料としては、一般に常乾型の樹脂塗料、例えばア
ルキツド樹脂塗料、エポキシ樹脂塗料等が使用さ
れているのである。 しかしながら、このような常乾型の樹脂塗料に
て防食塗装皮膜を形成せしめた熱交換管において
は、一般に前述した如き耐熱性、耐電気防食性、
耐摩耗性に劣り、このため管端部に対して、その
耐電気防食性を改善するための特別の配慮をする
必要があつたのであり、またそのような特性の欠
如から塗膜の耐久性が悪い問題があり、このため
熱交換器に装着した後において、熱交換管の内面
を度々塗り換える必要があつたのである。 ここにおいて、本発明は、かかる事情を背景に
して為されたものであつて、その目的とするとこ
ろは、内面防食塗装皮膜付き熱交換管の改善され
た製造法を提供することにあり、特に従来の常乾
型の樹脂塗膜の欠点であつた耐熱性、耐電気防食
性、耐摩耗性を改善せしめた熱交換管の有効な製
造手法を提供することにある。 そして、かかる目的を達成するために、本発明
にあつては、熱交換器に装着されるべき長尺の細
管内面を常乾型の樹脂塗料にて均一に塗装し、常
温下に乾燥せしめた後、かかる内面塗装細管を熱
処理して、該細管の内面塗膜を焼き付けるように
したのである。 このように、本発明に従う内面防食塗装皮膜付
き熱交換管の製造手法にあつては、従来の如く、
熱交換管の内面に均一な厚さで常乾型の樹脂塗膜
が形成された後、これが熱処理されることによ
り、かかる樹脂塗膜が管内面に焼き付けられた状
態となるのであり、これによつて塗装皮膜の耐久
性の著しい向上が見られ、また特に耐熱性及び耐
電気防食性の向上が図られ得て、従来の常乾型の
樹脂塗膜の欠点をカバーし得る事実が見い出され
たのである。 また、かかる本発明に従えば、熱交換管の内面
に対してスプレー塗装性、速乾性に優れた常乾型
の樹脂塗料にて所定の防食塗膜を均一な厚さで効
果的に形成し得、塗膜の不均一による伝熱性や耐
蝕性への悪影響の問題を生ずることは全くない。
なお、樹脂塗料として、常乾型ではない焼付型の
ものを用いた場合にあつては、スプレー塗装が著
しく因難であり、仮に塗装され得たとしても乾燥
に時間がかかり、また形成される塗膜の膜厚が不
均一となつて、伝熱性や耐蝕性の点において少な
からぬ問題を生ずることとなるのである。 ところで、かかる本発明に用いられる熱交換管
の材料としては、従来から伝熱管として用いられ
ている管材料が何れも対象とされるものである
が、特に本発明にあつては、アルミニウム黄銅
管、例えばJIS−H−3300、C−6870、6871、
6872等のアルミニウム黄銅材料や、JIS−H−
3300 C−7060、7150等のキユプロニツケル材料
から成る管が好適に用いられるのである。 また、このような熱交換管は、例えば内径が10
〜40mmφ程度、特に15〜25mmφ程度、長さが4〜
40m、特に5〜25m程度の長尺細管として用いら
れることとなるのである。 そして、このような小口径、長尺の熱交換管に
は、その管内面に対してスプレー塗装等の塗装手
法によつて所定の常乾型の樹脂塗料が均一に薄く
塗装せしめられ、そこに所定厚さ、例えば50μ程
度以下、一般に10〜30μ程度の膜厚の防食塗膜が
形成されるのである。この常乾型の樹脂塗料にお
いては、皮膜形成要素として、アルキツド樹脂、
ビニル樹脂(塩化ビニル系、酢酸ビニル系等)、
ポリウレタン樹脂、エポキシ樹脂及びアクリル樹
脂(アクリル酸エステル系等)から成る有機重合
体樹脂(変成物をも含む)の一種または二種以上
が用いられ、そしてかかる有機重合体樹脂が、そ
れに対する適当な溶剤、例えばアルコール系、エ
ステル系、エーテル系、ケトン系、脂肪族或いは
芳香族炭化水素系等のものに溶解されて、常温乾
燥型の皮膜形成性の液状組成物(塗料)に調製さ
れるのである。なお、かかる塗料の調製に際し
て、鉛丹ジンククロメート、酸化鉄等の顔料や他
の皮膜形成補助成分も必要に応じて添加されるこ
ととなる。また、このような塗料は、良く知られ
ているように、一液型、二液型或いは多液型とし
て適用されることとなる。更に、かかる塗料とし
ては、一般に当該樹脂系の合成樹脂塗料(または
ワニス若しくはプライマー)として市販されてい
るものが好適に利用されるものである。 また、このように所定の常乾型の樹脂塗料が内
面に塗装された熱交換管は、通常の如く常温乾
燥、例えば自然乾燥せしめられて、所定の膜厚を
有する防食塗装皮膜が形成せしめられ、次いでか
かる熱交換管には、本発明に従う熱処理が加えら
れることとなるのである。この熱処理は、一般に
所定温度に保持された加熱炉内に、前記内面塗装
された熱交換管を装入して、所定時間保持するこ
とにより実施され、かかる加熱炉内の雰囲気とし
ては、空気等の酸化性雰囲気の他、還元性の雰囲
気、更にはN2等の不活性雰囲気を何れをも採用
可能である。また、熱処理温度としては、使用し
た常乾型の樹脂塗料の種類に応じて、それぞれ望
ましい温度範囲があり、一義的に限定することは
困難であるが、一般にその上限を330℃、下限を
60℃とすることが好ましく、特に100〜300℃、な
かでも150〜250℃の温度において内面防食塗装管
を熱処理することが望ましく、そしてその熱処理
時間としては90分程度まで、好ましくは10〜60分
の間で選択されることとなる。 かくの如き熱処理によつて、熱交換管の内面に
形成されている常乾型の樹脂塗料から成る塗膜
は、管内面に対して焼き付けられた状態となり、
これによつて、前述の如き従来の常乾型樹脂塗膜
の欠点であつた耐熱性、耐電気防食性、更には耐
摩耗性が改善され、またその耐久性が著しく向上
せしめられ得たのであり、以て工業的に有用な内
面防食塗装皮膜付き熱交換管を有利に製造し得る
こととなつたのである。 しかも、このような本発明に従つて製造される
内面防食塗装皮膜付き熱交換管にあつては、その
熱処理(焼付け)後の塗膜の分極抵抗値Rが
1000000(Ωcm2)以上となる場合であつても、従
来から指摘されている如き伝熱性能の低下を招く
等の問題も殆どなく、従つて熱交換管として十分
に利用され得ることが認められている。 次に、本発明を更に具体的に明らかにするため
に実施例を示すが、本発明が、かかる実施例の記
載によつて何等の制約をも受けるものでないこと
は、言うまでもないところである。 実施例 1 外径25.4mm、肉厚1.25mm、長さ10000mmのアル
ミニウム黄銅材料(JIS−H−3300 C−6871;復
水器用黄銅継目無管)に対し、常乾型の市販のア
ルキツド樹脂系錆止め塗料[中国塗料(株)製LZIプ
ライマー]を、膜厚が20μとなるように全長にわ
たつてスプレー塗装して、内面防食塗装管(サン
プルA)を得た。また同様にして、常乾型の市販
のエポキシ樹脂系塗料[関西ペイント(株)製ミリオ
ン1A]を用いて、これを膜厚が1.5μとなるよう
にスプレー塗装手法にて塗装を行ない、他の一つ
の内面防食塗装管(サンプルB)を得た。 次いで、かかる二種のサンプルA,Bにおける
塗膜が十分乾燥した後、それらサンプルをケロシ
ン燃焼型還元性ガス炉(ローラハース型)に装入
して、200℃の温度で30分間の熱処理を施し、そ
れぞれのサンプルの内面塗膜の焼付け処理を行な
つた。なお、比較材として、このような焼付け処
理をしない状態で、それぞれの塗装管(サンプル
A,B)からサンプリングして、サンプルC,D
を得た。 かくして得られた四種のサンプルを約1500mmの
長さに切断し、それらを人工海水通水試験装置に
装着して、通水テストを行なつた。この通水テス
トでは、管端部電位が−650mV(カロメル電極
基準)となるような電気防食条件下において、所
定の人工海水が流速2m/秒にて6ケ月間連続し
て通水せしめられた。そして、この通水試験後、
それぞれのサンプル管をその軸心方向に半割りし
て、クロスカツトテープテストにて内面塗膜の密
着性の評価を行なつた。なお、このクロスカツト
テープテストとは、前記半割りされた部分の内面
に、約10mmの長さでX字をナイフにて刻み、そし
てその上に粘着テープを張り付けた後、これを勢
いよく剥がすことにより、該粘着テープによる塗
膜の剥離の部分、並びにその程度で評価する手法
である。 結果を下表第1表に示すが、かかる第1表より
明らかなように、本発明に従つて所定の熱処理が
加えられたサンプルA,Bにあつては、電気防食
下においても塗膜の密着性が損なわれることはな
く、以て優れた耐電気防食性の塗膜性能を有して
いるのに対して、熱処理の施されていないサンプ
ルC,Dについては、電気防食によつて塗膜の密
着性が著しく損なわれていることが認められるの
である。
The present invention relates to a method of manufacturing a heat exchange tube with an inner surface anticorrosive coating, and in particular, a method for manufacturing a heat exchange tube with an anticorrosive coating on the inner surface, and in particular,
This invention relates to a manufacturing method that improves the heat resistance, cathodic protection, abrasion resistance, etc. of long, small-diameter heat exchange tubes having an anticorrosive coating on their inner surfaces. Conventionally, heat exchange tubes (heat transfer tubes) used in condensers and other heat exchangers in thermal power plants, chemical factories, ships, etc. have been made using brass with aluminum, arsenic, and other silicon added to them. So-called special brass tubes and copper alloy tubes such as so-called cypronickel tubes made of copper, nickel, and iron are widely used, but these heat exchangers use seawater or river seawater as cooling water. Various types of corrosion occur on the inner surfaces of these heat exchange tubes. and,
When such corrosion occurs, deposits containing corrosion products adhere to the inner surface of the heat exchange tube, reducing the heat transmission coefficient of the heat exchanger. Therefore, as an effective method for preventing internal corrosion of heat exchange tubes, the present inventors have previously proposed a method for preventing corrosion in Japanese Patent Publication No. 56-45079 and Japanese Patent Application Laid-Open No. 56-166271. We have proposed a method of forming a coating film to a predetermined thickness on the inner surface of the pipe, and this method is superior to other methods in terms of corrosion resistance and workability, so it has already been put into practical use today. It's reached. In the case of such a heat exchange tube with an anticorrosive coating formed on the inner surface of the tube, a cooling fluid such as cooling water is allowed to flow inside the heat exchange tube, while water vapor flows outside the heat exchange tube. The above-mentioned anti-corrosion coating has a heat-resistant property because the high-temperature fluid to be cooled, such as In addition, when seawater is used as the cooling fluid, since drifting sand is present in the seawater, it is necessary to prevent wear caused by such drifting sand. In addition, for such heat exchange tubes, a cathodic protection device is installed to prevent corrosion at the end of the tube, but even in such a cathodic protection environment, a cathodic protection device is installed to prevent the coating from peeling off. There is a need to. By the way, at present, when manufacturing such a heat exchange tube with an inner surface anti-corrosion coating film, an ordinary drying (normal temperature drying) type resin paint is selected as the paint used for coating the inner surface of the heat exchange tube. This is because such heat exchange tubes are long thin tubes with a small diameter of about 10 to 40 mmφ and a length of about 10 m to about 40 m, and the inner surface of such long thin tubes is to be painted. Therefore, it is necessary to select a paint that has good heat transfer properties, and has excellent spray coating properties and quick drying properties. As such a paint, an air-drying resin paint, such as an alkyd resin paint or an epoxy resin paint, is generally used. However, in heat exchange tubes in which an anticorrosive coating film is formed using such an air-drying resin paint, generally the heat resistance, cathodic protection, and
The abrasion resistance was poor, and therefore special consideration had to be taken to improve the cathodic protection properties of the pipe ends, and the lack of such properties meant that the durability of the coating film was poor. There was a problem that the heat exchange tube had a bad coating, and for this reason, it was necessary to frequently repaint the inner surface of the heat exchange tube after it was installed in the heat exchanger. The present invention has been made against this background, and its purpose is to provide an improved manufacturing method for heat exchange tubes with an anticorrosive coating on the inner surface, and in particular, The object of the present invention is to provide an effective method for manufacturing heat exchange tubes that improves heat resistance, cathodic protection, and abrasion resistance, which are disadvantages of conventional air-drying resin coatings. In order to achieve this object, in the present invention, the inner surface of the long thin tube to be installed in the heat exchanger is uniformly coated with an air-drying resin paint and allowed to dry at room temperature. Afterwards, the inner-coated thin tube was heat-treated to bake the inner surface coating of the thin tube. As described above, in the manufacturing method of the heat exchange tube with the inner surface anticorrosion coating film according to the present invention, as in the conventional method,
After an air-drying resin coating with a uniform thickness is formed on the inner surface of the heat exchange tube, this resin coating is heat-treated to become baked onto the inner surface of the tube. As a result, it has been found that the durability of the paint film is significantly improved, and in particular, the heat resistance and cathodic protection properties can be improved, which can overcome the drawbacks of conventional air-drying resin paint films. It was. Further, according to the present invention, a predetermined anticorrosion coating film is effectively formed on the inner surface of the heat exchange tube with a uniform thickness using an air-drying resin paint that has excellent spray coating properties and quick drying properties. However, there is no problem of adverse effects on heat conductivity or corrosion resistance due to non-uniformity of the coating film.
In addition, if a baking type resin paint is used instead of an air-drying type, spray painting is extremely difficult, and even if it can be applied, it takes a long time to dry, and it may form. The thickness of the coating film becomes non-uniform, causing considerable problems in terms of heat conductivity and corrosion resistance. By the way, the material for the heat exchange tube used in the present invention is any tube material conventionally used for heat exchange tubes, but in particular, in the present invention, aluminum brass tubes are applicable. , e.g. JIS-H-3300, C-6870, 6871,
Aluminum brass materials such as 6872, JIS-H-
Tubes made of Cypronickel materials such as 3300 C-7060 and 7150 are preferably used. In addition, such a heat exchange tube has an inner diameter of, for example, 10
~40mmφ, especially around 15~25mmφ, length 4~
It will be used as a long thin tube of about 40 m, especially about 5 to 25 m. For such small-diameter, long heat exchange tubes, a predetermined air-drying resin paint is uniformly and thinly applied to the inner surface of the tube using a coating method such as spray painting. An anticorrosive coating film is formed with a predetermined thickness, for example, about 50 microns or less, generally about 10 to 30 microns. In this air-drying resin paint, alkyd resin,
Vinyl resin (vinyl chloride, vinyl acetate, etc.),
One or more organic polymer resins (including modified products) consisting of polyurethane resins, epoxy resins, and acrylic resins (acrylic acid esters, etc.) are used, and such organic polymer resins are It is dissolved in a solvent such as alcohol, ester, ether, ketone, aliphatic or aromatic hydrocarbon to form a film-forming liquid composition (paint) that dries at room temperature. be. In addition, when preparing such a paint, pigments such as red lead zinc chromate and iron oxide, and other film-forming auxiliary components are also added as necessary. Furthermore, as is well known, such paints can be applied as one-component, two-component, or multi-component types. Furthermore, as such a paint, one that is generally commercially available as a synthetic resin paint (or varnish or primer) of the resin type is suitably used. In addition, the heat exchange tube whose inner surface is coated with a predetermined air-drying resin paint is dried at normal temperature, for example, naturally, to form an anticorrosion coating film having a predetermined thickness. Then, the heat exchange tube is subjected to heat treatment according to the present invention. This heat treatment is generally carried out by placing the heat exchange tube with the inner surface coated in a heating furnace maintained at a predetermined temperature and holding the tube for a predetermined period of time. In addition to the oxidizing atmosphere, a reducing atmosphere, and even an inert atmosphere such as N 2 can be used. In addition, as for the heat treatment temperature, there is a desirable temperature range depending on the type of air-drying resin paint used, and it is difficult to limit it unambiguously, but generally the upper limit is 330℃ and the lower limit is 330℃.
It is preferable to heat treat the internally anticorrosive coated pipe at a temperature of 60℃, particularly 100 to 300℃, especially 150 to 250℃, and the heat treatment time is up to about 90 minutes, preferably 10 to 60℃. It will be selected between minutes. Through such heat treatment, the coating film made of the air-drying resin paint formed on the inner surface of the heat exchange tube becomes baked onto the inner surface of the tube.
As a result, heat resistance, cathodic protection, and abrasion resistance, which were disadvantages of conventional air-drying resin coatings as mentioned above, were improved, and the durability was significantly improved. Therefore, it has now become possible to advantageously produce an industrially useful heat exchange tube with an inner surface anticorrosive coating film. Moreover, in the case of the heat exchange tube with the inner surface anticorrosive coating film manufactured according to the present invention, the polarization resistance value R of the coating film after heat treatment (baking) is
Even when the resistance is 1,000,000 (Ωcm 2 ) or more, there are almost no problems such as deterioration of heat transfer performance, which has been pointed out in the past, and it is therefore recognized that it can be fully used as a heat exchange tube. ing. Next, Examples will be shown to clarify the present invention more specifically, but it goes without saying that the present invention is not limited in any way by the description of the Examples. Example 1 Aluminum brass material (JIS-H-3300 C-6871; Brass seamless pipe for condenser) with an outer diameter of 25.4 mm, wall thickness of 1.25 mm, and length of 10000 mm was treated with an air-drying commercially available alkyd resin. A rust-preventing paint [LZI Primer manufactured by Chugoku Paint Co., Ltd.] was spray-painted over the entire length to a film thickness of 20 μm to obtain an inner anti-corrosion coated pipe (Sample A). Similarly, using a commercially available air-drying epoxy resin paint [Million 1A manufactured by Kansai Paint Co., Ltd.], paint was applied using a spray coating method to a film thickness of 1.5 μm. One internally anti-corrosion coated tube (sample B) was obtained. Next, after the coating films of the two samples A and B were sufficiently dried, the samples were charged into a kerosene-burning reducing gas furnace (roller hearth type) and heat-treated at a temperature of 200°C for 30 minutes. The inner coating film of each sample was baked. In addition, as comparison materials, samples were taken from each painted tube (samples A and B) without such baking treatment, and samples C and D
I got it. The four types of samples thus obtained were cut into lengths of about 1500 mm, and they were attached to an artificial seawater flow test device to conduct a water flow test. In this water flow test, specified artificial seawater was passed continuously for 6 months at a flow rate of 2 m/s under cathodic protection conditions such that the potential at the end of the tube was -650 mV (calomel electrode reference). . After this water flow test,
Each sample tube was cut in half in the axial direction, and the adhesion of the inner surface coating was evaluated using a cross-cut tape test. The cross-cut tape test involves cutting an X shape with a length of about 10 mm on the inner surface of the half-split part using a knife, pasting adhesive tape on top of it, and then peeling it off vigorously. This is a method of evaluating the area and degree of peeling of the coating film caused by the adhesive tape. The results are shown in Table 1 below, and as is clear from Table 1, in the case of samples A and B, which were subjected to the prescribed heat treatment according to the present invention, the coating film remained strong even under cathodic protection. While the adhesion was not impaired and the coating film had excellent cathodic protection properties, samples C and D, which were not heat treated, were coated with cathodic protection. It was observed that the adhesion of the film was significantly impaired.

【表】 実施例 2 実施例1で用いたのと同様なアルミニウム黄銅
管(長さ:1500mm)を用いて、常乾型のアルキツ
ド樹脂系錆止め塗料[中国塗料(株)製LZIプライマ
ー]をその粘度がNo.4フオードカツプにて25秒
(20℃)となるように調製した後、エアスプレー
塗装にて乾燥後の塗膜厚みが20μとなるようにス
プレー塗装を行ない、続いて一昼夜自然乾燥せし
めた後、第2図に示される温度×時間の条件下に
空気雰囲気炉内において熱処理を施した。 かくして得られた各種の供試材について、それ
ぞれ下記の如き塗膜密着性能の評価試験を行な
い、その結果を第2表及び第3表に示した。 試験方法 (a) 原状:塗膜形成されたままの状態での評価。 (b) 耐熱性:所定温度の空気炉またはオートクレ
ーブ(熱水)中に1週間放置した後の評価。 (c) 曲げ加工性:供試管を半割りし、90度まで曲
げ加工して、エツジ部分の塗膜状況を目視観察
する。 (d) 耐水性:3%食塩水の80℃のものの中に1日
間浸漬した後、或いは常温の人工海水を管内流
速2m/秒で1ケ月間通水した後の評価。 (e) 耐電気防食性:供試管を陰極とし、防食電
位;−550〜−750mV(カロメル電極基準)に
て外部電源方式で電気防食しつつ、3%食塩水
を管内流速2m/秒で1週間通水した後の評
価。 (f) 耐潰食性:500μの粒径の漂砂を500ppm含
有する人工海水を管内流速2m/秒にて6ケ月
間通水した後の評価。 評価法 (1) 試験(a)、(b)、(c)、(d)、(e)については、クロス
カツトテープテストにより、下記の基準にて評
価した。 〇:剥離、膨れ無し △:点状剥離有り ×:面状剥離有り (2) 試験(f)については、外観目視検査により、下
記の基準に従つて評価した。 〇:剥離面積 10%以内 △: 〃 10〜30% ×: 〃 30%以上 (3) 試験(c)については、下記の基準に従つて評価
した。 〇:健全 △:ひび割れ ×:面状剥離 第2表及び第3表の結果から明らかなように、
常乾型のアルキツド樹脂系塗料にて形成された防
食塗膜に対して、本発明に従つて熱処理を施すこ
とにより、耐熱性、耐電気防食性が改善され、更
には耐潰食性も改善されることが認められるので
ある。特に、高温水中での塗膜の密着性は75℃以
上の熱処理供試材において向上し、200℃の熱処
理が施されたものにあつては、その効果が顕著で
ある。また、耐電気防食性に関しても略同様の傾
向があり、150℃以上の熱処理によつて効果が生
じているのである。 なお、上記で使用した市販の樹脂塗料に代え
て、同種のアルキツド樹脂系塗料である神東塗料
(株)製クロムコートRを用いた場合においても、同
様な傾向が認められた。 また、熱処理温度が余りにも高くなり過ぎる
と、塗膜の粉末化が生じることが認められた。
[Table] Example 2 Using an aluminum brass tube (length: 1500 mm) similar to that used in Example 1, an air-drying alkyd resin-based rust preventive paint [LZI Primer manufactured by Chugoku Paint Co., Ltd.] was applied to the tube. After adjusting the viscosity to 25 seconds (20°C) using a No. 4 food cup, spray painting with air spray paint so that the coating thickness after drying is 20μ, and then let it air dry overnight. After that, heat treatment was performed in an air atmosphere furnace under the temperature x time conditions shown in FIG. The various test materials thus obtained were subjected to the following evaluation tests for coating film adhesion performance, and the results are shown in Tables 2 and 3. Test method (a) Original condition: Evaluation with the coating film still formed. (b) Heat resistance: Evaluation after being left in an air oven or autoclave (hot water) at a specified temperature for one week. (c) Bending property: Cut the test tube in half, bend it to 90 degrees, and visually observe the condition of the coating on the edges. (d) Water resistance: Evaluation after being immersed in 3% saline solution at 80°C for one day, or after passing room temperature artificial seawater through the pipe at a flow rate of 2 m/sec for one month. (e) Cathodic corrosion resistance: Using the test tube as a cathode, applying cathodic protection using an external power source at a corrosion protection potential of -550 to -750 mV (calomel electrode standard), applying 3% saline at a flow rate of 2 m/sec inside the tube. Evaluation after watering for a week. (f) Crushing corrosion resistance: Evaluation after passing artificial seawater containing 500ppm of alluvial sand with a particle size of 500μ through the pipe at a flow rate of 2m/sec for 6 months. Evaluation method (1) Tests (a), (b), (c), (d), and (e) were evaluated using the cross-cut tape test according to the following criteria. ○: No peeling or blistering △: Spot peeling ×: Planar peeling (2) Regarding test (f), the appearance was evaluated by visual inspection according to the following criteria. ○: Peeling area 10% or less △: 10-30% ×: 30% or more (3) Test (c) was evaluated according to the following criteria. 〇: Healthy △: Cracks ×: Planar peeling As is clear from the results in Tables 2 and 3,
By applying heat treatment according to the present invention to an anticorrosion coating film formed with an air-drying alkyd resin paint, heat resistance and cathodic corrosion resistance are improved, and furthermore, crushing corrosion resistance is improved. It is recognized that In particular, the adhesion of the coating film in high-temperature water is improved for specimens heat-treated at 75°C or higher, and this effect is remarkable for those heat-treated at 200°C. Furthermore, there is a similar tendency with respect to cathodic corrosion resistance, and the effect is produced by heat treatment at 150°C or higher. In addition, instead of the commercially available resin paint used above, use Shinto Paint, which is a similar alkyd resin paint.
A similar tendency was observed when Chrome Coat R manufactured by Co., Ltd. was used. It was also found that if the heat treatment temperature was too high, powdering of the coating film occurred.

【表】【table】

【表】【table】

【表】 実施例 3 常乾型の樹脂塗料としてエポキシ樹脂塗料[関
西ペイント(株)製ミリオン1A]を用い、塗膜の厚
みを15μとすること以外は、実施例2と同様にし
て内面防食塗装管を得た。次いで、この塗装管に
ついて、第4図に示される如き各種の熱処理条件
下でそれぞれ熱処理を施したものに対して、実施
例2と同様な試験を施して塗膜の密着性をそれぞ
れ評価し、その結果を第4表及び第5表に示し
た。 第4表及び第5表から明らかなように、エポキ
シ樹脂系塗料を用いた場合においても、アルキツ
ド樹脂系塗料の場合と同様の耐高温水性、耐電気
防食性が認められ、特に前者は150℃以上、後者
は100℃以上の熱処理が施されたものにおいて顕
著な結果が得られた。
[Table] Example 3 Internal corrosion protection was carried out in the same manner as in Example 2, except that an epoxy resin paint [Million 1A manufactured by Kansai Paint Co., Ltd.] was used as the air-drying resin paint, and the thickness of the coating was 15μ. I got a painted tube. Next, the coated tubes were heat treated under various heat treatment conditions as shown in FIG. 4, and the same tests as in Example 2 were conducted to evaluate the adhesion of the paint film. The results are shown in Tables 4 and 5. As is clear from Tables 4 and 5, even when epoxy resin paints are used, the same high-temperature water resistance and electrolytic corrosion resistance as in the case of alkyd resin paints are observed, especially the former at 150°C. As mentioned above, remarkable results were obtained for the latter when heat-treated at 100°C or higher.

【表】【table】

【表】 実施例 4 常乾型の樹脂塗料として市販のエポキシ樹脂系
塗料[田辺化学工業(株)製エピコートン]を用い、
塗膜の厚さを15μとすること以外は、実施例2と
同様にして内面防食塗装管を得た。 次いで、この内面防食塗装管を、第6表に示さ
れる如き各種の熱処理条件下においてそれぞれ熱
処理を施し、そしてそのように処理された内面防
食塗装管について、実施例2の手法に従つて塗膜
の密着性を評価し、その結果を第6表及び第7表
に示した。 第6表及び第7表から明らかなように、本実施
例においては、熱処理温度を150℃とする一方、
処理時間を種々変えて熱処理が行なわれている
が、その処理時間が5分程度であつても塗膜性能
の改善の兆しがあり、特に10分以上、60分程度ま
での処理時間の採用により、顕著な効果をもたら
しているのである。なお、処理時間が120分と長
くなり過ぎると、かえつて性能が低下することも
認められている。
[Table] Example 4 Using a commercially available epoxy resin paint [Epicorton manufactured by Tanabe Chemical Industry Co., Ltd.] as an air-drying resin paint,
An anti-corrosion coated pipe on the inner surface was obtained in the same manner as in Example 2, except that the thickness of the coating film was 15 μm. Next, this internally anti-corrosive coated pipe was subjected to heat treatment under various heat treatment conditions as shown in Table 6, and the thus treated internally anti-corrosive coated pipe was coated with a coating according to the method of Example 2. The adhesion was evaluated and the results are shown in Tables 6 and 7. As is clear from Tables 6 and 7, in this example, while the heat treatment temperature was 150°C,
Heat treatment has been carried out with various treatment times, but even when the treatment time is about 5 minutes, there are signs of improvement in coating film performance, especially when treatment times of 10 minutes or more and up to about 60 minutes are used. , has brought about remarkable effects. It is also recognized that if the processing time is too long (120 minutes), the performance will actually deteriorate.

【表】【table】

【表】 実施例 5 常乾型の樹脂塗料として、アクリル樹脂塗料
[神東塗料(株)製エスバー#200](供試材No.22〜
24)及びポリウレタン樹脂塗料[大日本塗料(株)製
ポリタン#1000](供試材No.25〜28)を用い
て、実施例2と同様にして内面防食塗装管をそれ
ぞれ形成せしめた後、第8表に示される各種の熱
処理条件下において熱処理を施し、その後、実施
例2の手法に従つて塗膜性能の評価を行ない、そ
の結果を第8表及び第9表に示した。 第8表及び第9表の結果から明らかなように、
常乾型のアクリル樹脂系塗料、或いはポリウレタ
ン樹脂系塗料を用いて形成された塗膜の場合にあ
つても、アルキツド樹脂系或いはエポキシ樹脂系
塗料によつて形成される塗膜に比べ、熱処理によ
る性能向上効果はそれほど顕著ではないが、150
〜200℃の温度での熱処理、焼付操作によつてそ
の効果は認められるのである。
[Table] Example 5 Acrylic resin paint [ESBAR #200 manufactured by Shinto Paint Co., Ltd.] (sample material No. 22~
24) and polyurethane resin paint [Polytan #1000 manufactured by Dainippon Toyo Co., Ltd.] (sample materials No. 25 to 28), inner corrosion-resistant coated pipes were formed in the same manner as in Example 2, and then Heat treatment was performed under various heat treatment conditions shown in Table 8, and then coating film performance was evaluated according to the method of Example 2, and the results are shown in Tables 8 and 9. As is clear from the results in Tables 8 and 9,
Even in the case of paint films formed using air-drying acrylic resin paints or polyurethane resin paints, they are less susceptible to heat treatment than paint films formed with alkyd resin paints or epoxy resin paints. Although the performance improvement effect is not so remarkable, 150
The effect can be recognized by heat treatment and baking operations at temperatures of ~200°C.

【表】【table】

【表】 実施例 6 実施例2及び3で得られた内面塗装管につい
て、第10表に示される各種の炉内雰囲気の下で、
それぞれ所定の熱処理を施した。なお、供試材
No.29乃至32のものは、実施例2において得られ
た常乾型のアルキツド樹脂系塗料にて形成された
塗膜を有するものであり、供試材No.33乃至36の
ものは、実施例3において得られた常乾型のエポ
キシ樹脂系塗料にて形成された塗膜を有する内面
塗装管である。 かくして得られた熱処理雰囲気の異なる各種の
内面塗装管について、実施例2と同様な手法にて
塗膜の性能を評価し、その結果を第10表及び第11
表に示した。
[Table] Example 6 The inner-coated tubes obtained in Examples 2 and 3 were treated under various furnace atmospheres shown in Table 10.
Each was subjected to predetermined heat treatment. In addition, the sample material
Sample materials No. 29 to 32 have a coating film formed with the air-drying alkyd resin paint obtained in Example 2, and sample materials No. 33 to 36 have a coating film formed from the air-drying alkyd resin paint obtained in Example 2. This is an inner-coated tube having a coating film formed from the air-drying epoxy resin paint obtained in Example 3. The performance of the coating film was evaluated using the same method as in Example 2 for the various inner-coated tubes with different heat treatment atmospheres obtained in this way, and the results are shown in Tables 10 and 11.
Shown in the table.

【表】【table】

【表】 第10表及び第11表から明らかなように、熱処理
雰囲気として、空気、N2、還元ガス(CO+H2
O2=僅少)の何れを用いた場合にあつても、そ
の熱処理効果に対する炉内雰囲気の影響は見られ
ず、何れも耐熱性、耐電気防食性、更には耐潰食
性において、その性能が高められた結果を示し、
また他の性能、例えば加工性、耐水性等の劣化も
認められなかつた。
[Table] As is clear from Tables 10 and 11, the heat treatment atmosphere includes air, N 2 , and reducing gas (CO + H 2 ;
Regardless of the use of O 2 = small amount), no influence of the furnace atmosphere on the heat treatment effect was observed, and in either case, the performance was improved in terms of heat resistance, cathodic protection, and even crushing corrosion resistance. Shows enhanced results,
Further, no deterioration in other properties such as workability and water resistance was observed.

Claims (1)

【特許請求の範囲】 1 熱交換器に装着されるべき長尺の細管内面を
常乾型の樹脂塗料にて均一に塗装し、常温下に乾
燥せしめた後、かかる内面塗装細管を熱処理し
て、該細管の内面塗膜を焼き付けることを特徴と
する内面防食塗装皮膜付き熱交換管の製造法。 2 前記常乾型の樹脂塗料が、常乾型のアルキツ
ド樹脂塗料、エポキシ樹脂塗料、ビニル樹脂塗
料、ポリウレタン樹脂塗料若しくはアクリル樹脂
塗料である特許請求の範囲第1項記載の製造法。 3 前記熱処理が、60〜330℃の温度で5〜60分
間行なわれる特許請求の範囲第1項または第2項
記載の製造法。
[Scope of Claims] 1. The inner surface of a long thin tube to be installed in a heat exchanger is uniformly coated with an air-drying resin paint, and after drying at room temperature, the inner surface coated thin tube is heat-treated. A method for producing a heat exchange tube with an inner surface anticorrosive coating, characterized by baking the inner surface coating of the thin tube. 2. The manufacturing method according to claim 1, wherein the air-drying resin paint is an air-drying alkyd resin paint, epoxy resin paint, vinyl resin paint, polyurethane resin paint, or acrylic resin paint. 3. The manufacturing method according to claim 1 or 2, wherein the heat treatment is performed at a temperature of 60 to 330°C for 5 to 60 minutes.
JP10461583A 1983-06-10 1983-06-10 Production of heat exchanging tube provided internally with corrosion-preventive painting Granted JPS59228979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10461583A JPS59228979A (en) 1983-06-10 1983-06-10 Production of heat exchanging tube provided internally with corrosion-preventive painting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10461583A JPS59228979A (en) 1983-06-10 1983-06-10 Production of heat exchanging tube provided internally with corrosion-preventive painting

Publications (2)

Publication Number Publication Date
JPS59228979A JPS59228979A (en) 1984-12-22
JPS6154473B2 true JPS6154473B2 (en) 1986-11-22

Family

ID=14385341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10461583A Granted JPS59228979A (en) 1983-06-10 1983-06-10 Production of heat exchanging tube provided internally with corrosion-preventive painting

Country Status (1)

Country Link
JP (1) JPS59228979A (en)

Also Published As

Publication number Publication date
JPS59228979A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
JPS5950269B2 (en) Coating composition for corrosion protection on the inner surface of heat exchanger tubes
US4169741A (en) Method for the surface treatment of metals
JPS62273272A (en) Rustproof coating composition
JPH01234475A (en) Copper alloy tube having corrosionproof and inside surface-coated coating film for heat exchanger
US5069966A (en) Organic coating for metals
JP4598703B2 (en) Chrome-free pre-coated steel sheet
JPS6154473B2 (en)
JPH0438958B2 (en)
JPS5817833B2 (en) Surface treatment method for weathering steel
JPS59214640A (en) Copper alloy pipe with inner-surface corrosion protective coating film for heat exchanger
JPS61112639A (en) Two-coat two-baked coated steel plate having excellent heat resistance and corrosion resistance
JP2009172553A (en) Coated steel plate excellent in corrosion resistance
EP4225971A1 (en) A process for coating onto galvanized surfaces
JPS59230738A (en) Copper alloy pipe with inner-surface corrosion protective coating for heat exchanger
JPH04173876A (en) Coating composition and method for forming coating film
JPS62289275A (en) Painted metallic sheet having excellent workability and lubricity and its production
JPH0674388A (en) Inner coated heat conducting pipe and manufacture telereof
JPS6179998A (en) Corrosion prevention of heat exchanging tube
JPS62258998A (en) Heat transfer pipe for heat exchanger
JPS61111378A (en) Heat-resistant coated steel sheet having excellent corrosion resistance
JPS62952B2 (en)
JPS60233163A (en) Production of steel plate for coating having improved durability
JPS5996279A (en) Composition for rust prevention of metal
KR960005792B1 (en) Method for conducting cover-plate of heat-exchanger
JPS636800B2 (en)