JPS6154254B2 - - Google Patents

Info

Publication number
JPS6154254B2
JPS6154254B2 JP8425879A JP8425879A JPS6154254B2 JP S6154254 B2 JPS6154254 B2 JP S6154254B2 JP 8425879 A JP8425879 A JP 8425879A JP 8425879 A JP8425879 A JP 8425879A JP S6154254 B2 JPS6154254 B2 JP S6154254B2
Authority
JP
Japan
Prior art keywords
layer
silicon nitride
conductivity type
region
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8425879A
Other languages
Japanese (ja)
Other versions
JPS568849A (en
Inventor
Mitsutaka Morimoto
Hiroki Muta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8425879A priority Critical patent/JPS568849A/en
Publication of JPS568849A publication Critical patent/JPS568849A/en
Publication of JPS6154254B2 publication Critical patent/JPS6154254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は半導体集積回路の製造方法、特に多結
晶シリコンを素子電極あるいは素子間配線もしく
はそれら双方として用い、かつ活性領域とフイー
ルド領域をシリコン窒化膜を用いたシリコン選択
酸化法により自己整合的に製造する集積回路の製
造方法に関するものであり、特に微細化した場合
に生ずる問題点を解決できる構造を容易に実現す
るための製造方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit, and more particularly, to a method for manufacturing a semiconductor integrated circuit, in which polycrystalline silicon is used as an element electrode, an interconnect between elements, or both, and an active region and a field region are formed by selective oxidation of silicon using a silicon nitride film. The present invention relates to a method of manufacturing an integrated circuit in a self-aligned manner using a method, and particularly provides a manufacturing method for easily realizing a structure that can solve problems that arise when miniaturization is performed.

以下、本発明の有効性を明らかにするための一
助として従来知られているシリコンゲート電界効
果トランジスタ(以下シリコンゲートMOSFET
と略記するを含む半導体集積回路を取り上げ微細
化した場合にクローズアツプされる構造上の欠点
をまず説明する。
Hereinafter, as an aid to clarifying the effectiveness of the present invention, the conventionally known silicon gate field effect transistor (hereinafter referred to as silicon gate MOSFET) will be described.
First, we will discuss the structural defects that are highlighted when semiconductor integrated circuits are miniaturized.

第1図aは、比抵抗が数Ωcmのp型シリコン基
板11のフイールド領域にチヤネルストツパとし
てp型不純物拡散層12および厚いフイールド酸
化膜13を選択酸化法によつて形成し、活性領域
となすべきシリコン基板表面にゲート絶縁膜14
を被着し、多結晶シリコンのゲート電極15Gお
よび素子間配線15Cを形成したのち、前記多結
晶シリコンのゲート電極15Gに覆われていない
活性領域(ソース、ゲート、ドレインに代表され
る素子領域に素子内配線領域に代表される領域を
付加した半導体基板内のキヤリア現象に関与する
領域をいう)に高濃度のn型不純物を拡散等によ
つて添加し、素子内配線領域としても機能するソ
ース領域16およびドレイン領域16を形成し、
シリコンゲートMOSFETを含む半導体集積回路
の基本構造を構成した状態を示す模式的断面図で
ある。なお、ここでは第1導電型としてp型を、
又第2導電型としてn型を例示したが、これは一
例にすぎない。
FIG. 1a shows that a p-type impurity diffusion layer 12 as a channel stopper and a thick field oxide film 13 are formed by selective oxidation in a field region of a p-type silicon substrate 11 having a resistivity of several Ωcm, which is to be used as an active region. Gate insulating film 14 on the silicon substrate surface
After forming a polycrystalline silicon gate electrode 15G and an inter-device interconnection 15C, a polycrystalline silicon gate electrode 15G and an inter-device wiring 15C are formed, and then the active region (device region represented by the source, gate, and drain) not covered by the polycrystalline silicon gate electrode 15G is deposited. A high concentration of n-type impurity is added by diffusion etc. to a semiconductor substrate (which is a region involved in the carrier phenomenon in the semiconductor substrate including an additional area represented by the internal wiring area), and the source also functions as the internal wiring area. forming a region 16 and a drain region 16;
1 is a schematic cross-sectional view showing the basic structure of a semiconductor integrated circuit including a silicon gate MOSFET. In addition, here, p type is used as the first conductivity type,
Furthermore, although n-type is illustrated as the second conductivity type, this is only an example.

上記、シリコンゲートMOSFETを機能素子と
して含み、かつ、多結晶シリコンを素子間配線と
して含む半導体集積回路を微細化する場合の問題
点は、多結晶シリコン部の層抵抗並びにソースも
しくはドレインとなるn型拡散層の層抵抗が非常
に高くなることである。その最たる理由はシリコ
ンゲートMOSFETの電気的特性を損わないで微
細化するためには、いわゆるスケールダウン則に
則り、半導体表面2次元方向だけでなく、3次元
即ち深さ方向にも寸法を縮めなければならないか
らである。
As mentioned above, when miniaturizing a semiconductor integrated circuit that includes a silicon gate MOSFET as a functional element and polycrystalline silicon as an inter-element wiring, the problems are the layer resistance of the polycrystalline silicon part and the n-type which becomes the source or drain. The layer resistance of the diffusion layer becomes extremely high. The main reason for this is that in order to miniaturize silicon gate MOSFETs without damaging their electrical characteristics, the dimensions must be reduced not only in the two-dimensional direction of the semiconductor surface, but also in the three-dimensional direction, that is, in the depth direction, in accordance with the so-called scale-down law. Because it has to be.

例えば、従来一般的に使われているシリコンゲ
ートMOSFETのゲート多結晶シリコンの幅が5
〜6μm、ソース・ドレインの接合深さが1.5〜
2μm程度であつたのに対し、最近開発段階にあ
る短チヤネルシリコンゲートMOSFETの場合で
は、ゲート多結晶シリコン幅は2μmあるいは、
それ以下である。それに伴い、ソース、ドレイン
両領域のn型拡散層接合深さも0.5μm以下の非
常に浅いものとなつている。
For example, the width of the gate polycrystalline silicon of the commonly used silicon gate MOSFET is 5.
~6μm, source/drain junction depth 1.5~
On the other hand, in the case of short-channel silicon gate MOSFETs that are currently in the development stage, the gate polycrystalline silicon width is approximately 2 μm or
It is less than that. Along with this, the n-type diffusion layer junction depth in both the source and drain regions has also become very shallow, 0.5 μm or less.

この様に特に浅い接合を作る場合では、n型層
の不純物濃度を、十分に濃くすることはできない
ので、その層抵抗は数十Ω/□あるいはそれ以上
にもなり、また、通常同時にn型不純物を導入さ
れる多結晶シリコンの層抵抗も数十Ω/□から
100Ω/□に達する場合もある。また、多結晶シ
リコンの厚さは、シリコンゲートMOSFETの電
気的特性を維持するためには、直接影響しないの
で、スケールダウン則に、必ずしも則る必要はな
いが、多結晶シリコンの幅が狭くなればなる程、
その加工精度維持のため、また、それ以後の金属
配線等の段差における断線の確率を減らすために
も現実には、膜厚を薄くしなければならず、これ
も層抵抗増大の一因となつている。
When making particularly shallow junctions like this, the impurity concentration of the n-type layer cannot be made sufficiently high, so the layer resistance becomes several tens of Ω/□ or more, and usually at the same time the n-type The layer resistance of polycrystalline silicon into which impurities are introduced also ranges from several tens of Ω/□.
It may reach 100Ω/□. In addition, since the thickness of polycrystalline silicon does not directly affect the electrical characteristics of the silicon gate MOSFET, it is not necessary to follow the scale-down rule, but as the width of polycrystalline silicon becomes narrower, As long as it happens,
In reality, the film thickness must be made thinner in order to maintain the processing accuracy and to reduce the probability of wire breakage at subsequent steps such as metal wiring, which also causes an increase in layer resistance. ing.

この様に高い層抵抗の多結晶シリコンやn型不
純物拡散層を素子間配線や素子内配線等々として
用いている従来の大規模集積回路の斜視部分断面
図を第1図bに示し、その問題点を更に明らかに
する。
Figure 1b shows a perspective partial cross-sectional view of a conventional large-scale integrated circuit that uses polycrystalline silicon and n-type impurity diffusion layers with high layer resistance as inter-element wiring, intra-element wiring, etc. To further clarify the point.

第1図bからも明らかなように高次金属配線か
らの給電点から電界効果トランジスタの電極部
E1あるいはE2に到るn型不純物拡散層16に
よる素子内配線は、各部の抵抗を無視すれば、回
路的には同一給電点に接続されてはいる。しか
し、実際には、これら各部の抵抗は大規模集積回
路になればなる程無視し得なしなり、素子並びに
給電点の配置が諸々の制約条件によつて等しい距
離に置くことが難しいため、諸々の問題を生ずる
こととなる。特に電極E1に到るn型不純物拡散
層16による素子内配線はE2に到るそれよりる
長く、不要な高抵抗成分が介在することになり、
そこでの電圧降下が無視し得なくなつてくる。例
えば給電点が接地電位であれば、実質接地電位
の浮き上がりが生じる危険があるし、逆に給電点
が電源電位であれば、実質電源電圧の降下とな
つて現われる危険を生じるため、結果的には当該
集積回路の動作マージンを著しく減少させること
になる。また、同様に層抵抗の大きい多結晶シリ
コン15Cを素子間配線として電気信号の伝達回
路に用いると信号の伝播遅延時間が増大し集積回
路の高速化に対しても大きな障害となつてくる。
As is clear from Figure 1b, from the feed point F from the higher-order metal wiring to the electrode part of the field effect transistor.
The intra-element wiring by the n-type impurity diffusion layer 16 that reaches E1 or E2 is connected to the same power supply point F in terms of the circuit, if the resistance of each part is ignored. However, in reality, the resistance of each of these parts cannot be ignored as the scale of the integrated circuit increases, and it is difficult to place the elements and feed points at equal distances due to various constraints. This will cause problems. In particular, the internal wiring of the n-type impurity diffusion layer 16 leading to the electrode E1 is longer than that leading to the electrode E2 , and an unnecessary high resistance component is present.
The voltage drop there becomes impossible to ignore. For example, if the feed point F is at ground potential, there is a risk that the actual ground potential will rise;
If F is the power supply potential, there is a risk that the actual power supply voltage will drop, resulting in a significant reduction in the operating margin of the integrated circuit. Furthermore, if polycrystalline silicon 15C, which similarly has a high layer resistance, is used as an inter-element wiring in an electrical signal transmission circuit, the signal propagation delay time increases, which becomes a major obstacle to speeding up the integrated circuit.

そこで、以上述べてきた従来構造の欠点、特に
微細化した際の欠点を除去し得る構造が提案され
た。即ち、第2図に斜視部分断面図を示したよう
に前記第1図a,bで示した浅い接合深さを有
し、ソースあるいはドレイン電極であり、素子内
配線をも兼ねた高層抵抗のn型不純物拡散層16
を互いに連続した2つの構体に分離し、専ら、素
子内配線として機能する不純物拡散層18を新設
して前記第1図a,bにおける浅い不純物16で
は果せなかつた素子内配線の低抵抗化を実現し、
前記給電点の配置等に関連する問題を実効的に解
消すると共に、スケール・ダウン則に則つて浅い
接合深さを保たねばならない素子電極構成部分に
は、従来通りの浅い接合深さを有する不純物層1
7を残すことによつて所望の大規模集積回路を実
現しようというものである。
Therefore, a structure has been proposed that can eliminate the drawbacks of the conventional structure described above, especially the drawbacks when miniaturized. That is, as shown in a perspective partial cross-sectional view in FIG. 2, it has a shallow junction depth as shown in FIGS. N-type impurity diffusion layer 16
The structure is separated into two continuous structures, and a new impurity diffusion layer 18 is provided which functions exclusively as the internal wiring to lower the resistance of the internal wiring, which could not be achieved with the shallow impurity layer 16 in FIGS. 1a and 1b. realized,
In addition to effectively solving the problems related to the arrangement of the feed points, etc., the device electrode component parts, which must maintain a shallow junction depth in accordance with the scale-down rule, have a conventional shallow junction depth. Impurity layer 1
By leaving the number 7, the desired large-scale integrated circuit can be realized.

しかし、この提案による構造でもシリコン基板
あるいは多結晶シリコンへの不純物拡散量が固溶
度で制限され、他方では接合深さや多結晶シリコ
ンの厚さについても、それぞれ接合容量の増大や
段差に於ける配線の断線確率が高くなる等の事態
を招かない程度に抑える必要があること等々の理
由から10Ω/□程度の層抵抗値が限界であつた。
However, even with the structure proposed by this proposal, the amount of impurity diffusion into the silicon substrate or polycrystalline silicon is limited by the solid solubility, and on the other hand, the junction depth and the thickness of the polycrystalline silicon are also affected by the increase in junction capacitance and the difference in level. A layer resistance value of about 10Ω/□ has been the limit for reasons such as the need to suppress the occurrence of situations such as an increase in the probability of wire breakage.

そこで、更に、不純物拡散層による素子内配線
並びに多結晶シリコンによる素子間配線の各々の
層抵抗値を更に一桁程度下げることが可能で、か
つ表面段差の小さい構造が提案された。即ち、第
3図に斜視部分断面図を示したように、前記第2
図で示した浅い接合深さのソースあるいはドレイ
ン電極であるn型不純物拡散層17に続く素子内
配線となるn型不純物拡散層18の表面並びに素
子のゲート電極あるいは素子間配線となる多結晶
シリコン15G.15Cの表面に薄い金属珪化物
層19を設けて層抵抗値の低減をすると共に、当
該素子内配線となる不純物拡散層18の接合深さ
を浅くして接合容量を減少し、多結晶シリコンの
厚さをも薄くして表面段差を減少させることによ
つて、所望の高性能かつ歩留りの良い大規模集積
回路を実現しようとするものである。
Therefore, a structure has been proposed in which it is possible to further reduce the layer resistance values of the internal wiring made of impurity diffusion layers and the inter-element wiring made of polycrystalline silicon by about an order of magnitude, and the surface level difference is small. That is, as shown in a perspective partial sectional view in FIG.
The surface of the n-type impurity diffusion layer 18 which becomes the internal wiring following the n-type impurity diffusion layer 17 which is the shallow junction depth source or drain electrode shown in the figure, and the polycrystalline silicon which becomes the gate electrode of the element or the inter-device wiring 15G. A thin metal silicide layer 19 is provided on the surface of 15C to reduce the layer resistance value, and the junction depth of the impurity diffusion layer 18, which becomes the internal wiring of the device, is made shallow to reduce the junction capacitance. By reducing the thickness of silicon and reducing surface steps, it is attempted to realize large-scale integrated circuits with desired high performance and high yield.

これら前記提案による新構造を確実かつ容易に
実現し得る様にする事が本発明の目的である。
It is an object of the present invention to enable the new structure proposed above to be realized reliably and easily.

本発明による製造方法は以下の特徴を備えてい
る。
The manufacturing method according to the present invention has the following features.

即ち、素子間分離領域となすべき領域以外の第
1導電型半導体基板表面に第1のシリコン窒化膜
を形成し、この第1のシリコン窒化膜をマスクと
してチヤネルストツパおよびフイールド酸化膜を
形成し、次いで前記第1のシリコン窒化膜の一部
領域すなわち浅い接合深さの第2導電型不純物層
をを形成してソースおよびドレインとなすべき領
域を含む将来素子領域となすべき領域の前記第1
のシリコン窒化膜を除去した後、この除去領域の
全面に将来ゲート絶縁膜となすべき薄い絶縁膜を
形成し、更に将来ゲート電極となすべき領域及び
素子間配線となすべき領域に多結晶シリコン層を
それに被載する第2のシリコン窒化膜と共にパタ
ーン化して形成し、この第2のシリコン窒化膜及
び多結晶シリコン層、更には前記第1のシリコン
窒化膜の残留部をマスクとして露出した前記薄い
絶縁層を通して第2導電型を呈する不純物を第1
導電型基板表層に浅く導入して前記したソースお
よびドレインとなす浅い接合深さの第2導電型不
純物層を形成し、しかる後、露出している薄い絶
縁膜及び露出している多結晶シリコン層表層にシ
リコン酸化膜を形成し、残る第1のシリコン窒化
膜及び第2のシリコン窒化膜を除去してこの除去
領域から第2導電型を呈する不純物を導入し、前
記第1のシリコン窒化膜領域の第1導電型半導体
基板には、前記浅い接合深さの第2導電型不純物
層に連結する深い接合深さの第2導電型不純物層
を形成して素子間配線領域となし、前記第2のシ
リコン窒化膜領域の多結晶シリコン層もまた第2
導電型の素子間配線となし、更に該深い接合深さ
の第2導電型不純物層並びに多結晶シリコン層表
面を薄い金属珪化物で覆うことを特徴とした半導
体集積回路の製造方法である。
That is, a first silicon nitride film is formed on the surface of the first conductivity type semiconductor substrate in areas other than regions to be used as inter-element isolation regions, a channel stopper and a field oxide film are formed using this first silicon nitride film as a mask, and then A partial region of the first silicon nitride film, that is, a second conductivity type impurity layer with a shallow junction depth is formed in the first region of the region to be a future device region, including a region to be formed as a source and a drain.
After removing the silicon nitride film, a thin insulating film that will become a gate insulating film in the future is formed on the entire surface of this removed area, and a polycrystalline silicon layer is further formed in the area that will become a gate electrode in the future and the area that will become an inter-element wiring. is patterned and formed together with a second silicon nitride film placed thereon, and the exposed thin film is formed using the second silicon nitride film, the polycrystalline silicon layer, and the remaining portion of the first silicon nitride film as a mask. The impurity exhibiting the second conductivity type is introduced into the first layer through the insulating layer.
A second conductivity type impurity layer is shallowly introduced into the surface layer of the conductivity type substrate to form a shallow junction depth layer with the source and drain, and then an exposed thin insulating film and an exposed polycrystalline silicon layer are formed. A silicon oxide film is formed on the surface layer, the remaining first silicon nitride film and second silicon nitride film are removed, and an impurity exhibiting a second conductivity type is introduced from the removed region to form the first silicon nitride film region. A second conductivity type impurity layer having a deep junction depth connected to the second conductivity type impurity layer having a shallow junction depth is formed on the first conductivity type semiconductor substrate to form an inter-element wiring region; The polycrystalline silicon layer in the silicon nitride film region is also
This method of manufacturing a semiconductor integrated circuit is characterized in that conductivity type inter-element wiring is formed, and the surface of the second conductivity type impurity layer and the polycrystalline silicon layer with the deep junction depth are covered with a thin metal silicide.

以下、第4図によつて本発明の典型的な実施の
例についてその主要工程を追つて説明する。
Hereinafter, the main steps of a typical embodiment of the present invention will be explained with reference to FIG.

第4図aは比抵抗数Ωcmのp型シリコン基板3
1上にシリコン窒化膜34をパターン化して形成
してマスクとなし選択酸化法によりチヤネルスト
ツパーとしてのp+層32およびフイールド酸化
膜33を形成した状態を示している。従来法で
は、この時点で、選択酸化に用いられた活性領域
上のシリコン窒化膜34は完全に除去されてゲー
ト絶縁膜が被着される。
Figure 4 a shows a p-type silicon substrate 3 with a specific resistance of Ωcm.
1, a silicon nitride film 34 is patterned and used as a mask, and a p + layer 32 and a field oxide film 33 as a channel stopper are formed by selective oxidation. In the conventional method, at this point, the silicon nitride film 34 on the active region used for selective oxidation is completely removed and a gate insulating film is deposited.

しかし、本発明では第4図bの様に最終的にn
型不純物拡散層とその表面を薄い金属珪化物層と
した2層構造が形成されるべき活性領域の表面
を覆う部位のシリコン窒化膜34を残し、将来浅
い接合深さのソース、ドレイン両領域(第4図
d,e,f,g,hにおける38)を持つ高性能
なシヨート・チヤネルMOSFETを形成しようと
する部分の活性領域の表面のシリコン窒化膜を除
去したのち、その部分に約400Å程度のシリコン
酸化膜35を形成し、さらにその表面に例えば通
常のCVD法により厚さ約2500Åの多結晶シリコ
ン膜36を、更にシリコン窒化膜37を被着した
状態を示す。
However, in the present invention, as shown in FIG. 4b, n
Leaving the silicon nitride film 34 covering the surface of the active region A where a two-layer structure consisting of a type impurity diffusion layer and a thin metal silicide layer on the surface thereof is to be formed, both source and drain regions with a shallow junction depth will be formed in the future. After removing the silicon nitride film on the surface of the active region where a high-performance short channel MOSFET with (38 in Figure 4 d, e, f, g, h) is to be formed, approximately 400 Å A polycrystalline silicon film 36 with a thickness of about 2500 Å and a silicon nitride film 37 are further deposited on the surface of the silicon oxide film 35 by, for example, ordinary CVD.

通常、多結晶シリコンのみをゲート電極、素子
間配線に用いる場合は、層抵抗の面では厚ければ
厚い程良く、パターンの切れ精度、段差における
断線の減少対策としては薄い方が良いので、適当
な厚さを選ぶのは困難である。
Normally, when only polycrystalline silicon is used for gate electrodes and inter-element wiring, the thicker the better in terms of layer resistance, and the thinner the better in terms of pattern cutting accuracy and reduction of disconnections at steps, so It is difficult to choose the correct thickness.

第4図cは、将来ゲート電極となる幅約2μm
のストライプ状の多結晶シリコン膜36Gおよび
素子間配線となる多結晶シリコン膜36Cを残し
て、他のソース形成領域およびドレイン形成領
および不純物拡散層とその表面を金属珪化物
層とした低層抵抗の2層構造となる領域の多結
晶シリコン膜をシリコン窒化膜37G,37Cを
エツチングマスクとして除去し去つた状態を示
す。
Figure 4c shows a width of about 2 μm that will become the gate electrode in the future.
Leaving the striped polycrystalline silicon film 36G and the polycrystalline silicon film 36C serving as interconnects between elements, the remaining source formation region S , drain formation region D , impurity diffusion layer, and a low layer with a metal silicide layer on the surface thereof are formed. This figure shows the state in which the polycrystalline silicon film in region A , which forms the two-layer structure of the resistor, has been removed using silicon nitride films 37G and 37C as an etching mask.

第4図dは、シヨートチヤネルMOSFETのソ
ースおよびドレインとなす浅い接合深さを持つn
型不純物拡散領域38を、シリコン窒化膜34,
37G及び電極となる多結晶シリコン36Gをマ
スクとしてイオン注入法などを用いて形成した状
態を示す。
Figure 4d shows an n
The type impurity diffusion region 38 is formed by a silicon nitride film 34,
37G and polycrystalline silicon 36G which will serve as an electrode are used as masks to show a state formed using an ion implantation method or the like.

第4図eは、第2のシリコン窒化膜37をマス
クとして多結晶シリコン36G,36Cの側面お
よび浅い接合深さのソース領域、ドレイン領域
の表面に酸化膜39G,39Cを熱酸化法で被
着させた状態を示す。この酸化膜39Gは後に前
記2層構造の不純物拡散層を形成する際、浅い接
合38を保護するのに十分な厚さが必要であり、
39Gと38の界面は熱酸化前よりある程度深い
位置にくる。なお、シリコン窒化膜34および3
7G,37Cは殆ど酸化されないので、34と3
1との界面並びに36と37の界面は全く動かな
い。
FIG. 4e shows the side surfaces of the polycrystalline silicon 36G, 36C and the shallow junction depth source region S and drain region using the second silicon nitride film 37 as a mask.
This shows the state in which oxide films 39G and 39C are deposited on the surface of D by thermal oxidation. This oxide film 39G needs to have a sufficient thickness to protect the shallow junction 38 when forming the two-layer impurity diffusion layer later.
The interface between 39G and 38 is located at a somewhat deeper position than before thermal oxidation. Note that silicon nitride films 34 and 3
7G and 37C are hardly oxidized, so 34 and 3
The interface with 1 and the interface between 36 and 37 do not move at all.

第4図fは、シリコン窒化膜34および37
G,67Cを除去し、前記および領域の浅い
接合深さのn型拡散層38に接続して領域に形
成する素子内配線となるn型拡散層40を熱拡散
法等で形成すると共に、ゲート電極となる多結晶
シリコン36Gおよび素子間配線となる多結晶シ
リコン36Cにも同時にn型不純物を拡散した状
態を示す。この時、微細構造の浅いn型不純物拡
散領域38は、その表面を覆つたシリコン酸化膜
39Gによつて保護されているので、n型不純物
は追加拡散されることなく、浅い接合深さを保ち
得る。
FIG. 4f shows silicon nitride films 34 and 37.
G and 67C are removed, and an n-type diffusion layer 40 that is connected to the shallow junction depth n-type diffusion layer 38 of the S and D regions and becomes an internal wiring formed in the region A is formed by thermal diffusion method or the like. Also shown is a state in which n-type impurities are simultaneously diffused into the polycrystalline silicon 36G that will become the gate electrode and the polycrystalline silicon 36C that will become the inter-element wiring. At this time, since the n-type impurity diffusion region 38 with a shallow microstructure is protected by the silicon oxide film 39G covering its surface, the n-type impurity is not additionally diffused and the shallow junction depth is maintained. obtain.

また、n型不純物層40のみで、層抵抗を下げ
ようとしているのではなく、後にその表面を覆う
金属珪化物層により抵抗を下げるので、その接合
深さは、ソースあるいはドレイン電極となす浅い
接合深さのn型不純物拡散層38のそれと比べて
特に深くする必要はなく、後に金属珪化物層(第
4図(O)の42を形成する際に当該金属珪化物層が
接合を突き抜けない程度の深さで良い。したがつ
て、当該不純物拡散層40とチヤネルストツパ3
2との間の接触面積を減少させることができ、そ
の結果として接合容量の減少という利点を発揮す
る。
In addition, the layer resistance is not lowered by the n-type impurity layer 40 alone, but by the metal silicide layer covering the surface later, so the junction depth is smaller than the shallow junction with the source or drain electrode. There is no need to make the depth particularly deep compared to that of the n-type impurity diffusion layer 38, and the metal silicide layer does not penetrate through the junction when forming the metal silicide layer (42 in FIG. 4(O)) later. Therefore, the depth of the impurity diffusion layer 40 and the channel stopper 3 is sufficient.
2 can be reduced, resulting in the advantage of reduced junction capacitance.

更に、多結晶シリコンについても同様にn型不
純物拡散は層抵抗を下げるのが目的でなく、むし
ろゲート電極36Gとゲート絶縁膜35との界面
の安定化が目的であり、多結晶シリコン自体の厚
さも後に金属珪化物層を形成するとき、当該金属
珪化物層がゲート電極構造に全く影響を与えない
程度で良いので、通常多結晶シリコンだけをゲー
ト電極あるいは素子間配線に用いる場合に必要と
する厚さに比べて半分程度(約2500Å)にでき、
表面段差を著しく減少することができ、結果とし
て高次金属配線の断線確率を下げる利点を発揮す
る。
Furthermore, similarly for polycrystalline silicon, the purpose of n-type impurity diffusion is not to lower the layer resistance, but rather to stabilize the interface between the gate electrode 36G and the gate insulating film 35, and to reduce the thickness of the polycrystalline silicon itself. When forming a metal silicide layer later, it is sufficient that the metal silicide layer does not affect the gate electrode structure at all, so it is usually necessary when only polycrystalline silicon is used for the gate electrode or interconnection between elements. The thickness can be reduced to about half (approximately 2500Å),
Surface steps can be significantly reduced, resulting in the advantage of lowering the probability of disconnection of high-order metal wiring.

更に、多結晶シリコンの厚さの減少は、当該多
結晶シリコンのエツチングの際、側面のエツチン
グ量を小さく抑える事を可能とし、結果的に加工
寸法精度の向上という利点をもたらす。
Furthermore, the reduction in the thickness of the polycrystalline silicon makes it possible to suppress the amount of etching on the side surfaces during etching of the polycrystalline silicon, resulting in the advantage of improved processing dimensional accuracy.

第4図gは、薄い金属膜41を表面全体に蒸着
した状態を示す。
FIG. 4g shows a thin metal film 41 deposited over the entire surface.

第4図hは前記金属薄膜41と表面を露出した
ゲート電極となる多結晶シリコン36G、素子間
配線となる多結晶シリコン36C並びに素子内配
線となすn型不純物拡散層40とを熱処理により
反応させ金属珪化物層42を形成したのち、フイ
ールド酸化膜33並びにソースあるいはドレイン
電極上のシリコン酸化膜39Gの表面を覆つてい
た未反応の残留金属膜を適当なエツチング液で選
択的に除去した状態を示す。
FIG. 4h shows the reaction between the metal thin film 41, the exposed surface of the polycrystalline silicon 36G serving as the gate electrode, the polycrystalline silicon 36C serving as the inter-element wiring, and the n-type impurity diffusion layer 40 serving as the internal wiring. After forming the metal silicide layer 42, the unreacted residual metal film covering the surface of the field oxide film 33 and the silicon oxide film 39G on the source or drain electrode is selectively removed using an appropriate etching solution. shows.

以上、製造方法の説明からも明らかなように、
本発明によれば、金属を被着する直前のn型不純
物の拡散の工程まで、多結晶シリコン膜厚の減少
や素子内配線となる不純物拡散層表面の深さ方向
への食い込みは、シリコン窒化膜で抑えられて全
くなく、n型不純物拡散後の熱酸化工程も無い事
から通常の工程によるものと比較して表面段差の
極めて小さい構造が得られ、尚かつ配線として用
いられる部位の抵抗も非常に小さい値に抑えるこ
とが可能となり、更に、多結晶シリコンは膜厚の
減少から加工寸法精度も向上するので、十分に浅
い接合深さの不純物領域を持つ微細構造の素子、
十分層抵抗の低い不純物領域とその表面を金属珪
化物で覆つた構造、ならびに薄い多結晶シリコン
表面を十分層抵抗の低い薄い金属珪化物層で覆つ
た構造、とを共存させた高性能半導体集積回路を
容易にしかも高精度で製造し得る利点を有する。
As is clear from the explanation of the manufacturing method above,
According to the present invention, until the step of diffusing n-type impurities immediately before depositing metal, the reduction in the thickness of the polycrystalline silicon film and the encroachment in the depth direction of the surface of the impurity diffusion layer, which will become the internal wiring of the device, can be prevented by silicon nitride. Since there is no thermal oxidation process after diffusion of n-type impurities, it is possible to obtain a structure with extremely small surface steps compared to those using normal processes, and the resistance of the parts used as wiring is also low. It is possible to suppress the value to a very small value, and furthermore, the processing accuracy of polycrystalline silicon improves due to the reduction in film thickness, so it is possible to reduce the thickness of polycrystalline silicon, making it possible to reduce the thickness of polycrystalline silicon.
High-performance semiconductor integration that coexists with a structure in which an impurity region with sufficiently low layer resistance and its surface is covered with a metal silicide, and a structure in which a thin polycrystalline silicon surface is covered with a thin metal silicide layer with sufficiently low layer resistance. It has the advantage that the circuit can be manufactured easily and with high precision.

本発明の製造方法の特長は、素子領域に設ける
浅い接合深さの第2導電型不純物層で構成する素
子電極と、それに連結して活性領域に設けてある
程度深い接合深さを持つ第2導電型不純物層とそ
の表面を覆う薄い金属珪化物との2層構造で構成
する素子内配線領域の形成、とを既にフイールド
領域の選択酸化の際に使つた第1のシリコン窒化
膜の一部を残留させることによつて分離して行な
うことにある。また、ゲート電極や素子間配線と
なす多結晶シリコン上にも前記選択酸化法に用い
た第1のシリコン窒化膜とほぼ同じ厚さの第2の
シリコン窒化膜を被載するように形成し、これら
第1および第2のシリコン窒化膜およびフイール
ド酸化膜で覆われていない領域の表面および多結
晶シリコンの側面をある程度厚い酸化膜で覆い、
しかるのち、前記浅い接合深さを有する第2導電
型不純物層には、何ら影響を与えることなく、多
結晶シリコン並びにある程度深い接合深さを持つ
活性領域内の素子内配線領域、即ち、前記被載す
るように形成したシリコン窒化膜を除去した時点
で露出する表面部分に同時に第2導電型の不純物
を拡散したのち、更に薄い金属珪化物層を当該露
出する表面双方に選択的に被着することにある。
The manufacturing method of the present invention is characterized by a device electrode composed of a second conductivity type impurity layer provided in the device region and having a shallow junction depth, and a second conductivity type impurity layer connected to the second conductivity type impurity layer provided in the active region and having a certain deep junction depth. A part of the first silicon nitride film, which has already been used in the selective oxidation of the field region, is used to form an internal wiring region consisting of a two-layer structure of a type impurity layer and a thin metal silicide covering its surface. The purpose is to separate the substances by allowing them to remain. Further, a second silicon nitride film having approximately the same thickness as the first silicon nitride film used in the selective oxidation method is formed to cover the polycrystalline silicon that forms the gate electrode and the inter-element wiring, The surfaces of the regions not covered with the first and second silicon nitride films and the field oxide film and the side surfaces of the polycrystalline silicon are covered with a somewhat thick oxide film,
Thereafter, the second conductivity type impurity layer having the shallow junction depth is coated with polycrystalline silicon and the intra-element wiring region in the active region having a certain deep junction depth, that is, the above-mentioned covered layer. At the same time, impurities of the second conductivity type are diffused into the surface portions exposed when the silicon nitride film formed in the overlying manner is removed, and then an even thinner metal silicide layer is selectively deposited on both of the exposed surfaces. There is a particular thing.

従つて、本発明によれば、多結晶シリコンを素
子電極あるいは素子間配線もしくは、それら双方
として用いる半導体集積回路において、従来構造
による多結晶シリコンに比べて、半分程度の厚さ
の多結晶シリコンとそれを覆う低抵抗金属珪化物
薄膜との第1の2層構造による素子間配線と、あ
る程度深い接合深さの活性領域内に設けた不純物
拡散層とそれを覆う低抵抗金属珪化物薄膜との第
2の2層構造による素子内配線とを、浅い接合深
さの第2導電型不純物層で構成した高性能微細素
子の電極には全く影響させることなく、従来の製
造方法を一部変更する程度の容易さで形成するこ
とができ、結果的に当該集積回路の性能を大幅に
向上させることができる。
Therefore, according to the present invention, in a semiconductor integrated circuit that uses polycrystalline silicon as an element electrode, an inter-element wiring, or both, the thickness of polycrystalline silicon is about half that of polycrystalline silicon with a conventional structure. An inter-element interconnect with a first two-layer structure with a low-resistance metal silicide thin film covering it, and an impurity diffusion layer provided in the active region with a certain deep junction depth and a low-resistance metal silicide thin film covering it. A part of the conventional manufacturing method is changed without affecting the electrodes of a high-performance micro-device in which the second two-layer structure internal wiring is formed by a second conductivity type impurity layer with a shallow junction depth. It can be formed with relative ease, and as a result, the performance of the integrated circuit can be greatly improved.

本発明ではまた、多結晶シリコンをシリコン窒
化膜をマスクとしてエツチングするので、ある程
度深い接合深さの素子内配線となす不純物拡散層
形成並びに多結晶シリコンへの不純物添加のため
の拡散直前迄の工程において、例えば浅い接合深
さの素子電極表面を覆う酸化膜形成時には、多結
晶シリコンの厚みの減少がないため、その減少分
を予め見込んで多結晶シリコンを厚くしておく必
要がなく当初から薄くできるので、エツチング精
度を向上でき、更に、表面段差を低くできる利点
を有する。また、素子内配線となす不純物拡散層
の表面の位置も多結晶シリコンの場合と同様に不
純物拡散直前迄、当初のシリコン基板表面と全く
同じ位置を保つており、深さ方向への食い込みは
全くないので、表面段差を殆どなくすることがで
きる。このような段差の減少は、高次金属配線の
断線確率を著しく低下させ、大規模集積回路の歩
留りの飛躍的向上をもたらす。また、浅い接合深
さの不純物拡散層表面は、適当な厚さの酸化膜で
覆われることになるので、素子内配線となすある
程度深い接合深さの不純物拡散層および多結晶シ
リコンへの同時に行なう不純物拡散時と、それに
続く、これも同時に行なう金属珪化物の形成の際
に全く影響を受けることがなく、高性能な微細素
子を実現でき、更に前記金属珪化物は1000〜2000
Å程度の非常に薄い膜厚でも十分に低い層抵抗値
に調整することができるので、素子内配線並びに
素子間配線の抵抗を非常に低くすることができ、
これら高性能微細素子に低抵抗配線が相俟つて高
性能半導体集積回路を実現することができる。
In the present invention, since polycrystalline silicon is etched using a silicon nitride film as a mask, the process up to just before the formation of an impurity diffusion layer for internal wiring with a certain deep junction depth and the diffusion for adding impurities to polycrystalline silicon is also possible. For example, when forming an oxide film covering the surface of a device electrode with a shallow junction depth, there is no decrease in the thickness of polycrystalline silicon, so there is no need to thicken the polycrystalline silicon in advance to account for the decrease, and it is possible to make it thinner from the beginning. This has the advantage that etching accuracy can be improved and surface steps can be lowered. In addition, the position of the surface of the impurity diffusion layer that forms the internal wiring of the device remains exactly the same as the original silicon substrate surface until just before the impurity is diffused, as in the case of polycrystalline silicon, and there is no intrusion in the depth direction. Since there is no difference in surface level, it is possible to almost eliminate the difference in surface level. Such a reduction in the level difference significantly reduces the probability of disconnection of high-order metal wiring, resulting in a dramatic improvement in the yield of large-scale integrated circuits. In addition, since the surface of the impurity diffusion layer with a shallow junction depth will be covered with an oxide film of an appropriate thickness, it is necessary to simultaneously coat the impurity diffusion layer with a certain deep junction depth and polycrystalline silicon, which are connected to the internal wiring of the device. There is no influence at all during the impurity diffusion and the subsequent formation of the metal silicide, which is also performed at the same time, making it possible to realize a high-performance micro element.
Since it is possible to adjust the layer resistance to a sufficiently low value even with a very thin film thickness of about Å, the resistance of internal wiring and inter-element wiring can be made extremely low.
By combining these high-performance fine elements with low-resistance wiring, a high-performance semiconductor integrated circuit can be realized.

例えば、0.3μm程度の浅いソース、ドレイン
接合を得るため、砒素のイオン注入を行つた場合
で考えれば、当該領域の層抵抗は、数十Ω/□程
度になるのが通例であり、同時に砒素をイオン注
入された4000Å厚程度の多結晶シリコンの層抵抗
も又数十Ω/□程度の高抵抗となり、百Ω/□を
越える事もまれでない。しかし、本発明によると
素子領域に形成される層抵抗の高い浅い接合深さ
を有する不純物層はソースあるいはドレインとな
る極めて狭い領域にとどまり、他の素子内配線と
なる活性領域並びに多結晶シリコンは、金属珪化
物層例えば白金シリサンド等で被覆すると1〜2
Ω/□の極めて低い層抵抗を1500〜2000Å程度の
厚さで実現できる利点を有有する。
For example, if we consider the case where arsenic ions are implanted to obtain shallow source and drain junctions of about 0.3 μm, the layer resistance in this region is usually about several tens of Ω/□, and at the same time, the arsenic The layer resistance of polycrystalline silicon with a thickness of about 4000 Å that has been ion-implanted is also as high as several tens of Ω/□, and it is not uncommon for it to exceed 100 Ω/□. However, according to the present invention, the impurity layer with high layer resistance and shallow junction depth formed in the device region remains in an extremely narrow region that serves as the source or drain, and the active region and polycrystalline silicon that serve as other device interconnections are , 1 to 2 when coated with a metal silicide layer such as platinum silisand
It has the advantage that extremely low layer resistance of Ω/□ can be achieved with a thickness of about 1500 to 2000 Å.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは、従来構造のまま微小化した多結晶
シリコンを素子電極あるいは素子間配線として用
いている半導体集積回路の基本構成を模式的概念
的に示した部分断面図であり、第1図bはその周
囲を含めて示した斜視部分断面図である。第2図
は、第1図a,bで示した従来構造の欠点を解決
するために通常使用される改良構造であり、第3
図は第2図の構造を更に改良した構造で、本発明
に先立つて提案され、基本的には本発明の対象と
なる構造を説明するための斜視部分断面図であ
る。第4図a,b,c,d,e,f,g,hは第
3図にその基本構成を示した改良構造を実現する
ために本発明によつて提案された製造方法を説明
するために、その主要工程の典型的実施例を模式
的概念的に示したものである。 図中の各記号はそれぞれ次のものを示す。
素子領域におつてソースを構成している領域。
:素子領域にあつてドレインを構成している領
域。:活性領域にあつて素子内配線となす不純
物層を形成する領域。1およびE2:電界効果
トランジスタのソースドレインに代表される素子
電極を構成している領域。:高次金属配線と素
子内配線とを結ぶ給電点。G:ゲートを意味する
添字。C:素子間配線を意味する添字。11,3
1:第1導電型半導体基板、12,32:チヤネ
ルストツパとなすフイールド・ドーピング領域、
13,33:フイールド酸化膜、14,35:薄
い絶縁膜、15,36:多結晶シリコン、16:
素子電極と素子間配線とを同じ接合深さのまま兼
用するようにした従来の浅い接合深さを有する第
2導電型不純物層。17:改良提案によつて素子
電極専用とした浅い接合深さの第2導電型不純物
層。18:改良提案によつて素子内配線専用とし
た第2導電型不純物層。19:改良提案によつて
素子内配線専用とした第2導電型不純物層並びに
多結晶シリコンを覆う金属珪化物層。34:第1
のシリコン窒化膜、37:本発明の方法によつて
新らたに設けることとなつた第2のシリコン窒化
膜、38:本発明の方法によつて形成した浅い接
合深さの第2導電型不純物層17、39:本発明
の方法によつて新らたに設けることとなつたシリ
コン酸化膜、40:本発明の方法によつて形成し
た第2導電型不純物層18、41:金属薄膜、4
2:本発明の方法によつて形成した非常に低い層
抵抗を持つ薄い金属珪化物層。
FIG. 1a is a partial cross-sectional view schematically showing the basic configuration of a semiconductor integrated circuit that uses miniaturized polycrystalline silicon as element electrodes or inter-element interconnections with the conventional structure. b is a perspective partial cross-sectional view including the surrounding area. Figure 2 shows an improved structure commonly used to solve the drawbacks of the conventional structure shown in Figures 1a and b;
The figure shows a structure that is a further improvement of the structure shown in FIG. 2, and is a perspective partial sectional view for explaining the structure that was proposed prior to the present invention and is basically the object of the present invention. Figures 4a, b, c, d, e, f, g, and h are for explaining the manufacturing method proposed by the present invention to realize the improved structure whose basic configuration is shown in Figure 3. A typical example of the main steps is schematically and conceptually shown in FIG. Each symbol in the figure indicates the following. S :
A region that constitutes a source in an element region.
D : A region constituting a drain in the element region. A : A region in the active region where an impurity layer is formed to serve as wiring within the device. E 1 and E2 : Regions constituting device electrodes, typified by the source and drain of a field effect transistor. F : Feeding point connecting higher-order metal wiring and internal wiring of the element. G: Subscript meaning gate. C: Subscript meaning inter-element wiring. 11,3
1: a first conductivity type semiconductor substrate; 12, 32: a field doping region serving as a channel stopper;
13, 33: Field oxide film, 14, 35: Thin insulating film, 15, 36: Polycrystalline silicon, 16:
A conventional second conductivity type impurity layer having a shallow junction depth that serves as both an element electrode and an inter-element wiring with the same junction depth. 17: A second conductivity type impurity layer with a shallow junction depth dedicated to the device electrode according to an improved proposal. 18: A second conductivity type impurity layer dedicated to internal wiring according to an improved proposal. 19: Metal silicide layer covering the second conductivity type impurity layer and polycrystalline silicon, which is dedicated to internal wiring according to an improved proposal. 34: 1st
37: Second silicon nitride film newly formed by the method of the present invention; 38: Second conductivity type with shallow junction depth formed by the method of the present invention. Impurity layers 17 and 39: silicon oxide film newly formed by the method of the present invention; 40: second conductivity type impurity layer 18 and 41 formed by the method of the present invention; metal thin film; 4
2: Thin metal silicide layer with very low layer resistance formed by the method of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 素子間分離領域となすべき領域以外の第1導
電型半導体基板表面に第1のシリコン窒化膜を形
成し、この第1のシリコン窒化膜をマスクとして
チヤンネルストツパ及びフイールド酸化膜を形成
し次いで前記第1のシリコン窒化膜の一部領域す
なわち浅い接合深さの第2導電型不純物層を形成
してソース及びドレインとなすべき領域を含む将
来素子領域となすべき領域の前記第1のシリコン
窒化膜を除去した後、この除去領域の全面に将来
ゲート絶縁膜となすべき薄い絶縁膜を形成し、更
に将来ゲート電極となすべき領域及び素子間配線
となすべき領域に多結晶シリコン層を、それに被
載する第2のシリコン窒化膜と共にパターン化し
て形成し、この第2のシリコン窒化膜及び多結晶
シリコン層更には前記第1のシリコン窒化膜の残
留部をマスクとして露出した前記薄い絶縁膜を通
して第2導電型を呈する不純物を第1導電型基板
表層に浅く導入して前記したソースおよびドレイ
ンとなす浅い接合深さの第2導電型不純物層を形
成し、しかるのち、露出している薄い絶縁膜及び
露出している多結晶シリコン層表層にシリコン酸
化膜を形成し、残る第1のシリコン窒化膜及び第
2のシリコン窒化膜を除去して、この除去領域か
ら第2導電型を呈する不純物導入し、前記第1の
シリコン窒化膜領域の第1導電型半導体基板には
前記浅い接合深さの第2導電型不純物層に連結す
る深い接合深さの第2導電型不純物層を形成して
素子内配線領域となし、前記第2のシリコン窒化
膜領域の多結晶シリコン層もまた第2導電型の素
子間配線となし、更に当該深い接合深さの第2導
電型不純物層並びに多結晶シリコン層表面を薄い
金属珪化物で覆うことを特徴とした半導体集積回
路の製造方法。
1. A first silicon nitride film is formed on the surface of the first conductivity type semiconductor substrate in areas other than regions to be used as inter-element isolation regions, and a channel stopper and field oxide film are formed using this first silicon nitride film as a mask. The first silicon nitride of a part of the first silicon nitride film, that is, a region that will become a future device region, including a region that will become a source and a drain by forming a second conductivity type impurity layer with a shallow junction depth. After removing the film, a thin insulating film that will become a gate insulating film in the future is formed on the entire surface of this removed region, and a polycrystalline silicon layer is further applied to the region that will become a gate electrode and the interconnection between elements in the future. The second silicon nitride film is formed by patterning together with the second silicon nitride film, and the exposed thin insulating film is passed through the second silicon nitride film, the polycrystalline silicon layer, and the remaining portion of the first silicon nitride film as a mask. An impurity exhibiting a second conductivity type is shallowly introduced into the surface layer of the first conductivity type substrate to form a second conductivity type impurity layer having a shallow junction depth with the source and drain, and then the exposed thin insulating layer is formed. A silicon oxide film is formed on the film and the exposed surface layer of the polycrystalline silicon layer, the remaining first silicon nitride film and second silicon nitride film are removed, and an impurity exhibiting a second conductivity type is introduced from this removed region. A second conductivity type impurity layer having a deep junction depth connected to the second conductivity type impurity layer having a shallow junction depth is formed on the first conductivity type semiconductor substrate in the first silicon nitride film region to form an element. The polycrystalline silicon layer in the second silicon nitride film region is also used as an inter-element wiring of the second conductivity type, and furthermore, the second conductivity type impurity layer and the polycrystalline silicon layer at the deep junction depth. A method of manufacturing a semiconductor integrated circuit characterized by covering the surface with a thin metal silicide.
JP8425879A 1979-07-03 1979-07-03 Manufacture of semiconductor integrated circuit Granted JPS568849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8425879A JPS568849A (en) 1979-07-03 1979-07-03 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8425879A JPS568849A (en) 1979-07-03 1979-07-03 Manufacture of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS568849A JPS568849A (en) 1981-01-29
JPS6154254B2 true JPS6154254B2 (en) 1986-11-21

Family

ID=13825421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8425879A Granted JPS568849A (en) 1979-07-03 1979-07-03 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS568849A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818965A (en) * 1981-07-28 1983-02-03 Toshiba Corp Manufacture of semiconductor device
JP2534508B2 (en) * 1987-08-11 1996-09-18 セイコーエプソン株式会社 Method for manufacturing high breakdown voltage MOS semiconductor device
JP3410495B2 (en) * 1992-09-30 2003-05-26 東レ・ダウコーニング・シリコーン株式会社 Surface coating agent

Also Published As

Publication number Publication date
JPS568849A (en) 1981-01-29

Similar Documents

Publication Publication Date Title
JP2598481B2 (en) Semiconductor device and method of forming self-aligned metallized portion thereof
KR960001602B1 (en) Fabricating method of integrated circuit device
US4505027A (en) Method of making MOS device using metal silicides or polysilicon for gates and impurity source for active regions
EP0066097A2 (en) Silicide contacts for CMOS devices
US4476482A (en) Silicide contacts for CMOS devices
GB1567197A (en) Methods of manufacturing semiconductor devices
US3936865A (en) Semiconductor devices having conductor tracks at different levels and interconnections therebetween
JPH04229647A (en) Precision resistor by self-aligned silicon compound mos process
JPS62162362A (en) Mos integrated circuit and manufacture thereof
JPS5965481A (en) Semiconductor device
US4549199A (en) Semiconductor device providing a contact structure which can be miniaturized
JPS6154252B2 (en)
JPH0654795B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
US4812417A (en) Method of making self aligned external and active base regions in I.C. processing
US4883772A (en) Process for making a self-aligned silicide shunt
JPS6154254B2 (en)
JPS6054792B2 (en) semiconductor equipment
US6707105B2 (en) Semiconductor device for limiting leakage current
GB2152283A (en) Gate protection arrangement for a semiconductor device
JPS6154253B2 (en)
JPS6237960A (en) Manufacture of read only semiconductor memory device
EP0264309B1 (en) Self-aligned base shunt for transistor
EP0141571A2 (en) High performance two layer metal cmos process using a reduced number of masks
JPS6057949A (en) Semiconductor device
JP2993041B2 (en) Complementary MOS semiconductor device