JPS6154179B2 - - Google Patents

Info

Publication number
JPS6154179B2
JPS6154179B2 JP54134442A JP13444279A JPS6154179B2 JP S6154179 B2 JPS6154179 B2 JP S6154179B2 JP 54134442 A JP54134442 A JP 54134442A JP 13444279 A JP13444279 A JP 13444279A JP S6154179 B2 JPS6154179 B2 JP S6154179B2
Authority
JP
Japan
Prior art keywords
steel material
grain size
measuring
pulsed laser
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54134442A
Other languages
Japanese (ja)
Other versions
JPS5658659A (en
Inventor
Tooru Inochi
Shoichi Sekiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13444279A priority Critical patent/JPS5658659A/en
Publication of JPS5658659A publication Critical patent/JPS5658659A/en
Publication of JPS6154179B2 publication Critical patent/JPS6154179B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、パルスレーザー照射により発生する
超音波を利用した鋼材の結晶粒径の測定法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the grain size of steel materials using ultrasonic waves generated by pulsed laser irradiation.

水晶等の振動子を鋼材等の試料に密着させ、そ
して該振動子に高周波高電圧を印加して該試料に
超音波(弾性波)を励起し、その伝播速度から試
料内部の状態を検査する、所謂超音波を利用した
非破壊検査法が各分野で活用されている。しかし
この方法は接触式であるため高温状態にある鋼材
等の試料或いは高速走行中の試料に対しては、事
実上実施不可能である。
A vibrator such as a crystal is brought into close contact with a sample such as a steel material, and a high frequency and high voltage is applied to the vibrator to excite ultrasonic waves (elastic waves) in the sample, and the state inside the sample is inspected from the propagation speed of the ultrasonic waves. , so-called non-destructive testing methods using ultrasonic waves are used in various fields. However, since this method is a contact method, it is virtually impossible to perform it on samples such as steel materials that are in a high temperature state or on samples that are running at high speed.

ところで強力なパルスレーザー光を試料面に照
射すると、該試料のごく表面層(数Å程度)の物
質が瞬時に蒸発、飛散し、その反力(圧縮応力)
で該試料に強力なパルス状の弾性波(超音波)が
発生する。このことは、例えばB.P.Fairand等が
1974年に発表した文献(Quantitative
assessment of laser−induced stress waves
generated at confined surfaces,Applied
Physics Letters,Vol.25,No.8,15 October
1974,P431〜P433)で明らかであるが、この方
法によれば任意の試料に遠隔点からパルス状の弾
性波を励起することが可能である。またレーザー
光は光学的な手法によつて極めて細いビームに紋
ることが可能であり、かゝるレーザー光を照射し
た鋼材表面に発生する超音波を理想的な点音源に
することができる。発生した超音波は試料中を伝
播し、その伝播中に試料の性状に応じた反射、減
衰等を受け、他面に達して該他面に機械的変位を
生じさせるが、音源が点音源であればそれが広面
積音源の場合のように平均化されることがなくて
試料一面に発生した超音波と試料他面で検出され
た超音波との各波形間の、伝播中に受けた反射等
によるずれ(変形状況)が明瞭に看取でき、延い
ては試料の物性を推定することが可能である。ま
た超音波の受信は、通常の圧電素子などを用いる
と発信子と同様に該素子を試料に密着させる必要
があるが、光の干渉または電磁誘導を利用した変
位測定法を用いると非接触型の受信が可能であ
り、こうしてパルスレーザーによる超音波発生、
光干渉法または電磁誘導法による超音波検出を行
なえば高温または高速走行中の試料の非接触物性
測定が可能である。
By the way, when a strong pulsed laser beam is irradiated onto a sample surface, the material in the very surface layer (about a few angstroms) of the sample instantly evaporates and scatters, and the reaction force (compressive stress)
A strong pulsed elastic wave (ultrasonic wave) is generated in the sample. This has been shown, for example, by BPFairand et al.
Literature published in 1974 (Quantitative
assessment of laser−induced stress waves
generated at confined surfaces,Applied
Physics Letters, Vol.25, No.8, 15 October
1974, P431-P433), this method makes it possible to excite pulsed elastic waves in any sample from a remote point. Additionally, laser light can be made into an extremely narrow beam using optical techniques, and the ultrasonic waves generated on the surface of steel irradiated with such laser light can be used as an ideal point sound source. The generated ultrasonic waves propagate through the sample, and during propagation, undergo reflections, attenuation, etc. depending on the properties of the sample, reach the other surface, and cause mechanical displacement on the other surface, but the sound source is a point source. If so, it is not averaged like in the case of a wide-area sound source, and is the reflection received during propagation between the waveforms of the ultrasonic waves generated on one surface of the sample and the ultrasonic waves detected on the other surface of the sample. It is possible to clearly see the deviation (deformation state) due to the above, and in turn, it is possible to estimate the physical properties of the sample. In addition, when receiving ultrasonic waves, if a normal piezoelectric element is used, it is necessary to bring the element into close contact with the sample like a transmitter, but if a displacement measurement method using optical interference or electromagnetic induction is used, it is possible to receive ultrasonic waves without contact. It is possible to receive ultrasonic waves by pulsed lasers,
Ultrasonic detection using optical interferometry or electromagnetic induction allows non-contact physical property measurements of samples running at high temperatures or high speeds.

本発明は、かゝる点に着目してなされたもの
で、強く紋つた大出力パルスレーザー光を用いて
試料特に鋼材の結晶粒径を測定し、また光干渉式
または電磁誘導式の超音波検出を行なつての非接
触測定可能ならしめ、延いては高温、高速移動鋼
材のオンライン物性詳しくは結晶粒径測定を可能
ならしめようとするものである。本発明は、時間
幅の短さい高出力パルスレーザー光をビーム径を
紋つて鋼材の一面に照射して該鋼材内にパルス状
の超音波を点音源的に発生させ、そして該超音波
が該鋼材中を伝播して他面に到達するとき該他面
に生じる機械的変位を振動変位検出器で検出し、
該レーザー光照射で発生した伝播前の超音波に対
する、該他面の機械的変位で検出された超音波パ
ルスのパルス幅の拡がりを測定することにより該
鋼材の結晶粒径を求めることを特徴とするもので
あるが、以下図示の実施例を参照しながらこれを
詳細に説明する。
The present invention has been made with attention to this point, and it measures the crystal grain size of a sample, especially steel, using a strong, high-output pulsed laser beam, and also uses optical interference type or electromagnetic induction type ultrasonic wave. The aim is to enable non-contact measurement through detection, and by extension, to enable on-line measurement of physical properties of high-temperature, high-speed moving steel materials, in particular grain size measurements. The present invention involves irradiating a single surface of a steel material with a high-power pulsed laser beam having a short duration and a beam diameter to generate pulsed ultrasonic waves as a point source within the steel material. A vibration displacement detector detects the mechanical displacement that occurs on the other surface when it propagates through the steel material and reaches the other surface,
The crystal grain size of the steel material is determined by measuring the pulse width expansion of an ultrasonic pulse detected by mechanical displacement of the other surface with respect to the ultrasonic wave generated by the laser beam irradiation before propagation. However, this will be explained in detail below with reference to the illustrated embodiment.

第1図は本発明の一実施例であり、1は測定対
象となる鋼材(以下試料という)である。この試
料1の一面1aはパルスレーザー2からの例えば
20nsecという短時間幅のそして例えば100MWと
いう高出力のパルスレーザー光L1を照射する。
この際レーザー光L1の照射領域を1点(微小領
域)P1とするため、必要に応じて集光レンズ3な
どを介在させる。なおパルスレーザーはルビーレ
ーザーなどQスイツチング可能なレーザー光源を
Qスイツチにより発生させるのが適当である。試
料面1aに照射されたレーザー光L1は該面の表
面層またはその保護用の塗膜などを瞬時に蒸発、
飛散させ、その反力でパルス状の超音波を発生さ
せる。この超音波は所定の速度で試料1中を伝播
し、一定時間後に他方の試料面1bに到達し、該
面に振動変位を生じさせる。振動変位検出器4は
非接触でこの変位を検出するものであるが、本例
では点P1に対向する他面1bの点P2に発生する微
小領域の機械的変位のみを検出する。このため検
出器4の検出端4aは可能な限り小さいことが好
ましい。これには次の方法が有効である。即ち、
第1は計測用レーザー光をビームスプリツタで分
割して一方は試料面1bに、他方はミラーへ投射
し、該試料面およびミラーからの反射光を再びビ
ームスプリツタを通して共通の受光器へ導き、該
受光器で二乗平均検波を行なうマイケルソン型光
干渉法による変位測定法である。第2は試料面1
bに磁界を作用させ、試料面1bが変位するとき
該変位と該磁界により試料面に起電力を発生させ
て渦電流を流し、該試料面に対向配置した検出コ
イルにより電磁誘導の原理でこれを検出する変位
測定法である。オシロスコープ5は検出器4の出
力、従つて点P2に到達した超音波パルスの波形を
観測するものであるが、必要に応じてレーザー光
入射点P1側にも検出器4特にその検出端4aを設
けておいて該入射点に励起された伝播前の超音波
パルスを同時に表示するようにしておくとよい。
あるいは点P1の超音波パルスの波形はレーザー光
L1の波形と等しいとし、該レーザー光の一部を
ビームスプリツタで分岐してこれを光電変換する
ことにより得てもよい。
FIG. 1 shows an embodiment of the present invention, and numeral 1 indicates a steel material to be measured (hereinafter referred to as a sample). For example, one surface 1a of this sample 1 is exposed to light from the pulsed laser 2.
A pulsed laser beam L1 having a short duration of 20 nsec and a high output of, for example, 100 MW is irradiated.
At this time, in order to set the irradiation area of the laser beam L 1 to one point (micro area) P 1 , a condenser lens 3 or the like is interposed as necessary. Note that it is appropriate that the pulse laser be generated by a Q-switchable laser light source such as a ruby laser using a Q-switch. The laser beam L1 irradiated on the sample surface 1a instantly evaporates the surface layer of the surface or its protective coating, etc.
It scatters, and the reaction force generates pulsed ultrasonic waves. This ultrasonic wave propagates through the sample 1 at a predetermined speed, reaches the other sample surface 1b after a certain period of time, and causes vibrational displacement on that surface. The vibration displacement detector 4 detects this displacement in a non-contact manner, but in this example, it detects only the mechanical displacement in a minute area occurring at a point P2 on the other surface 1b facing the point P1 . For this reason, it is preferable that the detection end 4a of the detector 4 be as small as possible. The following method is effective for this. That is,
First, the measurement laser beam is split by a beam splitter, one is projected onto the sample surface 1b and the other is projected onto a mirror, and the reflected light from the sample surface and mirror is guided back through the beam splitter to a common receiver. This is a displacement measurement method using Michelson type optical interferometry, which performs root-mean-square detection using the optical receiver. The second is sample surface 1
A magnetic field is applied to the sample surface 1b, and when the sample surface 1b is displaced, an electromotive force is generated on the sample surface by the displacement and the magnetic field, and an eddy current is caused to flow. This is a displacement measurement method that detects The oscilloscope 5 is used to observe the output of the detector 4, and therefore the waveform of the ultrasonic pulse that has arrived at point P2 , but if necessary, the detector 4, especially its detection end, may also be placed on the laser beam incident point P1 side. 4a so that the ultrasonic pulses excited at the incident point and before propagation can be simultaneously displayed.
Alternatively, the waveform of the ultrasonic pulse at point P 1 is the laser beam
It is assumed that the waveform is equal to that of L1 , and a part of the laser light may be split by a beam splitter and then obtained by photoelectrically converting it.

第2図は本発明の測定原理を示すもので、1c
は鋼材結晶粒を示す。ビーム径を紋つてレーザー
光L1を点P1に照射すると、点音源状の超音波パ
ルスU1が該点P1に発生し、他面1bに向つて伝
播する。この場合結晶粒1cの粒系が極めて微細
で均質媒質と見做すことができれば超音波パルス
U1は直進するか、もしくは非常に少ない散乱度
で他面1bに到達する。これに対し、粒径が大き
くなると超音波パルスU1は各結晶粒1cの粒界
で散乱され、反射波U2の発生量が増加する。こ
の度合は他面1bの1点P2で明瞭に看取できる。
即ち、反射波U2の量が少なければ点P2に到達す
る超音波は点P1で発生した超音波そのものである
が、結晶粒径が大きく反射波U2が多くなると点
P2で観測される超音波パルスの波形にはその分の
変形が生ずる。この変位には2つある。1つはパ
ルス半値幅であり、結晶粒径が大きくなる程増大
する。第3図はこれを示したもので、実線曲線
INが点P1の波形(照射レーザー光のパルス波
形)、破線曲線OUTが点P2の波形(検出した振動
変位の波形)であり、それぞれピークPK1,PK2
の1/2のレベルの半値幅Δτ,Δτは、結晶
粒径の増大に伴ないΔτ<Δτとなる。他の
1つはピークPK1,PK2間の時間差Δτ(波形
IN,OUT間には当然伝播遅延が入るが、これは
除く)である。これも結晶粒径の増大に伴ない増
大する。従つて、これらのいずれか(こゝではこ
れをパルス波形の拡がりという)を実測すること
により結晶粒径を求めることができる。
Figure 2 shows the measurement principle of the present invention.
indicates steel grains. When a point P1 is irradiated with a laser beam L1 with a beam diameter, a point source-shaped ultrasonic pulse U1 is generated at the point P1 and propagates toward the other surface 1b. In this case, if the grain system of crystal grain 1c is extremely fine and can be regarded as a homogeneous medium, the ultrasonic pulse
U 1 either travels straight or reaches the other surface 1b with very little scattering. On the other hand, as the grain size increases, the ultrasonic pulse U 1 is scattered at the grain boundaries of each crystal grain 1c, and the amount of reflected waves U 2 generated increases. This degree can be clearly seen at one point P2 on the other side 1b.
That is, if the amount of reflected wave U 2 is small, the ultrasonic wave that reaches point P 2 is the same as the ultrasonic wave generated at point P 1 , but if the crystal grain size is large and the amount of reflected wave U 2 is large, the ultrasonic wave that reaches point P 2 is
The waveform of the ultrasonic pulse observed at P 2 is deformed accordingly. There are two types of this displacement. One is the pulse half-width, which increases as the crystal grain size increases. Figure 3 shows this, with the solid line curve
IN is the waveform at point P 1 (pulse waveform of the irradiated laser beam), and the broken line curve OUT is the waveform at point P 2 (waveform of detected vibration displacement), with peaks PK 1 and PK 2 respectively.
The half-widths Δτ 0 and Δτ 1 at half the level become Δτ 0 <Δτ 1 as the crystal grain size increases. The other one is the time difference Δτ 2 between peak PK 1 and PK 2 (waveform
Naturally, there is a propagation delay between IN and OUT, but this is excluded). This also increases as the crystal grain size increases. Therefore, by actually measuring any one of these (herein referred to as the spread of the pulse waveform), the crystal grain size can be determined.

第4図〜第6図はパルス半値幅と結晶粒径との
関係を示す実測データである。即ち、第4図およ
び第5図は点P1に照射するレーザー光L1のビー
ム径をそれぞれ6mmφ、1mmφと異ならせた時の
点P2の波形をオシロスコープ5で観測したもの
で、各図のa,b,cはそれぞれ結晶粒径が
0.022mm、0.087mm、0.49mmについての波形であ
る。第6図の曲線C1は第4図a〜cの各半値幅
をプロツトしたものであり、また曲線C2は第5
図a〜cの各半値幅をプロツトしたものである。
かゝる特性曲線C1,C2のいずれか一方を用いれ
ば、点P2で得たパルスの半値幅から鋼材1の結晶
粒径を求めることができる。
4 to 6 are actually measured data showing the relationship between pulse half width and crystal grain size. That is, FIGS. 4 and 5 show the waveforms at point P 2 observed with the oscilloscope 5 when the beam diameter of laser light L 1 irradiated to point P 1 was changed to 6 mmφ and 1 mmφ, respectively. a, b, c are the crystal grain sizes, respectively.
These are waveforms for 0.022mm, 0.087mm, and 0.49mm. Curve C 1 in Figure 6 is a plot of each half-width in Figures 4 a to c, and curve C 2 is a plot of the half width of Figure 4 a to c.
This is a plot of each half-width in Figures a to c.
By using either one of the characteristic curves C 1 and C 2 , the grain size of the steel material 1 can be determined from the half width of the pulse obtained at point P 2 .

以上述べたように本発明によれば、超音波によ
り鋼材結晶粒径を測定でき、高温、高速移動中の
鋼材に対してもオンライン非破壊検査が可能にな
る等の利点がある。
As described above, the present invention has advantages such as being able to measure the crystal grain size of a steel material using ultrasonic waves, and enabling on-line non-destructive testing of steel materials that are moving at high temperatures and high speeds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図および第3図は本発明の測定原理を示す説
明図、および波形図、第4図a〜cは結晶粒径の
異なる鋼材を伝播した超音波パルスを鋼材面の1
点で観測した波形図、第5図a〜cはパルスレー
ザー光のビーム径を異ならせた第4図と同様の波
形図、第6図は第4図および第5図のパルス半値
幅と結晶粒径との関係を示す特性図である。 図中、1は鋼材、2はパルスレーザー、4は振
動変位検出器である。
FIG. 1 is a block diagram showing one embodiment of the present invention;
Figures 2 and 3 are explanatory diagrams and waveform diagrams showing the measurement principle of the present invention, and Figures 4 a to c show ultrasonic pulses propagated through steel materials with different grain sizes.
Figures 5 a to c are waveform diagrams similar to Figure 4 with different beam diameters of pulsed laser light, and Figure 6 shows the pulse half-width and crystal of Figures 4 and 5. FIG. 3 is a characteristic diagram showing the relationship with particle size. In the figure, 1 is a steel material, 2 is a pulse laser, and 4 is a vibration displacement detector.

Claims (1)

【特許請求の範囲】 1 時間幅の短かい高出力パルスレーザー光をビ
ーム径を紋つて鋼材の一面に照射して該鋼材内に
パルス状の超音波を点音源的に発生させ、そして
該超音波が該鋼材中を伝播して他面に到達すると
き該他面に生じる機械的変位を振動変位検出器で
検出し、該レーザー光照射で発生した伝播前の超
音波に対する、該他面の機械的変位で検出された
超音波パルスのパルス幅の拡がりを測定すること
により該鋼材の結晶粒径を求めることを特徴とす
る、パルスレーザー光による鋼材結晶粒径の測定
法。 2 振動変位検出器が、マイケルソン型干渉法に
よる信号光および参照光の平均2乗検波を利用す
る非接触型のものであることを特徴とする、特許
請求の範囲第1項記載のパルスレーザー光による
鋼材結晶粒径の測定法。 3 振動変位検出器が電磁誘導を利用した非接触
型のものであることを特徴とする、特許請求の範
囲第1項記載のパルスレーザー光による鋼材結晶
粒径の測定法。
[Claims] 1. A high-power pulsed laser beam with a short time width is irradiated with a beam diameter onto one surface of a steel material to generate a pulsed ultrasonic wave as a point source within the steel material, and the ultrasonic wave is A vibration displacement detector detects the mechanical displacement that occurs on the other surface when the sound wave propagates through the steel material and reaches the other surface, and detects the mechanical displacement of the other surface in response to the ultrasonic wave generated by the laser beam irradiation before propagation. A method for measuring the crystal grain size of a steel material using pulsed laser light, characterized in that the crystal grain size of the steel material is determined by measuring the spread of the pulse width of an ultrasonic pulse detected by mechanical displacement. 2. The pulsed laser according to claim 1, wherein the vibration displacement detector is a non-contact type that uses mean square detection of the signal light and reference light by Michelson interferometry. A method for measuring steel grain size using light. 3. A method for measuring the grain size of a steel material using pulsed laser light according to claim 1, wherein the vibration displacement detector is a non-contact type that uses electromagnetic induction.
JP13444279A 1979-10-18 1979-10-18 Measuring method of grain size of steel material using pulse laser light Granted JPS5658659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13444279A JPS5658659A (en) 1979-10-18 1979-10-18 Measuring method of grain size of steel material using pulse laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13444279A JPS5658659A (en) 1979-10-18 1979-10-18 Measuring method of grain size of steel material using pulse laser light

Publications (2)

Publication Number Publication Date
JPS5658659A JPS5658659A (en) 1981-05-21
JPS6154179B2 true JPS6154179B2 (en) 1986-11-21

Family

ID=15128442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13444279A Granted JPS5658659A (en) 1979-10-18 1979-10-18 Measuring method of grain size of steel material using pulse laser light

Country Status (1)

Country Link
JP (1) JPS5658659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084538A1 (en) * 2007-01-11 2008-07-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Structure/material measuring device for metallic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142234A (en) * 1986-12-04 1988-06-14 Hitachi Ltd Light scattering type apparatus for detecting fine particle in liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084538A1 (en) * 2007-01-11 2008-07-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Structure/material measuring device for metallic material
JP4888484B2 (en) * 2007-01-11 2012-02-29 東芝三菱電機産業システム株式会社 Metallic tissue material measuring device

Also Published As

Publication number Publication date
JPS5658659A (en) 1981-05-21

Similar Documents

Publication Publication Date Title
Hutchins et al. A laser study of transient Lamb waves in thin materials
Cooper et al. Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers
Sontag et al. Optical monitoring of photoacoustic pulse propagation in silicon wafers
Clorennec et al. Nondestructive evaluation of cylindrical parts using laser ultrasonics
WO2016090589A1 (en) Nondestructive measurement method and device for residual stress of laser ultrasonic metal material
KR101447392B1 (en) Apparatus and method for measuring metal structure and material
Aindow et al. Laser-based non-destructive testing techniques for the ultrasonic characterization of subsurface flaws
Jacobs et al. Laser generation and detection of ultrasound in concrete
JPS6154179B2 (en)
Moss et al. Investigation of ultrasonic transducers using optical techniques
Dewhurst et al. The performance of thick piezoelectric transducers as wide-band ultrasonic detectors
JPS5831872B2 (en) Non-contact ultrasonic flaw detection method
Hong et al. Rapid measurement of surface acoustic wave velocity on single crystals using an all-optical adaptive scanning acoustic microscope
JP3184368B2 (en) Sample evaluation device by ultrasonic vibration measurement
Hong et al. Rapid and accurate analysis of surface and pseudo-surface waves using adaptive laser ultrasound techniques
Nishino et al. Optical probe detection of high-frequency surface acoustic waves generated by phase velocity scanning of laser interference fringes
Rose et al. Acoustic double‐reflection and transmission at a rough water–solid interface
KR100733539B1 (en) Apparatus and method of laser-ultrasonic measurement for hot object
Perez Ruiz et al. Sound speed resolved by photoacoustic technique
Lu et al. A new detection technique for laser-generated Rayleigh wave pulses
Suh et al. Ultrasonic time-frequency characterization of silicon wafers at elevated temperatures
Azam et al. Elastic Parameter Measurement by Comparison of Modal Analysis Using ANSYS Workbench and Pulsed Laser Impulse Excited Frequency Response of Fully Clamped Thin Square Soda Lime Glass
JPH04178538A (en) Method and apparatus for generating and detecting ultrasonic waves in sample
Hutchins Non-Contact Ultrasonic Transducers for not
Matsuda et al. Precise laser ultrasonic technique with application to silicon velocity measurements