JPS6154049B2 - - Google Patents

Info

Publication number
JPS6154049B2
JPS6154049B2 JP54067692A JP6769279A JPS6154049B2 JP S6154049 B2 JPS6154049 B2 JP S6154049B2 JP 54067692 A JP54067692 A JP 54067692A JP 6769279 A JP6769279 A JP 6769279A JP S6154049 B2 JPS6154049 B2 JP S6154049B2
Authority
JP
Japan
Prior art keywords
weight
parts
resin composition
free radical
magnesium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54067692A
Other languages
Japanese (ja)
Other versions
JPS55160042A (en
Inventor
Tadanori Hashimoto
Koji Yamatsuta
Teruaki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP6769279A priority Critical patent/JPS55160042A/en
Publication of JPS55160042A publication Critical patent/JPS55160042A/en
Publication of JPS6154049B2 publication Critical patent/JPS6154049B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は機械的強度、剛性、耐熱性にすぐれ、
かつ高度は難燃性を有する熱可塑性樹脂組成物に
関する。 熱可塑性樹脂を難燃化する多くの方法が、従来
から数多く知られている。たとえば、有機ハロゲ
ン化合物とアンチモン化合物を熱可塑性樹脂脂に
配合した樹脂組成物が公知である。しかしながら
この樹脂組成物は高度の難燃性を有するかわり
に、燃焼時の発煙量が多く、かつ有毒ガスを発生
する。それに成形時に成形機械の内部を腐蝕する
ことや成形物の機械強度が低いなどの問題点を有
していた。次に水酸化マグネシウム、水酸化アル
ミニウム、ハイドロタルサイトなどの含水無機化
合物を樹脂に配合して難燃化する方法がある。こ
の方法によつて難燃化された樹脂組成物は発煙量
が少く、発生ガスが無毒であり、かつ溶融滴下物
がないなどの大きな特長を有するが、高度の難燃
性を賦与するためには含水無機化合物を高濃度に
配合せねばならない。このためこの樹脂組成物の
機械的強度は低く、メルトフローインデツクスで
代表される流動性が極端に低下するため実用に供
することは出来なかつた。 本発明者は機械的強度、剛性、耐熱性及び流動
性にすぐれ、かつ高度な難燃性を有する熱可塑性
樹脂組成物について鋭意研究した結果本発明の熱
可塑性樹脂組成物を発明した。すなわち、本発明
は(a)オレフイン系樹脂30〜60重量パーセントと(b)
水酸化マグネシウム100重量部に対してオルガノ
シラン化合物0.1〜5重量部で表面処理した水酸
化マグネシウム70〜40重量パーセントからなる組
成物100重量部に(c)遊離基発生剤を0.001〜5重量
部配合し、オレフイン樹脂の溶融点以上の温度
で、加熱混練することを特徴とする難燃性にすぐ
れた熱可塑性樹脂組成物である。 以下本発明を詳細に説明する。 本発明に使用するポリオレフイン樹脂は、ポリ
エチレン、ポリプロピレン及びエチレン、プロピ
レン単量体と他単量体との共重合体であり、好ま
しくはポリプロピレン樹脂であり、更に好ましく
は結晶性エチレン−プロピレン共重合体である。
すなわち、ポリプロピレン樹脂は高い機械強度、
剛性、耐熱性を有し、成形体を作るのに最適な物
性バランスを有している。結晶性エチレン−プロ
ピレン共重合体はホモポリプロピレン樹脂と比較
して同一メルトフローインデツクス品で高い衝撃
強度を有し、水酸化マグネシウムと複合化された
後でも高い衝撃強度を保つためである。また、ホ
モポリプロピレン樹脂は遊離基発生剤と混合し、
溶融点以上で混練するとポリマー鎖の切断が優先
するため物性向上が余り著しくないが、結晶性エ
チレン−プロピレン共重合体の場合は、ポリマー
鎖の切断とポリマー鎖間の橋かけ反応が適度の割
合で生ずるため機械強度と流動性の高いバランス
を有するポリオレフイン−水酸化マグネシウム複
合物を与える。 次に本発明に使用する水酸化マグネシウムはい
かなるものでも用いられ得るが、好ましくは0.05
μ〜10μの微粉末で、形状は粒状、板状等であ
る。、平均粒子径が0.05μより小さい場合、二次
凝集体を形成し、オレフイン系樹脂に配合した時
に二次凝集体のままで存在するため、組成物の衝
撃強度が大巾に低下する。また水酸化マグネシウ
ムのオレフイン樹脂中における濃度が不均一にな
るため、難燃性にも好結果を及ぼさない。水酸化
マグネシウムの平均粒径が10μを越えるとポリオ
レフイン樹脂に配合した時に難燃効果が低下する
とともに、衝撃強度も低くなり成形品の表面光沢
も悪くなり、商品イメージを低下させる。 もちろん他の充填剤、すなわち炭酸カルシウ
ム、タルク、シリカ、、マイカ、ガラス繊維など
を難燃性、機械強度等を極端に低下させない範囲
で併用してポリオレフイン樹脂に配合することも
できる。 一般にオルガノシラン化合物は塩基性無機物と
は反応せず、従つてオレフイン系樹脂にオルガノ
シラン化合物処理塩基性無機物を配合しても補強
効果を示さないと言われている。 しかしながら、本発明者らは鋭意研究した結
果、水酸化マグネシウムとオルガノシラン化合物
は強固な結合を作ることができ、遊離基発生剤を
配合してオレフイン系樹脂と複合化した時に機械
強度が大巾に向上することを見い出した。 本発明に使用されるオルガノシラン化合物はエ
チレン性不飽和基を有するオルガノシラン化合物
が好ましく、下記(1)式で示される一般式を有す
る。 (Xi)−oSi(−Rj)4-o (1) ただし、nは1≦n≦3を満たす整数、Xiは
クロロ基、エトキシ基、メトキシ基、アセトキシ
基およびまたはメトキシエトキシ基などの加水分
解によりシラノール基を形成することのできる基
であり、Rjはビニル基、ガンマメタクリルオキ
シプロピル基などのエチレン性不飽和結合を有す
る基である。水酸化マグネシウムの表面処理に要
するオルガノシラン化合物量は水酸化マグネシウ
ム100重量部に対して0.1〜5重量部であり、より
好ましくはおよそ下記(2)式で示される量である。 W=a×b×c×ρ(g) (2) ただしWは必要とするオルガノシラン化合物量
(g)であり、aは水酸化マグネシウムの比表面積
(cm2/g)であり、bは水酸化マグネシウム量(g)で
あり、cはオルガノシラン化合物が単一層で水酸
化マグネシウムを被覆した時の厚み(cm)であ
り、ρはオルガノシラン化合物の密度(g/cm2
である。すなわち、オルガノシラン化合物量が
0.1重量部より少ない場合、水酸化マグネシウム
の表面は均一に被覆されないため、マトリツクス
となるオレフイン系樹脂との結合強度が弱く、機
械強度、特に抗張力、衝撃強度が低下する。オル
ガノシラン化合物が5重量部より多い場合、単一
層反応量以上の過剰なオルガノシラン化合物によ
つてマトリツクスとなるオレフイン系樹脂との結
合が弱められるため、機械強度、特に抗張力、衝
撃強度が低下する。またオルガノシラン化合物は
高価あり多量の使用はコスト面からも不利益を招
く。 オルガノシラン化合物による水酸化マグネシウ
ムの表面処理には種々の方法が考えられるが、要
するに水酸化マグネシウム表面にオルガノシラン
化合物の単一層を形成できるような方法であれば
どんな方法でも良い。例えば、オルガノシラン化
合物を溶剤に溶解し、その溶液中に水酸化マグネ
シウムを加え、表面を処理し、しかる後に溶剤を
蒸発させ表面処理水酸化マグネシウムを得る方法
や、水酸化マグネシウムをスーパーミキサー等の
混合装置内で高速撹拌しつつオルガノシラン化合
物を除々に滴下し表面処理をする方法などであ
る。またオレフイン系樹脂、水酸化マグネシウ
ム、及びオルガノシラン化合物を同時に混合し、
オレフイン系樹脂の溶融点以上の温度で加熱混練
し、表面処理する方法も取り得る。 本発明に適したオルガノシランカツプリング剤
はビニルトリクロロシラン、ビニルトリエトキシ
シラン、ビニルトリス(ベータメトキシエトキ
シ)シラン、ガンマメタクリルオキシプロピルト
リメトキシシラン、ガンマメタクリルオキシプロ
ピルトリス(ベータメトキシエトキシ)シラン、
ビニルトリルアセトキシシランなどである。 遊離基発生剤は2つの目的のために添加され
る。第一は水酸化マグネシウムの表面処理に用い
られたエチレン性不飽和結合を開環し、オレフイ
ン系樹脂と化学的に結合させ、機械物性、特に抗
張力と衝撃強度を向上させるためである。第2は
マトリツクスのオレフイン系樹脂を分解し、分子
量を小さくすることにより、流動性を改良する点
である。オレフイン系樹脂のうちでも特にポリプ
ロピレン樹脂は遊離基の攻撃を受けて分解しやす
く、本発明の目的には好適な樹脂である。ポリプ
ロピレン樹脂はメルトフローインデツクス
(MI)で示される流動性の違いによつて各種グレ
ードに分かれる。これら一連のグレードのメルト
フローインデツクス対衝撃強度の関係を見るとメ
ルトフローインデツクスが高くなるにつれて衝撃
強度が低下する。ところが遊離基発生体を用いて
分解されたポリプロピレン樹脂の上記関係を調べ
ると驚くべきことに同一MIを示す未分解ポリプ
ロピレン樹脂の衝撃強度に較べて著しく高い衝撃
強度を有することが見い出された。本来のメルト
フローインデツクスの高いポリプロピレン樹脂を
用いた場合は加熱混練時の切期剪断応力が低く、
かつポリプロピレン樹脂の衝撃強度も低いため得
られた複合体はごく低い衝撃強度を与えるのみで
ある。 遊離基発生剤の添加量は、オルガノシラン化合
物の配合量、オレフイン系樹脂の種類、安定剤処
理方法などによつて変化するが、オレフイン系樹
脂−水酸化マグネシウム配合組成物100重量部に
対し0.001〜5重量部が好適である。遊離基発生
剤量が0.001重量部より少い場合、オルガノシラ
ン化合物とオレフイン係樹脂の化学反応が生ぜ
ず、複合体の機械物性、特に抗張力と衝撃強度が
低く、オレフイン系樹脂の分解が進まず、流動性
の改良ができないので不適当である。遊離基発生
剤量が5重量部より多い場合は、オレフイン系樹
脂が著しく分解され、機械物性全般が低下するの
みならず、熱安定性も低下し実用に供し得ない。 遊離基発生剤の1分半減温度は120〜200℃の範
囲内が好ましい。一般に時間(t)と遊離基発生
剤の分解量(Pパーセント)との間には(3)式の関
係がある。 P=〔1−(1/2)t/t0T=T0×100 (3) ただし、t0:温度T0℃における半減時間 したがつて1分半減温度で遊離基発生剤を3分
間保持した場合87.5%、5分間保持した場合97%
の遊離基発生剤が分解する。遊離基発生剤の1分
半減温度が120℃より低い場合オレフイン系樹脂
とオルガノシラン処理水酸化マグネシウムを加熱
混練する時にオレフイン系樹脂が溶融する前にほ
とんどの遊離基発生剤が分解してしまい、反応、
分解ともに起らず、機械強度、MIともに低く、
実用に供し得ない。1分半減温度が200℃より高
い場合一般の混練加工条件では発生遊離基数が少
ないことと、発生遊離基が安定なため、反応、分
解効果が小さく、やはり実用に供し得ない。 遊離基発生剤は有機過酸化物であり、かつ芳香
族アシル基およびまたは芳香族アルキル基を含有
していることが好ましい。脂肪族系の遊離基は一
般に水素引抜き能力が弱く、従つて反応、分解も
これらも芳香族アシル基およびまたは芳香族アル
キル基を含有する有機過酸化物よりも起りづら
く、機械物性、流動性ともに低い複合体しか得ら
れない。 本発明に適した遊離基発生剤は2・4−ジクロ
ロベンゾイルパーオキサイド、m−トルオイルパ
ーオキサイド、ベンゾイルパーオキサイド、α・
α′−ビス−(t−ブチルパーオキシイソプロピ
ル)ベンゼン、ジクミルパーオキサイド、t−ブ
チルクミルパーオキサイド、t−ブチルパーオキ
シベンゾエイト、ジt−ブチルジパーオキシイソ
フタレイト、2・5−ジメチル−2・5−ジ(ベ
ンゾイルパーオキシ)ヘキサンなどである。 オレフイン系樹脂と表面オルガノシラン処理水
酸化マグネシウム、遊離基発生剤よりなる熱可塑
性樹脂組成物をオレフイン系樹脂の溶融点以上の
温度で加熱混練する装置は一般に用いられる混練
装置を用いる事が出来る。これらの加熱混練装置
として一軸押出機及び2軸以上の多軸押出機、バ
ンバリーミキサー、ロール混練機、インテンシブ
ミキサー、コニーダー、ニーダールーダーなどが
挙げられる。 加熱混練温度はオレフイン系樹脂の溶融点以上
であればよいが、遊離基発生剤の分解温度とオレ
フイン系樹脂の溶融粘度などの要素によつて決定
される。一般的にはオレフイン系樹脂の溶融温度
から溶融温度+100℃の範囲内である。 本発明の熱可塑性樹脂組成物中に占める水酸化
マグネシウムの組成割合はオレフイン系樹脂に対
し40〜70重量パーセントである。水酸化マグネシ
ウム濃度がこの範囲内より低い場合は難燃効果が
低く、本発明の目的を達成できない。水酸化マグ
ネシウム濃度がこの範囲より高い場合は水酸化マ
グネシウムの均一分散が達成できず二次凝集体の
まま存在するため複合物の機械物性が低下し、流
動性も大幅に低くなるため実用に供し得ない。 本発明の熱可塑性樹脂組成物には必要に応じて
安定剤、可塑剤、滑剤、分散剤、架橋剤、染料、
顔料、帯電防止剤、その他の添加剤を加えること
ができる。 本発明の熱可塑性樹脂組成物は用途、製品形状
に応じて押出成形、射出成形、圧縮成形、圧延成
形、回転成形等各種の成形加工方法を用いること
ができる。 以下に本発明を実施例によつてさらに具体的に
説明するが、以下の実施例によつて本発明の範囲
が限定されるものではない。 実施例1および参考例1 PH3.5〜4.0に調整された水にγ−メタクリルオ
キシプロピルトリメトキシシラン(日本ユニカー
(株)社、製品名A−174)を溶解し、0.5重量パ
ーセント溶液を調整した。 平均粒子径0.3μmの水酸化マグネシウムをシ
ランカツプリング剤が水酸化マグネシウムに対
し、1重量パーセントになるように評量し、シラ
ンカツプリング剤水溶液と室温下で均一に混合し
た。この混合物を130℃に保たれた恒温乾燥器中
で5時間乾燥したのち、ハンマーミルにて粉砕
し、表面シランカツプリング剤処理水酸化マグネ
シウムを得た。 第1表に示されるポリプロピレンの45重量パー
セントと表面シランカツプリング剤処理水酸化マ
グネシウム55重量パーセントの混合物100重量部
にt−ブチルパーオキシベンゾエイトを0.2重量
部加え、万能撹拌機で10分間撹拌したのち、容量
0.2の卓上型ニーダーを用いて200℃120回転/
分で10分間混練し、樹脂組成物を得た。この樹脂
組成物を圧縮成形(条件:温度210℃、圧力25Kg/
cm2、予熱時間5分間、加圧時間5分間)し、シー
トを作製し、このシートから試験片を切り出し、
流動性、機械物性および燃焼性を測定した。 参考のために表面シランカツプリング剤処理さ
れていない水酸化マグネシウムを用いた場合と、
遊離基発生剤を添加しない場合について実施例1
と同じ条件で製造した樹脂組成物の物性も測定し
た。これらの結果をまとめて第1表に示す。第1
表から分るように実施例は参考例と比較して、燃
焼性を維持しつつ流動性、衝撃強度、曲げ強度が
大巾に改良されている。 なお物性測定は下記(注)の方法に従つて行つ
た。 (注)物性測定条件 燃焼性:UL規格 Subject94 試験片厚み3.18mm メルトフローインデツクス(MI):ASTM D−
1238 230℃荷重2160g 単位g/10mm アイゾツト衝撃強度:ASTM D−256 ノツチ無し 単位Kg・cm/cm2 曲げ特性:ASTM D−790 単位Kg/cm2
The present invention has excellent mechanical strength, rigidity, and heat resistance,
The present invention also relates to thermoplastic resin compositions having highly flame retardant properties. Many methods of making thermoplastic resins flame retardant are known. For example, a resin composition in which an organic halogen compound and an antimony compound are blended with a thermoplastic resin is known. However, although this resin composition has a high degree of flame retardancy, it generates a large amount of smoke and toxic gas when burned. Additionally, there were other problems such as corrosion of the inside of the molding machine during molding and low mechanical strength of the molded product. Another method is to add a hydrous inorganic compound such as magnesium hydroxide, aluminum hydroxide, or hydrotalcite to the resin to make it flame retardant. The resin composition made flame retardant by this method has great features such as low smoke emission, non-toxic generated gas, and no molten drippings. requires a high concentration of water-containing inorganic compounds. For this reason, the mechanical strength of this resin composition was low, and the fluidity represented by the melt flow index was extremely reduced, so that it could not be put to practical use. The inventor of the present invention invented the thermoplastic resin composition of the present invention as a result of intensive research on thermoplastic resin compositions that have excellent mechanical strength, rigidity, heat resistance, and fluidity, and have a high degree of flame retardancy. That is, the present invention comprises (a) 30 to 60 weight percent of olefinic resin and (b)
Add (c) 0.001 to 5 parts by weight of a free radical generator to 100 parts by weight of a composition consisting of 70 to 40 weight percent of magnesium hydroxide surface-treated with 0.1 to 5 parts by weight of an organosilane compound to 100 parts by weight of magnesium hydroxide. It is a thermoplastic resin composition with excellent flame retardancy, which is characterized by being blended and heated and kneaded at a temperature higher than the melting point of the olefin resin. The present invention will be explained in detail below. The polyolefin resin used in the present invention is polyethylene, polypropylene, ethylene, or a copolymer of a propylene monomer and other monomers, preferably a polypropylene resin, and more preferably a crystalline ethylene-propylene copolymer. It is.
In other words, polypropylene resin has high mechanical strength,
It has rigidity, heat resistance, and an optimal balance of physical properties for making molded objects. This is because the crystalline ethylene-propylene copolymer has higher impact strength compared to homopolypropylene resin in the same melt flow index product, and maintains high impact strength even after being composited with magnesium hydroxide. In addition, homopolypropylene resin is mixed with a free radical generator,
When kneaded above the melting point, polymer chain scission takes priority and the physical properties do not improve much. However, in the case of crystalline ethylene-propylene copolymers, polymer chain scission and cross-linking reactions between polymer chains occur at a moderate rate. This provides a polyolefin-magnesium hydroxide composite with a high balance of mechanical strength and fluidity. Next, any type of magnesium hydroxide can be used in the present invention, but preferably 0.05
It is a fine powder with a size of μ to 10μ, and its shape is granular or plate-like. If the average particle diameter is smaller than 0.05μ, secondary aggregates are formed and remain as secondary aggregates when blended with the olefin resin, resulting in a significant decrease in the impact strength of the composition. Furthermore, since the concentration of magnesium hydroxide in the olefin resin becomes non-uniform, good results are not achieved in terms of flame retardancy. If the average particle size of magnesium hydroxide exceeds 10μ, the flame retardant effect will decrease when blended with polyolefin resin, impact strength will also decrease, surface gloss of the molded product will deteriorate, and the product image will deteriorate. Of course, other fillers, such as calcium carbonate, talc, silica, mica, glass fiber, etc., can also be blended into the polyolefin resin as long as flame retardancy, mechanical strength, etc. are not excessively reduced. Generally, organosilane compounds do not react with basic inorganic substances, and therefore, it is said that even if an organosilane compound-treated basic inorganic substance is blended with an olefin resin, no reinforcing effect is exhibited. However, as a result of intensive research by the present inventors, we found that magnesium hydroxide and organosilane compounds can form a strong bond, and when compounded with a free radical generator and combined with an olefin resin, the mechanical strength is greatly increased. found that it improved. The organosilane compound used in the present invention is preferably an organosilane compound having an ethylenically unsaturated group, and has the general formula shown by the following formula (1). (Xi) − o Si(−Rj) 4-o (1) where n is an integer satisfying 1≦n≦3, and Xi is a hydration group such as a chloro group, ethoxy group, methoxy group, acetoxy group, and/or methoxyethoxy group. It is a group that can form a silanol group by decomposition, and Rj is a group having an ethylenically unsaturated bond such as a vinyl group or a gamma methacryloxypropyl group. The amount of organosilane compound required for surface treatment of magnesium hydroxide is 0.1 to 5 parts by weight per 100 parts by weight of magnesium hydroxide, and more preferably the amount is approximately expressed by the following formula (2). W=a×b×c×ρ(g) (2) where W is the amount of organosilane compound required
(g), a is the specific surface area of magnesium hydroxide (cm 2 /g), b is the amount of magnesium hydroxide (g), and c is the organosilane compound that coated the magnesium hydroxide with a single layer. ρ is the density of the organosilane compound (g/cm 2 ).
It is. In other words, the amount of organosilane compound is
When the amount is less than 0.1 part by weight, the surface of magnesium hydroxide is not uniformly coated, so the bonding strength with the olefin resin that becomes the matrix is weak, and mechanical strength, particularly tensile strength and impact strength, decrease. When the amount of the organosilane compound is more than 5 parts by weight, the bond with the olefin resin that becomes the matrix is weakened by the excess organosilane compound that is more than the amount reacted in a single layer, resulting in a decrease in mechanical strength, especially tensile strength and impact strength. . Furthermore, organosilane compounds are expensive, and their use in large quantities is disadvantageous in terms of cost. Various methods can be used to treat the surface of magnesium hydroxide with an organosilane compound, but any method that can form a single layer of an organosilane compound on the surface of magnesium hydroxide may be used. For example, there is a method of dissolving an organosilane compound in a solvent, adding magnesium hydroxide to the solution, treating the surface, and then evaporating the solvent to obtain surface-treated magnesium hydroxide. This method involves gradually dropping an organosilane compound while stirring at high speed in a mixing device to treat the surface. In addition, olefin resin, magnesium hydroxide, and organosilane compound are mixed simultaneously,
A method of heating and kneading at a temperature equal to or higher than the melting point of the olefin resin and surface treating it may also be used. Organosilane coupling agents suitable for the present invention include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(betamethoxyethoxy)silane, gammamethacryloxypropyltrimethoxysilane, gammamethacryloxypropyltris(betamethoxyethoxy)silane,
Examples include vinyltolylacetoxysilane. Free radical generators are added for two purposes. The first purpose is to ring-open the ethylenically unsaturated bond used in the surface treatment of magnesium hydroxide and chemically bond it to the olefinic resin, thereby improving mechanical properties, particularly tensile strength and impact strength. The second point is to improve fluidity by decomposing the olefin resin of the matrix and reducing its molecular weight. Among olefin resins, polypropylene resins are particularly susceptible to decomposition when attacked by free radicals, and are therefore suitable resins for the purpose of the present invention. Polypropylene resin is divided into various grades depending on the fluidity indicated by the melt flow index (MI). Looking at the relationship between melt flow index and impact strength for these series of grades, as the melt flow index increases, the impact strength decreases. However, when the above relationship was investigated for polypropylene resins decomposed using a free radical generator, it was surprisingly found that the impact strength was significantly higher than that of undecomposed polypropylene resins having the same MI. When polypropylene resin, which has a high original melt flow index, is used, the cutting shear stress during heating and kneading is low.
Moreover, since the impact strength of polypropylene resin is also low, the obtained composite has only a very low impact strength. The amount of free radical generator added varies depending on the amount of the organosilane compound, the type of olefin resin, the stabilizer treatment method, etc., but it is 0.001 parts by weight per 100 parts by weight of the olefin resin-magnesium hydroxide composition. ~5 parts by weight is preferred. If the amount of free radical generator is less than 0.001 part by weight, no chemical reaction occurs between the organosilane compound and the olefin resin, the mechanical properties of the composite, especially the tensile strength and impact strength, are low, and the decomposition of the olefin resin does not progress. , it is unsuitable because the fluidity cannot be improved. If the amount of the free radical generator is more than 5 parts by weight, the olefin resin will be significantly decomposed, and not only will the overall mechanical properties deteriorate, but also the thermal stability will deteriorate, making it impossible to put it to practical use. The 1-minute half-life temperature of the free radical generator is preferably within the range of 120 to 200°C. Generally, there is a relationship expressed by equation (3) between time (t) and the amount of decomposition (P percent) of the free radical generator. P=[1-(1/2) t/t0 ] T=T0 ×100 (3) However, t0 : Half-life time at temperature T0 ℃ Therefore, the free radical generator is held for 3 minutes at the half-life temperature of 1 minute. 87.5% if held for 5 minutes, 97% if held for 5 minutes
The free radical generator decomposes. If the 1-minute half-life temperature of the free radical generator is lower than 120°C, most of the free radical generator will decompose before the olefin resin melts when heating and kneading the olefin resin and organosilane-treated magnesium hydroxide. reaction,
No decomposition occurs, mechanical strength and MI are both low.
It cannot be put to practical use. If the 1-minute half-life temperature is higher than 200°C, the number of free radicals generated is small under general kneading processing conditions, and the free radicals generated are stable, so the reaction and decomposition effects are small, and it cannot be put to practical use. Preferably, the free radical generator is an organic peroxide and contains an aromatic acyl group and/or an aromatic alkyl group. Aliphatic free radicals generally have weak hydrogen abstraction ability, and therefore reactions and decomposition are less likely to occur than organic peroxides containing aromatic acyl groups and/or aromatic alkyl groups, and they have poor mechanical properties and fluidity. Only low complexes are obtained. Free radical generators suitable for the present invention include 2,4-dichlorobenzoyl peroxide, m-toluoyl peroxide, benzoyl peroxide, α-
α'-bis-(t-butylperoxyisopropyl)benzene, dicumyl peroxide, t-butylcumyl peroxide, t-butylperoxybenzoate, di-t-butyldiperoxyisophthalate, 2.5- Dimethyl-2,5-di(benzoylperoxy)hexane and the like. A commonly used kneading device can be used to heat and knead a thermoplastic resin composition comprising an olefin resin, surface organosilane-treated magnesium hydroxide, and a free radical generator at a temperature equal to or higher than the melting point of the olefin resin. Examples of these heating kneading devices include a single screw extruder, a multi-screw extruder having two or more screws, a Banbury mixer, a roll kneader, an intensive mixer, a co-kneader, and a kneader-ruder. The heating kneading temperature may be at least the melting point of the olefin resin, but is determined by factors such as the decomposition temperature of the free radical generator and the melt viscosity of the olefin resin. Generally, it is within the range from the melting temperature of the olefin resin to the melting temperature +100°C. The composition ratio of magnesium hydroxide in the thermoplastic resin composition of the present invention is 40 to 70% by weight based on the olefin resin. When the magnesium hydroxide concentration is lower than this range, the flame retardant effect is low and the object of the present invention cannot be achieved. If the magnesium hydroxide concentration is higher than this range, the magnesium hydroxide cannot be uniformly dispersed and remains as a secondary aggregate, which deteriorates the mechanical properties of the composite and significantly lowers its fluidity, making it unusable for practical use. I don't get it. The thermoplastic resin composition of the present invention may contain stabilizers, plasticizers, lubricants, dispersants, crosslinking agents, dyes,
Pigments, antistatic agents and other additives can be added. The thermoplastic resin composition of the present invention can be processed by various molding methods such as extrusion molding, injection molding, compression molding, rolling molding, and rotational molding depending on the intended use and product shape. EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the scope of the present invention is not limited by the following Examples. Example 1 and Reference Example 1 γ-methacryloxypropyltrimethoxysilane (Nippon Unicar Co., Ltd., product name A-174) was dissolved in water adjusted to pH 3.5 to 4.0 to prepare a 0.5 weight percent solution. did. Magnesium hydroxide having an average particle diameter of 0.3 μm was weighed so that the silane coupling agent was 1% by weight based on the magnesium hydroxide, and was uniformly mixed with the silane coupling agent aqueous solution at room temperature. This mixture was dried for 5 hours in a constant temperature dryer kept at 130°C, and then pulverized in a hammer mill to obtain magnesium hydroxide whose surface was treated with a silane coupling agent. Add 0.2 parts by weight of t-butyl peroxybenzoate to 100 parts by weight of a mixture of 45% by weight of polypropylene shown in Table 1 and 55% by weight of magnesium hydroxide treated with a surface silane coupling agent, and stir for 10 minutes with a universal stirrer. After that, the capacity
200℃ 120 rotations using a 0.2 tabletop kneader
The mixture was kneaded for 10 minutes to obtain a resin composition. This resin composition was compression molded (conditions: temperature 210℃, pressure 25Kg/
cm 2 , preheating time: 5 minutes, pressurization time: 5 minutes), prepare a sheet, cut out a test piece from this sheet,
Fluidity, mechanical properties and flammability were measured. For reference, we used magnesium hydroxide whose surface was not treated with a silane coupling agent, and
Example 1 for the case where no free radical generator is added
The physical properties of a resin composition manufactured under the same conditions as above were also measured. These results are summarized in Table 1. 1st
As can be seen from the table, the Examples have significantly improved fluidity, impact strength, and bending strength while maintaining combustibility compared to the Reference Examples. The physical properties were measured according to the method described below (note). (Note) Physical property measurement conditions Flammability: UL standard Subject94 Test piece thickness 3.18mm Melt flow index (MI): ASTM D-
1238 230℃ load 2160g Unit g/10mm Izot impact strength: ASTM D-256 No notch Unit Kg/cm/cm 2 Bending property: ASTM D-790 Unit Kg/cm 2

【表】 実施例2及び参考例2 ポリプロピレンMI=3、エチレン成分含有量
4.8%のエチレン−プロピレンブロツク共重合体
を用い、オルガノシラン化合物に第2表に示した
物質を用いた他は実施例1と同一組成、同一方法
で樹脂組成物を得、物性測定を行つた。結果を第
2表に示す。 第2表から分るようにエチレン性不飽和基を分
子中にもたないオルガノシラン化合物を用いた場
合、衝撃強度、曲げ強度ともに低く、実用に供し
得ない。
[Table] Example 2 and Reference Example 2 Polypropylene MI=3, ethylene component content
A resin composition was obtained using the same composition and method as in Example 1, except that a 4.8% ethylene-propylene block copolymer was used and the substances shown in Table 2 were used as the organosilane compound, and the physical properties were measured. . The results are shown in Table 2. As can be seen from Table 2, when an organosilane compound that does not have an ethylenically unsaturated group in its molecule is used, both impact strength and bending strength are low and it cannot be put to practical use.

【表】 実施例3及び参考例3 遊離基発生剤の種類と添加量を第3表に示した
ように変えたほか実施例1と同一組成、同一方法
によつて樹脂組成物を得た。物性測定の結果を第
3表に示したが、遊離基発生剤がベンゾイル基お
よびまたはクミル基を含有しているもの、及び1
分半減温度が120℃〜200℃のものは良好な物性を
示すのに脂肪族系パーオキサイド及び1分半減温
度が上記範囲を越えたものは低い物性値を示すの
みだつた。なお遊離基発生剤の添加量は実施例1
に含まれる遊離基発生剤の活性酸素量と同じにな
るようにした。
[Table] Example 3 and Reference Example 3 A resin composition was obtained using the same composition and method as in Example 1, except that the type and amount of the free radical generator were changed as shown in Table 3. The results of physical property measurements are shown in Table 3.
Those with a half-life temperature of 120 DEG C. to 200 DEG C. showed good physical properties, but aliphatic peroxides and those with a half-life temperature of 1 minute exceeding the above range showed only low physical property values. The amount of free radical generator added is the same as in Example 1.
The amount of active oxygen was set to be the same as the amount of active oxygen contained in the free radical generator.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (a) オレフイン系樹脂30〜60重量パーセント
および (b) 水酸化マグネシウム100重量部に対し、オル
ガノシラン化合物0.1〜5重量部で表面処理さ
れた水酸化マグネシウム70〜40重量パーセント
からなる組成物100重量部に、 (c) 遊離基発生剤を0.001〜5重量部配合し、オ
レフイン系樹脂の溶融点以上の温度で加熱混練
することを特徴とする難燃性にすぐれた熱可塑
性樹脂組成物。 2 オレフイン樹脂がポリプロピレン樹脂である
特許請求の範囲第1項記載の熱可塑性樹脂組成
物。 3 オレフイン系樹脂が結晶性エチレン−プロピ
レン共重合体であり、エチレン含量が0.5〜30重
量パーセントである特許請求の範囲第1項記載の
熱可塑性樹脂組成物。 4 オルガノシラン化合物がエチレン性不飽和基
を有する特許請求の範囲第1項記載の熱可塑性樹
脂組成物。 5 遊離基発生剤が有機過酸化物である特許請求
の範囲第1項記載の熱可塑性樹脂組成物。 6 遊離基発生剤の1分半減温度が120℃以上200
℃以下である特許請求の範囲第1項記載の熱可塑
性樹脂組成物。 7 遊離基発生剤が芳香族アシル基およびまたは
芳香族アルキル基を含有する特許請求の範囲第1
項記載の熱可塑性樹脂組成物。
[Claims] 1. 70 to 40 parts by weight of magnesium hydroxide surface-treated with 0.1 to 5 parts by weight of an organosilane compound based on (a) 30 to 60 parts by weight of an olefinic resin and (b) 100 parts by weight of magnesium hydroxide. 0.001 to 5 parts by weight of (c) a free radical generator is added to 100 parts by weight of a composition consisting of 100 parts by weight of a composition with excellent flame retardancy, which is characterized in that it is heated and kneaded at a temperature equal to or higher than the melting point of the olefin resin. thermoplastic resin composition. 2. The thermoplastic resin composition according to claim 1, wherein the olefin resin is a polypropylene resin. 3. The thermoplastic resin composition according to claim 1, wherein the olefin resin is a crystalline ethylene-propylene copolymer and has an ethylene content of 0.5 to 30 percent by weight. 4. The thermoplastic resin composition according to claim 1, wherein the organosilane compound has an ethylenically unsaturated group. 5. The thermoplastic resin composition according to claim 1, wherein the free radical generator is an organic peroxide. 6 The 1-minute half-life temperature of the free radical generator is 120℃ or higher200
The thermoplastic resin composition according to claim 1, which has a temperature of 0.degree. C. or less. 7 Claim 1 in which the free radical generator contains an aromatic acyl group and/or an aromatic alkyl group
The thermoplastic resin composition described in .
JP6769279A 1979-05-30 1979-05-30 Thermoplastic resin composition Granted JPS55160042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6769279A JPS55160042A (en) 1979-05-30 1979-05-30 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6769279A JPS55160042A (en) 1979-05-30 1979-05-30 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS55160042A JPS55160042A (en) 1980-12-12
JPS6154049B2 true JPS6154049B2 (en) 1986-11-20

Family

ID=13352272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6769279A Granted JPS55160042A (en) 1979-05-30 1979-05-30 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS55160042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414243U (en) * 1987-07-16 1989-01-25

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081236A (en) * 1983-10-13 1985-05-09 Toyo Soda Mfg Co Ltd Flame-retardant molded article of crosslinked polyofefin resin and its production
JP2000348958A (en) * 1999-06-03 2000-12-15 Masaaki Suzuki Manufacture of resin-bonded magnet
JP3803557B2 (en) * 2001-03-27 2006-08-02 協和化学工業株式会社 Flame retardant, method for producing the same, and flame retardant resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997853A (en) * 1973-01-08 1974-09-17
JPS5134866A (en) * 1974-09-19 1976-03-24 Asahi Chemical Ind HAIGASUJOKAHOHO
JPS53110645A (en) * 1977-03-09 1978-09-27 Mitsubishi Chem Ind Ltd Preparation of fiber-reinforced polypropylene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997853A (en) * 1973-01-08 1974-09-17
JPS5134866A (en) * 1974-09-19 1976-03-24 Asahi Chemical Ind HAIGASUJOKAHOHO
JPS53110645A (en) * 1977-03-09 1978-09-27 Mitsubishi Chem Ind Ltd Preparation of fiber-reinforced polypropylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414243U (en) * 1987-07-16 1989-01-25

Also Published As

Publication number Publication date
JPS55160042A (en) 1980-12-12

Similar Documents

Publication Publication Date Title
US4430470A (en) Flame retardant additives based on alumina trihydrate and ethylene polymer compositions, containing same, having improved flame retardant properties
DE69836145T2 (en) EXTRUSION PROCESS FOR IMPROVING THE MELTING STRENGTH OF POLYPROPYLENE
US4722858A (en) Fire-retardant sheet material
US6017987A (en) Fire-retardant polymer composition
JP2006515896A (en) Compositions based on pre-exfoliated nanoclays and their use
JPH0437097B2 (en)
EP0274888A1 (en) Filled elastomer blends
JPS63280754A (en) Fireproofing halogen-free thermoplastic polymer composition
JPS6144090B2 (en)
EP0435247B1 (en) Thermoplastic resin compositions and their use
JPH06248153A (en) Flame-retardant resin composition
JPS6154049B2 (en)
JPS62937B2 (en)
JPH0416499B2 (en)
JPH07113072B2 (en) Self-extinguishing polymer composition
JP2002167484A (en) Polypropylene based resin composition and production method therefor
JPS645065B2 (en)
JPS6058256B2 (en) Flame retardant synthetic resin composition
JPS59219352A (en) Propylene polymer composition
EP0598441A2 (en) Reinforced polyolefinic thermoplastic composition
JP3351138B2 (en) Thermoplastic resin composition for interior materials
JPS624420B2 (en)
JPS5938260B2 (en) Polyolefin resin composition
JP2000281841A (en) Layered silicate composite material, its production and molded product from the composite material
US5457145A (en) Reinforced polyolefinic thermoplastic composition