JPS6153915B2 - - Google Patents

Info

Publication number
JPS6153915B2
JPS6153915B2 JP3539083A JP3539083A JPS6153915B2 JP S6153915 B2 JPS6153915 B2 JP S6153915B2 JP 3539083 A JP3539083 A JP 3539083A JP 3539083 A JP3539083 A JP 3539083A JP S6153915 B2 JPS6153915 B2 JP S6153915B2
Authority
JP
Japan
Prior art keywords
signal
color
circuit
scanning line
signal source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3539083A
Other languages
Japanese (ja)
Other versions
JPS58161484A (en
Inventor
Masahiko Achiha
Kazumasa Matsui
Shuji Usui
Tatsuo Kayano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Hitachi Ltd
Original Assignee
Hitachi Denshi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK, Hitachi Ltd filed Critical Hitachi Denshi KK
Priority to JP3539083A priority Critical patent/JPS58161484A/en
Publication of JPS58161484A publication Critical patent/JPS58161484A/en
Publication of JPS6153915B2 publication Critical patent/JPS6153915B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/77Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase
    • H04N9/78Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase for separating the brightness signal or the chrominance signal from the colour television signal, e.g. using comb filter

Description

【発明の詳細な説明】 本発明は、カラーテレビジヨン信号、特に
NTSC信号などのように色信号が副搬送波周波数
で変調され、輝度信号に重畳されている複合カラ
ーテレビジヨン信号から搬送色信号を抽出分離す
る方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to color television signals, particularly
This invention relates to a method for extracting and separating a carrier color signal from a composite color television signal, such as an NTSC signal, in which the color signal is modulated at a subcarrier frequency and superimposed on a luminance signal.

NTSC信号などの複合カラーテレビジヨン信号
から色信号を分離する方式として、NTSC信号か
ら帯域通過フイルタ(以下BPFと略記する)によ
り副搬送周波数(fsc)を中心とする搬送色信号
(C信号)を抽出する方式がある(“テレビジヨ
ン”第19巻第8号第16〜23頁(昭和40年8月)、
特開昭52−84915号(昭和52.7.24日))。この場
合、BPFの帯域幅を狭くすると、NTSC信号から
抽出された搬送色信号を減算して得られた輝度信
号(Y信号)に色信号成分の一部が残留してしま
う。また、BPFの帯域を広くすると輝度信号の帯
域が狭くなり、解像度が劣化する。
As a method of separating color signals from a composite color television signal such as an NTSC signal, a carrier color signal (C signal) centered at the subcarrier frequency (f sc ) is extracted from the NTSC signal using a band pass filter (hereinafter abbreviated as BPF). There is a method for extracting
JP-A-52-84915 (July 24, 1972)). In this case, if the bandwidth of the BPF is narrowed, a part of the color signal component will remain in the luminance signal (Y signal) obtained by subtracting the carrier color signal extracted from the NTSC signal. Furthermore, when the BPF band is widened, the brightness signal band becomes narrower, and the resolution deteriorates.

“テレビジヨン”、第19巻第8号、第16〜23頁
にはNTSC信号をラインメモリで1水平走査周期
だけ遅延させ、走査線間の近傍相関を用いて輝度
信号を得ることが記述されている。これを応用し
た走査線間の差信号を算出し、これをBPFに入力
して搬送色信号を抽出する方式も知られている。
この場合、抽出された搬送色信号は、画面の水平
方向のみならず垂直方向にも帯域制限されるた
め、色の横じま部分(走査線間で色が変化してい
る部分)では正しい搬送色信号を抽出できず、輝
度信号に搬送色信号の一部が残留してしまう。ま
た、輝度信号については画像の斜め方向の解像度
が除去されるため、BPFの帯域を広くすると、前
述したBPFのみの場合ほどではないが、尖鋭度の
低下した画像となるという問題があつた。
"Television", Vol. 19, No. 8, pp. 16-23 describes that the NTSC signal is delayed by one horizontal scanning period in a line memory and the luminance signal is obtained using the neighborhood correlation between the scanning lines. ing. There is also a known method that applies this method to calculate a difference signal between scanning lines, inputs this to a BPF, and extracts a carrier color signal.
In this case, the extracted carrier color signal is band-limited not only in the horizontal direction of the screen but also in the vertical direction, so the correct carrier is used in horizontal striped areas (areas where the color changes between scanning lines). The color signal cannot be extracted, and a portion of the carrier color signal remains in the luminance signal. Furthermore, since the resolution in the diagonal direction of the image is removed from the luminance signal, there is a problem in that when the band of BPF is widened, the sharpness of the image is reduced, although not as much as in the case of only BPF described above.

また、上記文献には上記ラインメモリをフイー
ルドメモリに置き換えたフイールドの近傍相関を
用いたドツト妨害の除去にも言及しているが、遅
延時間精度に問題があり、具体的な演算方式、回
路構成には言及されていなかつた。最近になり、
半導体メモリが実用化されて遅延時間精度の問題
は解決され、例えば特開昭52−84915号にはフレ
ームメモリを用いた色信号の抽出法が示されてい
る。しかし、フレーム間の演算を使つているため
静止画像に限定され、動画像では正しい動作がで
きないという問題がある。
Additionally, the above literature mentions the removal of dot interference using field neighborhood correlation in which the line memory is replaced with a field memory, but there is a problem with delay time accuracy, and the specific calculation method and circuit configuration are was not mentioned. Recently,
With the practical use of semiconductor memories, the problem of delay time accuracy has been solved, and for example, Japanese Patent Application Laid-Open No. 84915/1983 discloses a color signal extraction method using a frame memory. However, since it uses calculations between frames, it is limited to still images and cannot operate correctly on moving images.

第1図は、前フイールドの263H前の信号との
差から搬送色信号を抽出する回路を具体的に構成
した回路図である。同図において、入力端子1に
入力されたNTSC信号263H遅延させる遅延回路
2に入力され、263H遅延された信号との差が減
算回路3で得られる。現走査線と263H遅延した
信号とは副搬送波位相が互いに逆位相となつてい
るので、減算回路3の出力として搬送色信号の2
倍の振幅の信号が得られる。これを乗算回路4で
1/2倍し、BPF5により副搬送波周波数(fsc
を中心とした帯域を抽出すると、出力端子8に所
望の搬送色信号(C信号)が得られる。これを現
在の信号(NTSC信号)から減算回路6で減算す
ると、出力端子7に搬送色信号の除去された輝度
信号(Y信号)が得られる。
FIG. 1 is a circuit diagram specifically configuring a circuit for extracting a carrier color signal from the difference between the previous field and the signal 263H before. In the figure, the NTSC signal input to the input terminal 1 is input to the delay circuit 2 which delays the signal by 263H, and the difference between the signal and the signal delayed by 263H is obtained by the subtraction circuit 3. Since the subcarrier phases of the current scanning line and the signal delayed by 263H are opposite to each other, the output of the subtraction circuit 3 is 2 of the carrier color signal.
A signal with twice the amplitude is obtained. This is done by multiplication circuit 4.
Multiply by 1/2 and use BPF5 to obtain the subcarrier frequency (f sc )
When a band centered around is extracted, a desired carrier color signal (C signal) is obtained at the output terminal 8. When this is subtracted from the current signal (NTSC signal) by the subtraction circuit 6, a luminance signal (Y signal) from which the carrier color signal has been removed is obtained at the output terminal 7.

この回路構成においては、前フイールドの画面
上の隣接走査線を利用しているため、従来公知の
1H遅延回路を用いた方式に比べ、利用している
走査線間の距離が1/2に短縮されている。従つ
て、従来の1H方式では輝度信号の斜め成分が除
去されるという問題があつたが、第1図の構成で
は、画面の垂直方向の通過帯域が1H方式に比べ
ると2倍の広さのため、除去される斜め成分が非
常に少なくなり、静止画像では高品質の輝度信号
が得られる。また、従来の1H方式では垂直方向
に急激に色の変化する水平色エツジ部分に2走査
線にわたつて劣化が生じるが、第1図の構成では
1走査線の劣化でおさまり、静止画像では劣化の
少ない搬送色信号を得ることができる。
This circuit configuration uses adjacent scanning lines on the screen of the previous field, so it
Compared to a method using a 1H delay circuit, the distance between the scanning lines used is halved. Therefore, in the conventional 1H method, there was a problem that oblique components of the luminance signal were removed, but in the configuration shown in Figure 1, the passband in the vertical direction of the screen is twice as wide as in the 1H method. Therefore, very few oblique components are removed, and a high-quality luminance signal can be obtained in a still image. In addition, in the conventional 1H method, deterioration occurs over two scanning lines at horizontal color edges where the color changes rapidly in the vertical direction, but with the configuration shown in Figure 1, the deterioration subsides to one scanning line, and the deterioration occurs in still images. It is possible to obtain a carrier color signal with less color.

上記第1図に示した回路構成では、静止画像で
は高品質の色信号の分離ができるが、動画像では
正しい分離動作ができず、不自然な画像が再生さ
れるという問題があつた。
With the circuit configuration shown in FIG. 1, high-quality color signal separation is possible for still images, but correct separation cannot be performed for moving images, resulting in an unnatural image being reproduced.

また、静止画像専用の応用例の場合には高品質
の色信号が分離できるが、色信号の分離のために
フイールドメモリが必要で、経済的な静止画像再
生装置を実現することが困難であつた。
In addition, in the case of applications dedicated to still images, high-quality color signals can be separated, but field memory is required to separate the color signals, making it difficult to realize an economical still image reproduction device. Ta.

本発明は上述した問題点を解決するためになさ
れたもので、特に静止画像はもとより、動画像に
おいても正しい色信号の分離が可能な高品質の色
信号分離方式を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and in particular, it is an object of the present invention to provide a high-quality color signal separation method that can correctly separate color signals not only for still images but also for moving images. .

上記目的を達成するため、本発明では、インタ
ーレースされている複合カラーテレビジヨン信号
の画面上で隣接した走査線、すなわち隣接フイー
ルドの走査線を利用して色信号を分離するほか
に、同一フイールド内の隣接走査線を利用して色
信号を分離し、この両信号の混合比をテレビジヨ
ン信号に含まれている動き情報で変化させること
を特徴とする。これにより後述するように、動画
像においても正しい分離信号が得られ、さらに従
来方式に比べて輝度信号の除去される帯域がより
狭くなり、かつ色信号は、より広い帯域を抽出で
きて輝度信号への残留色信号を少なくすることが
でき、高品質の色信号が抽出できる。
To achieve the above object, the present invention separates color signals by using adjacent scanning lines on the screen of an interlaced composite color television signal, that is, scanning lines of adjacent fields. The color signal is separated using adjacent scanning lines of the television signal, and the mixing ratio of both signals is changed by motion information contained in the television signal. As described later, this makes it possible to obtain correct separated signals even in moving images, and furthermore, compared to the conventional method, the band from which luminance signals are removed is narrower, and for color signals, a wider band can be extracted, and luminance signals It is possible to reduce the amount of residual color signals left in the image, and extract high-quality color signals.

以下、本発明を実施例を参照して詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to Examples.

第2図は本発明の動画像も正しく動作できる一
実施例の構成を示す。すなわち前記第1図の従来
例においては、被写体が動くと263H遅延回路2
の出力としてフイールド周期の間に移動した距離
だけ離れた場所の信号が出力されるので、抽出さ
れた色信号に劣化が生じた。
FIG. 2 shows the configuration of an embodiment of the present invention which can also correctly operate moving images. In other words, in the conventional example shown in FIG. 1, when the subject moves, the 263H delay circuit 2
Since a signal from a location away by the distance traveled during the field period is output as an output, the extracted color signal is degraded.

第2図の実施例はこの欠点を解消したもので、
入力端子1から入力されたNTSC信号は263H遅
延回路2と1H遅延回路9とに入力される。次い
で263H遅延した信号を乗算回路10でk1倍し、
また1H遅延した信号を乗算回路11でk2倍し、
両者を加算回路12で加算することにより、副搬
送波の位相が逆転した信号が得られる。以降の減
算回路3、乗算回路4、BPF5、加算回路6の動
作は前記第1図の場合と同様で、出力端子7およ
び8にそれぞれ抽出分離された輝度信号(Y信
号)および搬送色信号(C信号)が得られる。
The embodiment shown in FIG. 2 solves this drawback.
The NTSC signal input from the input terminal 1 is input to the 263H delay circuit 2 and the 1H delay circuit 9. Next, the signal delayed by 263H is multiplied by k1 in the multiplication circuit 10,
In addition, the signal delayed by 1H is multiplied by k2 in the multiplier circuit 11,
By adding both in the adder circuit 12, a signal in which the phase of the subcarrier is reversed is obtained. The subsequent operations of the subtraction circuit 3, multiplication circuit 4, BPF 5, and addition circuit 6 are the same as in the case of FIG. 1, and the extracted and separated luminance signal (Y signal) and carrier color signal ( C signal) is obtained.

この実施例は、第1図に示した隣接フイールド
の走査線を利用して分離された色信号に係数k1
乗したものと、第1図の遅延回路2を1Hの遅延
回路で置き換えて同一フイールドの相隣る相走査
線を利用して分離された色信号に係数k2を乗じた
ものを加算したものと同一の動作を行う。すなわ
ち、第1図において入力テレビ信号をA、263H
遅延された信号をB、フイルタ5の特性をBPFと
すると、分離された色信号C1は C1=(A−B)/2・(BPF)k1 で表わされる。又同様に、第1図の遅延回路2の
遅延時間を1Hとし、その出力をCとして分離さ
れた色信号C2は C2=(A−C)/2・(BPF)k2 で表わされる。
In this embodiment, the color signals separated using the scanning lines of adjacent fields shown in FIG. 1 are multiplied by a coefficient k1 , and the delay circuit 2 in FIG. 1 is replaced with a 1H delay circuit. The same operation is performed as adding a color signal multiplied by a coefficient k 2 using adjacent phase scanning lines of the same field. That is, in Fig. 1, the input television signal is A, 263H.
Assuming that the delayed signal is B and the characteristic of the filter 5 is BPF, the separated color signal C 1 is expressed as C 1 =(A-B)/2·(BPF)k 1 . Similarly, when the delay time of the delay circuit 2 in Fig. 1 is 1H and its output is C, the separated color signal C 2 is expressed as C 2 = (A-C)/2・(BPF)k 2 .

従つて、k1+k2=1としてC1+C2を代表的に
変形すると C1+C2=1/2・(BPF){A−k1B−k2C} となり、第2図の構成が得られる。
Therefore, if C 1 + C 2 is representatively transformed with k 1 + k 2 = 1, C 1 + C 2 = 1/2・(BPF) {A−k 1 B−k 2 C}, and the configuration shown in FIG. is obtained.

従つて分離された色信号を混合する回路構成に
比較し、バンドパスフイルタ5、係数回路4、減
算回路3が半減されるため回路構成が極めて簡単
になる。また、被写体の動きを検出して動きの有
無により係数k1、k2を制御する適応形とすること
により、動画像に適用してさらに劣化の少ない
YC分離が可能となる。
Therefore, compared to a circuit configuration that mixes separated color signals, the number of bandpass filters 5, coefficient circuits 4, and subtraction circuits 3 are reduced by half, making the circuit configuration extremely simple. In addition, by using an adaptive type that detects the movement of the subject and controls the coefficients k 1 and k 2 depending on the presence or absence of movement, it can be applied to moving images with even less deterioration.
YC separation becomes possible.

以上説明したように、本発明によるときは、現
在の走査線に対して1フイールド離れた263H前
または後の信号と、同一フイールドの1H離れた
信号の両方を利用して色信号が抽出されるため、
従来の単なる帯域通過フイルタあるいは1H遅延
回路を利用した方式で問題となつた輝度信号への
副搬送色信号の残留や、輝度信号の副搬送色信号
への混入による輝度信号の解像度低下、さらに
1H方式における横じま色エツジ部の劣化などが
軽減され、静止画像で高品質のYC分離が可能と
なると共に、動画像でも正しい色信号が抽出で
き、静止画装置、フレーム間相関利用処理回路等
に適用して効果大なるものである。
As explained above, according to the present invention, color signals are extracted using both the signal before or after 263H, which is 1 field away from the current scanning line, and the signal 1H away from the same field. For,
Problems with conventional methods using a simple bandpass filter or 1H delay circuit include the residual subcarrier color signal in the luminance signal, the degradation of the resolution of the luminance signal due to the mixing of the luminance signal into the subcarrier color signal, and
The deterioration of horizontal stripes and color edges in the 1H method is reduced, making it possible to perform high-quality YC separation on still images, as well as extracting correct color signals from moving images. It is highly effective when applied to etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の前提となる従来の搬送色信号
抽出回路のブロツク図、第2図は本発明による色
信号分離方式の一実施例のブロツク図である。 1,16……入力端子、2,9……遅延回路、
3,6……減算回路、12……加算回路、4,1
0,11……乗算回路、5……BPF、7,8……
出力端子。
FIG. 1 is a block diagram of a conventional carrier color signal extraction circuit which is the premise of the present invention, and FIG. 2 is a block diagram of an embodiment of the color signal separation method according to the present invention. 1, 16...input terminal, 2, 9...delay circuit,
3, 6... Subtraction circuit, 12... Addition circuit, 4, 1
0, 11...Multiplication circuit, 5...BPF, 7, 8...
Output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 搬送色信号が輝度信号に重畳された複合カラ
ーテレビジヨン信号源と、上記信号源の現フイー
ルドの走査線に対し隣接フイールドで画像上隣接
走査線となり、かつ副搬送波位相が逆相となる走
査線の信号を得る第1遅延手段と、上記現フイー
ルドと同一フイールドの隣接走査線の信号を得る
第2遅延手段と、上記第1遅延手段、第2遅延手
段の出力を混合する混合回路と、上記信号源に含
まれている動き情報により上記混合回路の混合比
を変化させる手段と、上記混合回路の出力と上記
信号源信号との差分を得る回路とを有してなるこ
とを特徴とする色信号分離方式。
1. A composite color television signal source in which a carrier color signal is superimposed on a luminance signal, and scanning in which an adjacent field is an adjacent scanning line on the image with respect to the scanning line of the current field of the signal source, and the subcarrier phase is opposite to the scanning line of the current field of the signal source. a first delay means for obtaining a line signal, a second delay means for obtaining a signal of an adjacent scanning line in the same field as the current field, and a mixing circuit for mixing the outputs of the first delay means and the second delay means; It is characterized by comprising means for changing the mixing ratio of the mixing circuit based on motion information contained in the signal source, and a circuit for obtaining a difference between the output of the mixing circuit and the signal source signal. Color signal separation method.
JP3539083A 1983-03-04 1983-03-04 Color signal separating system Granted JPS58161484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3539083A JPS58161484A (en) 1983-03-04 1983-03-04 Color signal separating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3539083A JPS58161484A (en) 1983-03-04 1983-03-04 Color signal separating system

Publications (2)

Publication Number Publication Date
JPS58161484A JPS58161484A (en) 1983-09-26
JPS6153915B2 true JPS6153915B2 (en) 1986-11-19

Family

ID=12440581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3539083A Granted JPS58161484A (en) 1983-03-04 1983-03-04 Color signal separating system

Country Status (1)

Country Link
JP (1) JPS58161484A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636841A (en) * 1984-05-31 1987-01-13 Rca Corporation Field comb for luminance separation of NTSC signals
US4819061A (en) * 1987-06-10 1989-04-04 Dubner Computer Systems, Inc. Recovery of luminance and chrominance information from an encoded color television signal
US5045929A (en) * 1989-05-13 1991-09-03 Zenith Electronics Corporation Three dimensional luma/chroma separation and vertical detail generation

Also Published As

Publication number Publication date
JPS58161484A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
JPS63242091A (en) Signal separation circuit
US4949166A (en) Apparatus for combining and separating constituent components of a video signal
JP2579930B2 (en) Composite signal separation circuit
JPH06327030A (en) Motion detecting circuit
US4951129A (en) Digital prefiltering of encoded video signals
JPS6153915B2 (en)
JPS58129892A (en) Color signal separation circuit
JP2617622B2 (en) Motion adaptive color signal synthesis method and circuit
JPS6345988A (en) Circuit for separating luminance signal and chrominance signal
JPH02108390A (en) Luminance signal and chrominance signal separating circuit for pal color television signal
JP3343180B2 (en) Improved comb filter and method
JPH0313790B2 (en)
JPH0439274B2 (en)
JPH01132290A (en) Luminance and chrominance signal separation circuit for television signal
JPH0338991A (en) Luminance signal/chrominance signal separating circuit
JP3663613B2 (en) Video signal processing apparatus and method
JPS58177078A (en) Television signal processing circuit
JPS62145992A (en) Comb-line filter circuit
JP2557511B2 (en) Motion detection circuit for television display screen
JPH0392093A (en) Movement detection circuit
JPS61125298A (en) Luminance signal and color signal of television signal processing system
JPS6276890A (en) Signal processing circuit
EP1639836A1 (en) Luminance and color separation
JPH03267895A (en) Luminance and color signal separation circuit
JPH0691662B2 (en) Color TV brightness / color separation circuit