JPS6153655B2 - - Google Patents

Info

Publication number
JPS6153655B2
JPS6153655B2 JP54120723A JP12072379A JPS6153655B2 JP S6153655 B2 JPS6153655 B2 JP S6153655B2 JP 54120723 A JP54120723 A JP 54120723A JP 12072379 A JP12072379 A JP 12072379A JP S6153655 B2 JPS6153655 B2 JP S6153655B2
Authority
JP
Japan
Prior art keywords
moisture
sample
air
amount
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54120723A
Other languages
Japanese (ja)
Other versions
JPS5644825A (en
Inventor
Katsue Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP12072379A priority Critical patent/JPS5644825A/en
Publication of JPS5644825A publication Critical patent/JPS5644825A/en
Publication of JPS6153655B2 publication Critical patent/JPS6153655B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は固体試料の水分測定法に係るものであ
る。更に詳しく、本発明は工程管理に直結した粉
塊混合物の水分測定を短時間で、しかも自動的に
実施することができる水分測定法に係るものであ
る。 固形試料の水分測定法としては、絶体法として
加熱減量法、加熱水分捕集法が、相対法として中
性子吸収法などがある。鉄鉱石、コークス等の工
場規模の粉塊混合物の水分測定法としては加熱減
量法と中性子吸収法が多く行われている。 加熱減量法はJIS等に採用されており、絶体法
として一般に実用されている方法である。この方
法では試料を20mm又は10mm以下に粉砕、縮分し、
1〜2Kgとして熱乾燥し、乾燥減量を測定して水
分含有量が求められる。しかしながら該方法で
は、微粉等の散逸が起らない状態、通常は静止状
態、で乾燥しなければならなく、また、恒量まで
乾燥しなければならないことにより、測定に長時
間、通常4〜6時間、を要し、オンラインで適用
する場合データのフイードバツクが遅過ぎる欠点
がある。また、乾燥時間を短くする為に試料量を
最小(1Kg以上)にするには粉砕縮分等の前処理
工程が多くなり、前処理機器を多く要しオンライ
ンで自動化する為の設備費が蒿むと共に、前処理
中の水分の揮散が起り水分値が低くなる欠点があ
る。 中性子吸収法は試料を充填した槽に中性子線を
透過し、水分による吸収率に対応するその減衰率
を測定して水分含有率を定めるものであるが、前
述の加熱減量法によつて較正することが必要であ
ると共に、試料の粉度構成の違いにより正確度が
著しく阻害されるという欠点がある。 本発明の目的は、粉塊混合物を粉砕縮分等の前
処理することなくそのまゝ試料とし、短時間で高
い精度で水分を測定し、自動化することが可能で
あり、工程管理に組入れて迅速にフイードバツク
することができる水分測定法を提供するにある。 本発明による水分測定法は、 (a) 既知重量(W)の試料を回転式乾燥機で、湿
分及び量(V)を測定した空気を送入しつつ乾
燥し、 (b) 該乾燥機より排出される熱空気を冷却機にて
冷却し、熱空気中に含まれる水分を凝縮せしめ
て凝縮水の重量(A)を求め、 (c) 測定終了を試料の完全乾燥前として、凝縮水
量の時間に対する微係数(△A/△t)及び熱
空気の湿分(H)の予め設定された値以下とな
つた時とし (d) 前記△A/△t及びHの設定値に基く補正係
数(f)により測定打切による残存水分量を、
また送入空気と冷却機の排風の湿分の差より求
められる捕正係数(h)により送入空気よりの
凝縮水量を、補正し、水分(M)を式; M={(A+Wf−Vh/W}×100% により求めることを特徴とする水分測定法であ
る。 以下、本発明の方法を、本発明の方法を実施す
る機器の一実施例の配置及び信号系統を示す第1
図に基いて詳述する。 第1図において3は回転式乾燥機である。回転
式乾燥機3は二重構造となつており、固定の外ド
ラム32と図示せざる駆動源により回転される内
ドラム33よりなる。 粉塊混合物の試料は採取後、粉砕、縮分される
ことなく秤量機1で計量された後、シユート2よ
り乾燥機3の内ドラム33内に投入される。一回
の測定試料の量は20〜50Kgが適当である。従つ
て、工程管理用、ロツトの水分値判定用の採取試
料を縮分することなくそのまま測定にかけること
が可能である。シユート2の先端には吊下げ状の
空気遮断板37が設けられてあり、試料投入を可
能としてある以外は、空気の流通を遮断してい
る。 一方、乾燥用空気は湿分計8にて湿分が測定さ
れ、後述のブロア4に吸引され、外ドラム32と
内ドラム33の間より入り、ヒータ31により加
熱され、通気孔35より内ドラム33内に入る。
試料は内ドラム33内にて回転により撹拌されな
がら加熱空気及び加熱内ドラム33により乾燥さ
れる。34は試料のこぼれ防止板である。乾燥温
度は勿論試料の種類によるが、コークス、鉄鉱石
等においては、105±5℃とされる。 乾燥機3からの蒸発水分を含む熱風は、試料の
撹拌により粉塵を同伴しているので、この粉塵を
除く為フイルタ5を通した後、ブロア4により吸
引される。ブロア4の吸引管の先端と乾燥機3の
内ドラム33の接続部は摺動密接せしめ大気を吸
引しないようにしてある。またプロア4に吸引さ
れる熱空気路には、図示の如く湿分検出端が設け
られ、湿分計8により熱空気中の湿分が測定され
る。 ブロア4より排出される熱空気は、一般にブロ
ア4等よりの放熱により約80℃程度に温度降下し
ている。この温度降下は露点以下とならないかぎ
り冷却機6の負荷を軽減するので好ましい。ブロ
ア4からの熱空気は次に冷却機6に導かれ、該空
気中の水分の大部分凝縮せしめられる。冷却機6
の能力は熱空気を冷却し含有水分の大部分を凝縮
せしめることが必要であり、水分測定値の精度を
高める為には、冷却機6からの排風の湿分値が送
入空気の湿分値にほぼ等しいか、これより僅かに
少くなるような冷却温度まで冷却することが望ま
しい。冷却機6にはフイン型冷却機などが適当で
あり、冷却により凝縮された水を効率よく捕集す
る為に内壁等はテフロン、密ろう等で疎水加工し
たものが望ましい。 冷却機6にて凝縮した水は水量計7に導かれ、
その重量が計量される。 ブロア4に吸引される熱空気の湿分及び水量計
7にて計量される凝縮累積水量の一般的な例をグ
ラフとして第2図に示す。測定開始直後の熱風中
の湿分H(H2OKg/乾空気Nm3)は大気の湿分に
等しく、試料の乾燥に伴つて遂次上昇し、ブロア
4に吸引される熱空気の温度が100℃以下の場合
は概ね一定の飽和に近い湿分域を径過し、乾燥終
了に近ずくと遂次湿分が低下し、再び大気湿分に
等しい値となる。一方冷却機6にては一般に大気
の露点温度にほぼ等しいか、これより低い温度に
熱空気を冷却するので、測定開始直後の未だ試料
より水分が蒸発しない間は水量計7にて計量され
る水量Aは大気中の水分量によるものである。試
料の乾燥に伴つて、累積水量Aは遂次増加し、乾
燥終期に到れば、その累積速度が減少し、乾燥終
了すれば再び大気中の水分の凝縮のみによる水分
量累積速度となる。凝縮水量Aの時間に対する微
係数△A/△t(H2OKg/分)の終時変化を第3
図にグラフ化して示す。 試料の乾燥終了を示す第2図における熱空気の
湿分Hが大気湿分Heと同じ値に移行する時間及
び第3図における△A/△tが大気湿分に基く値
αeに移行する時間は理論的に一致し、この時間
迄の凝縮水量Aを基準として試料中の水分量を算
出すればよい訳である。然しながら、第1に、試
料がほぼ乾燥すると熱空気中の粉塵の混入が増加
し、フイルタ5がつまり、フイルタ5の抵抗を過
大として測定上の不都合、例えばフイルタ5の抵
抗増加による通風量の補正等が必要となる。更に
熱風中の湿分Hは試料中の乾燥状態を示すものと
しては非常に鋭敏であるが、低い値、即ち大気湿
分への移行点Heを把握するには精度が悪い。ま
た凝縮水量の時間に対する微係数△A/△tも第
3図の一般的なものとして示されているグラフか
ら推定される如く△A/△tの値の屈曲点αeを
精度高く把握することは困難である。 よつて、本発明の方法においては、水分測定を
熱空気の湿分値Hが前述のHeに到る僅か前のHs
の点及び、凝縮水量の時間に対する微係数(△
A/△t)が前述のαeに到る僅か前のαsの点
で打切り、測定打切による残存水分量、即ち試料
中の凝縮水として捕集されない水分量を補正係数
(f)により補正する。前述のHs及びαsに到る
時間は理論的には同一時間とされる。 即ち、補正係数(f)はHs及びαsの設定の
しかたにより変化するものである。Hs及びαs
をHe及びαeに近づけておくことにより、補正
係数は小さな値となる。補正係数(f)は0.01
(H2OKg/試料Kg)以下になるようなHs及αsが
設定され、f値はJIS法等により水分値既知の試
料の本発明の方法による水分測定試験をすること
により算出される。 上述の如く、Hs及びαsに理論的に同時に到
達する筈であるが、実際には誤差等により必ずし
も同時に到達しない。本発明の方法においては、
測定終了をHs及びαsのいずれもより低くなつ
た時点とされる。即ち、熱空気の湿分Hの設定値
Hsのみででは終点判定精度が悪く、残留水分の
ばらつきが大である。αsを併用することにより
判定精度を高めることができる。またαsのみで
行う場合は試料の水分含有率及び大気湿分が低く
△A/△tが全体に低い場合は誤差が大となる。 一方、冷却機6にては熱空気が大気の露点温度
以下に冷却されるので、凝縮水量A中には大気よ
りの水分が包含されるので、これを補正する。即
ち、大気の湿分He(H2OKg/乾空気Nm3)と冷
却機6より排出される空気の湿分Hc(H2OKg/
乾空気Nm3)の差hに吸引排出される空気量V
(乾空気Nm3)を乗ずることにより得られる。 冷却機6より排出される空気の湿分Hcは、冷
却機6の冷却温度が一定とされ又は測定されてい
るので、この温度における飽和湿分として算出さ
れる。乾空気量Vは、この測定の装置を通過する
量が一定であるので、ブロアーにおける風速より
温度、湿分等を補正することにより算出すること
ができ、また系統の適宜な部分に流量計を設け、
温度、湿分、圧力を補正することに容易に算出す
ることができる。 以上の如くして、本発明の方法は、試料の加熱
乾燥により蒸発水分を冷却凝縮せしめてその重量
を計量することにより試料水分量を計るものであ
る。また完全乾燥までの凝縮水量を測定すること
は、種々の問題を惹起し、却て測定精度を低下す
るので、完全乾燥の僅か前に測定を停止し、残存
水分を適切な手段で補正する。また乾燥用空気に
同伴され試料水分と共に凝縮された水分量が補正
される。 即ち、本発明法による試料水分値Mは次式によ
り算出される。 M={(A+Wf−Vh)/W}×100% ここにおいて、 A:水量計で秤量された水量(Kg)、 W:試料量(Kg)、 V:乾燥に使用された空気量(乾Nm3)、 f:残存水分量算出のための補正係数(H2O
Kg/試料Kg)、 h:大気湿分と冷却機排風湿分の差に基く係数
(H2OKg/乾空気Nm3)。 式中Wfは残存水分量の補正項で、Vhが大気湿
分の補正項である。冷却機排風湿分が大気湿分よ
り高い場合は記号の−が+となることは勿論であ
る。 本発明の方法は試料毎に実施されるが、第1図
に示す如き自動測定制御手段を用いて試料ロツト
毎に連続的に自動的に測定することができる。第
1図において、9は乾燥の終点判定を行い且つ各
機器の動作制御を行う制御器、10は計算機であ
る。 多くの場合、乾燥機3は前回測定の際の予熱が
残存している。先ず、乾燥機3、ヒータ31、ブ
ロアー4、冷却機6を動作する。この装置内の空
気の流れが定常状態にならば、冷却機6の凝縮水
の秤量を水量計7にて開始せしめ制御器9及び計
算機10の作動を開始せしめる。秤量機1で計量
された試料20〜50Kgが乾燥機に投入される。水量
計7の累積水量A及び△A/△t、並びに大気温
度He及び冷却空気の湿度Hcによりhが計算機1
0にて計算され、制御器9に送られ、制御器9に
てH及び△A/△t値が予め設定されたHs及び
αsになると、水量計7の水量測定を停止せしめ
ると共に各機器を保守に支障ないタイムラグ及び
順序で停止せしめる。水量計7の水量測定値Aは
計算機10に送られ、別に計量されたW、V値に
基き、また算出されたh値、設定のf値に基き、
前記式により試料の水分値M(%)を計算する。
測定済の試料は図示せざる排出手段により排出さ
れ、次の測定の為の準備がされる。 本発明の方法を実施する装置の一実施例の仕様
を示せば次の通りである。 (1) 試料投入量:20〜50Kg、最大50Kg(鉄鉱
石)。 (2) 送風量:20〜30Nm3/分、乾燥機内の風速約
1m/分。 (3) 熱風温度:105±5℃ (4) 終点判定湿度:0.03〜0.04(H2OKg/乾空気
Nm3) (5) 終点判定△A/△t(=αs):0.2〔H2O
Kg/分〕以下。 (6) 乾燥時間:最大20分。 (7) 凝縮水量:最大5Kg (8) 残存水分量補正係数(f):0.01〔H2OKg/
試料Kg〕以下 (9) 湿分差に基く補正係数(h)0.〜0.003
〔H2OKg/乾空気Nm3〕 以上の如き装置により本発明の方法により測定
した試料の水分測定値を、JIS法による水分測定
値に較べて次表に示す。
The present invention relates to a method for measuring moisture in solid samples. More specifically, the present invention relates to a moisture measuring method that can automatically measure the moisture content of powder mixtures in a short period of time, which is directly linked to process control. Methods for measuring the moisture content of solid samples include the heating loss method and the heating moisture collection method as absolute methods, and the neutron absorption method as relative methods. The heating loss method and the neutron absorption method are often used to measure the moisture content of powder mixtures such as iron ore and coke on a factory scale. The heating loss method is adopted by JIS and other standards, and is a method that is generally used as an absolute method. In this method, the sample is crushed and reduced to 20 mm or less than 10 mm,
The moisture content is determined by drying with heat at 1 to 2 kg and measuring the loss on drying. However, in this method, it is necessary to dry in a state where fine powder etc. do not dissipate, usually in a stationary state, and it also has to be dried to a constant weight, so the measurement takes a long time, usually 4 to 6 hours. , and the data feedback is too slow when applied online. In addition, in order to minimize the sample amount (1 kg or more) in order to shorten the drying time, there are many pretreatment steps such as pulverization and reduction, which requires a lot of pretreatment equipment and increases the equipment cost for online automation. In addition, there is a drawback that the moisture value is lowered due to volatilization of moisture during pretreatment. In the neutron absorption method, a neutron beam is transmitted through a tank filled with a sample, and the moisture content is determined by measuring the attenuation rate, which corresponds to the absorption rate due to moisture. Calibration is performed using the heating loss method described above. In addition to this, there is a drawback that accuracy is significantly impaired due to differences in the fineness composition of the samples. The purpose of the present invention is to use a powder mixture as a sample without any pretreatment such as pulverization reduction, to measure moisture content in a short time with high accuracy, to automate the measurement, and to incorporate it into process control. The object of the present invention is to provide a moisture measurement method that allows rapid feedback. The moisture measurement method according to the present invention includes: (a) drying a sample of known weight (W) in a rotary dryer while supplying air whose moisture content and amount (V) have been measured; (b) drying the sample in the dryer; (c) Calculate the amount of condensed water, assuming that the measurement ends before the sample is completely dry. (d) Correction based on the set values of △A/△t and H The residual moisture content after measurement interruption is calculated using the coefficient (f).
In addition, the amount of condensed water from the incoming air is corrected by the capture coefficient (h), which is determined from the difference in humidity between the incoming air and the exhaust air from the cooler, and the moisture (M) is calculated using the formula: M = { (A + Wf - Vh/W}×100%.Hereinafter, the method of the present invention will be described in the following section.
This will be explained in detail based on the diagram. In FIG. 1, 3 is a rotary dryer. The rotary dryer 3 has a double structure, consisting of a fixed outer drum 32 and an inner drum 33 rotated by a drive source (not shown). After the sample of the powder mixture is collected, it is weighed by a weighing machine 1 without being crushed or reduced, and then fed into an inner drum 33 of a dryer 3 through a chute 2. The appropriate amount of sample to be measured at one time is 20 to 50 kg. Therefore, a sample collected for process control or for determining the moisture content of a lot can be directly subjected to measurement without being reduced. A hanging air blocking plate 37 is provided at the tip of the chute 2, and blocks air circulation except for allowing sample input. On the other hand, the moisture content of the drying air is measured by a hygrometer 8, and the air is sucked into the blower 4 (described later), enters between the outer drum 32 and the inner drum 33, is heated by the heater 31, and is heated by the air vent 35 into the inner drum. Enter within 33.
The sample is dried by heated air and the heated inner drum 33 while being agitated by rotation within the inner drum 33 . 34 is a sample spill prevention plate. The drying temperature naturally depends on the type of sample, but for coke, iron ore, etc., it is set at 105±5°C. The hot air containing evaporated moisture from the dryer 3 is accompanied by dust due to stirring of the sample, so it is passed through a filter 5 to remove this dust and then sucked by a blower 4. The connection between the tip of the suction pipe of the blower 4 and the inner drum 33 of the dryer 3 is slid into close contact with each other to prevent atmospheric air from being sucked in. Further, a moisture detection end is provided in the hot air path sucked into the proar 4 as shown in the figure, and the moisture in the hot air is measured by a moisture meter 8. The temperature of the hot air discharged from the blower 4 generally drops to about 80° C. due to heat radiation from the blower 4 and the like. This temperature drop is preferable because it reduces the load on the cooler 6 as long as the temperature does not drop below the dew point. The hot air from the blower 4 is then led to a cooler 6 where most of the moisture in the air is condensed. Cooler 6
The capacity of the cooler 6 is required to cool the hot air and condense most of the moisture contained in it, and in order to improve the accuracy of the moisture measurement value, the moisture value of the exhaust air from the cooler 6 must be equal to the humidity of the incoming air. It is desirable to cool to a cooling temperature that is approximately equal to or slightly less than the minute value. A fin-type cooler or the like is suitable for the cooler 6, and it is preferable that the inner wall etc. be hydrophobically treated with Teflon, beeswax, etc. in order to efficiently collect water condensed by cooling. The water condensed in the cooler 6 is led to the water meter 7,
Its weight is measured. A general example of the moisture content of the hot air drawn into the blower 4 and the cumulative amount of condensed water measured by the water meter 7 is shown in FIG. 2 as a graph. Moisture H (H 2 OKg/Nm 3 of dry air) in the hot air immediately after the start of measurement is equal to the moisture in the atmosphere, and gradually increases as the sample dries, and the temperature of the hot air sucked into the blower 4 increases. When the temperature is 100°C or lower, the humidity passes through a constant moisture range close to saturation, and as the drying approaches the end, the humidity gradually decreases and returns to a value equal to the atmospheric humidity. On the other hand, since the cooler 6 generally cools the hot air to a temperature that is approximately equal to or lower than the dew point temperature of the atmosphere, the water is measured using the water meter 7 immediately after the start of measurement, while the water has not yet evaporated from the sample. The amount of water A is based on the amount of moisture in the atmosphere. As the sample dries, the cumulative amount of water A gradually increases, and when the drying period reaches the end, the cumulative rate decreases, and once the drying is finished, the rate of cumulative water content returns to the rate due only to the condensation of moisture in the atmosphere. The final change in the differential coefficient △A/△t (H 2 OKg/min) of the amount of condensed water A with respect to time is expressed as the third
This is shown graphically in the figure. The time at which the moisture content H of the hot air shifts to the same value as the atmospheric humidity He in Figure 2, which indicates the completion of drying the sample, and the time at which △A/Δt shifts to the value αe based on the atmospheric humidity in Figure 3. theoretically match, and the amount of water in the sample can be calculated based on the amount A of condensed water up to this time. However, firstly, when the sample is almost dry, the amount of dust mixed in the hot air increases, and the filter 5 becomes clogged, causing the resistance of the filter 5 to become excessive, resulting in measurement problems, such as the need to correct the ventilation amount by increasing the resistance of the filter 5. etc. are required. Furthermore, although the moisture H in the hot air is very sensitive as an indicator of the dry state in the sample, it is not accurate enough to determine a low value, that is, the transition point He to atmospheric moisture. In addition, the differential coefficient △A/△t of the amount of condensed water with respect to time can be estimated from the general graph shown in Fig. 3, and the inflection point αe of the value of △A/△t can be grasped with high accuracy. It is difficult. Therefore, in the method of the present invention, moisture measurement is carried out at Hs just before the moisture value H of the hot air reaches the above-mentioned He.
and the differential coefficient of the amount of condensed water with respect to time (△
A/Δt) is aborted at a point αs just before reaching αe, and the amount of remaining moisture due to the abort of measurement, that is, the amount of moisture not collected as condensed water in the sample, is corrected by a correction coefficient (f). The time required to reach Hs and αs described above is theoretically the same time. That is, the correction coefficient (f) changes depending on how Hs and αs are set. Hs and αs
By keeping He and αe close to each other, the correction coefficient becomes a small value. Correction factor (f) is 0.01
Hs and αs are set to be less than (H 2 OKg/Kg of sample), and the f value is calculated by conducting a moisture measurement test using the method of the present invention on a sample whose moisture value is known according to the JIS method or the like. As mentioned above, Hs and αs should theoretically be reached at the same time, but in reality they do not necessarily arrive at the same time due to errors and the like. In the method of the present invention,
The measurement ends when both Hs and αs become lower. That is, the set value of the humidity H of hot air
If only Hs is used, the end point determination accuracy is poor and the residual moisture varies widely. By using αs in combination, the determination accuracy can be improved. In addition, when performing only with αs, the error becomes large if the water content of the sample and the atmospheric humidity are low and ΔA/Δt is low overall. On the other hand, since the hot air is cooled to below the dew point temperature of the atmosphere in the cooler 6, the amount of condensed water A contains moisture from the atmosphere, so this is corrected. That is, the atmospheric moisture He (H 2 OKg/dry air Nm 3 ) and the air moisture Hc (H 2 OKg/Nm 3 ) discharged from the cooler 6.
The amount of air sucked and discharged by the difference h between the dry air Nm 3 )
(dry air Nm 3 ). Since the cooling temperature of the cooler 6 is fixed or measured, the moisture content Hc of the air discharged from the cooler 6 is calculated as the saturated moisture at this temperature. Since the amount of dry air passing through the measurement device is constant, the amount of dry air V can be calculated by correcting temperature, moisture, etc. from the wind speed at the blower, and by installing a flow meter in an appropriate part of the system. established,
It can be easily calculated to correct for temperature, humidity, and pressure. As described above, the method of the present invention measures the water content of a sample by heating and drying the sample to cool and condense the evaporated water and then measuring its weight. Furthermore, measuring the amount of condensed water until complete drying causes various problems and even reduces measurement accuracy, so the measurement is stopped slightly before complete drying and the residual moisture is corrected by appropriate means. Also, the amount of moisture entrained in the drying air and condensed together with the sample moisture is corrected. That is, the sample moisture value M according to the method of the present invention is calculated by the following formula. M={(A+Wf-Vh)/W}×100% Where, A: Amount of water measured with a water meter (Kg), W: Amount of sample (Kg), V: Amount of air used for drying (dry Nm 3 ), f: Correction coefficient for calculating residual moisture content (H 2 O
Kg/Kg of sample), h: Coefficient based on the difference between atmospheric moisture and cooler exhaust air humidity (H 2 OKg/Nm 3 of dry air). In the formula, Wf is a correction term for residual moisture content, and Vh is a correction term for atmospheric moisture. Of course, when the cooler exhaust air humidity is higher than the atmospheric humidity, the symbol - changes to +. Although the method of the present invention is carried out for each sample, it can be continuously and automatically measured for each sample lot using an automatic measurement control means as shown in FIG. In FIG. 1, 9 is a controller that determines the end point of drying and controls the operation of each device, and 10 is a computer. In many cases, the dryer 3 still remains preheated from the previous measurement. First, the dryer 3, heater 31, blower 4, and cooler 6 are operated. When the air flow in this device is in a steady state, the water meter 7 starts measuring the condensed water in the cooler 6, and the controller 9 and computer 10 start operating. A sample of 20 to 50 kg weighed by the weighing machine 1 is put into the dryer. Calculator 1 calculates h using cumulative water volume A and △A/△t of water meter 7, atmospheric temperature He and cooling air humidity Hc.
0 and sent to the controller 9. When the H and ΔA/Δt values reach the preset Hs and αs, the controller 9 stops the water meter 7 from measuring the water volume and turns off each device. Stop the system with a time lag and in an order that does not interfere with maintenance. The water volume measurement value A of the water meter 7 is sent to the computer 10, and based on the separately measured W and V values, the calculated h value, and the set f value,
The moisture value M (%) of the sample is calculated using the above formula.
The measured sample is discharged by a discharge means (not shown) and prepared for the next measurement. The specifications of an embodiment of the apparatus for carrying out the method of the present invention are as follows. (1) Sample input amount: 20-50Kg, maximum 50Kg (iron ore). (2) Air flow rate: 20 to 30Nm 3 /min, air speed inside the dryer approximately 1m/min. (3) Hot air temperature: 105±5℃ (4) End point judgment humidity: 0.03 to 0.04 (H 2 OKg/dry air Nm 3 ) (5) End point judgment △A/△t (=αs): 0.2 [H 2 O
Kg/min] or less. (6) Drying time: 20 minutes max. (7) Condensed water amount: Maximum 5Kg (8) Residual water amount correction coefficient (f): 0.01 [H 2 OKg/
Sample Kg〕 or less (9) Correction coefficient based on moisture difference (h) 0.~0.003
[H 2 OKg/Nm 3 of dry air] The following table shows the measured moisture values of the samples measured by the method of the present invention using the above-mentioned apparatus and compared with the measured moisture values by the JIS method.

【表】 本発明の方法は従来の乾燥減量測定方式を加熱
水分捕集測定方式にしたことにより、試料を撹拌
しながら乾燥することが可能となり、乾燥時間が
約20分に、全体の測定時間が約30分に短縮され
る。試料を採取後縮分等の前処理を行うことなく
大量のものをそのまま使用するので、前処理にお
ける水分揮発がなくなり、正確度が向上すると共
に、自動化の場合の設備コストを低減することが
できる。 また、本発明の方法は製鉄所等の工程管におけ
る水分の測定に好適であり、鉄鉱石のサイジング
工程、石炭配合工程、高炉装入物の管理工程等に
おける水分の測定において、迅速にフイードバツ
クが可能であると共に、サンプラーと組合せて無
人化を図をこともできる。
[Table] The method of the present invention replaces the conventional method of measuring loss on drying with a heating moisture trapping method, making it possible to dry the sample while stirring, reducing the drying time to about 20 minutes and the overall measurement time. time is reduced to approximately 30 minutes. Since a large amount of sample is used as it is without pre-treatment such as reduction after collection, there is no moisture volatilization during pre-treatment, improving accuracy and reducing equipment costs in the case of automation. . In addition, the method of the present invention is suitable for measuring moisture in process pipes at steel plants, etc., and provides rapid feedback in measuring moisture in iron ore sizing processes, coal blending processes, blast furnace charge control processes, etc. Not only is this possible, but it can also be combined with a sampler to achieve unmanned operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する機器の一実施
例の配置及び信号系統図、第2図はブロアにて吸
引される熱空気の湿分及び凝縮累積水分のグラ
フ、第3図は凝縮水量の時間に対する徴係数の径
時変化を示すグラフである。 図面において、1……秤量機、2……シユー
ト、3……回転式乾燥機、4……ブロア、5……
フイルタ、6……冷却機、7……水量計、8……
湿分計、9……制御器、10……計算機。
Fig. 1 is a layout and signal system diagram of an embodiment of equipment for carrying out the method of the present invention, Fig. 2 is a graph of the moisture content of hot air sucked by a blower and accumulated moisture condensed, and Fig. 3 is a graph of condensed cumulative moisture. It is a graph which shows the chronological change of the signature coefficient with respect to the time of water quantity. In the drawings, 1...Weighing machine, 2...Chute, 3...Rotary dryer, 4...Blower, 5...
Filter, 6... Cooler, 7... Water meter, 8...
Moisture meter, 9...controller, 10...calculator.

Claims (1)

【特許請求の範囲】 1 (a) 既知重量(W)の試料を回転式乾燥機で
湿分(He)及び量(V)を測定した空気を送
入しながら乾燥し、 (b) 該乾燥機より排出される熱空気を冷却機にて
冷却し、熱空気中に含まれる水分を凝縮させて
凝縮水の重量(A)を測定し、 (c) 上記測定の打切りを、上記試料の完全乾燥前
の時点とし、該時点は凝縮水量の時間に対する
微係数(凝縮速度ΔA/Δt)が大気のみの湿
分による凝縮速度αeより僅かに大きな値とし
て設定したαs以下となり、かつ上記熱空気の
湿分が大気湿分Heより僅かに大きな値として
設定したHs以下となつた時とし、 (d) 上記測定の打切りによる試料中の残存水分量
を補正係数(f)により補正し、 (e) 上記凝縮水の重量(A)に含まれる送風空気
湿分からの凝縮分を、送風空気湿分(He)と
冷却後の排風空気湿分(Ho)の差(He−Ho)
として求めた補正係数(h)により補正し、 (f) 結果として、鉱物の粉塊混合物の水分含有率
(M)を M={(A+Wf−Vh)/W}×100% により求めることを特徴とする水分測定法。
[Claims] 1. (a) drying a sample of known weight (W) in a rotary dryer while supplying air whose moisture content (He) and amount (V) have been measured; (b) drying the sample with a known weight (W); The hot air discharged from the machine is cooled by a cooler, the moisture contained in the hot air is condensed, and the weight (A) of the condensed water is measured. The time point is before drying, and the time point is when the differential coefficient of the amount of condensed water with respect to time (condensation rate ΔA/Δt) is less than or equal to αs, which is set as a value slightly larger than the condensation rate αe due to moisture in the atmosphere alone, and when the hot air is (d) The residual moisture content in the sample due to the discontinuation of the above measurement is corrected by the correction coefficient (f), (e) The condensed content from the blown air moisture included in the weight of condensed water (A) above is calculated as the difference between the blown air moisture (He) and the exhaust air moisture after cooling (Ho) (He - Ho).
(f) As a result, the moisture content (M) of the mineral powder mixture is determined by M = {(A + Wf - Vh) / W} x 100%. Moisture measurement method.
JP12072379A 1979-09-21 1979-09-21 Moisture measuring method Granted JPS5644825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12072379A JPS5644825A (en) 1979-09-21 1979-09-21 Moisture measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12072379A JPS5644825A (en) 1979-09-21 1979-09-21 Moisture measuring method

Publications (2)

Publication Number Publication Date
JPS5644825A JPS5644825A (en) 1981-04-24
JPS6153655B2 true JPS6153655B2 (en) 1986-11-19

Family

ID=14793401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12072379A Granted JPS5644825A (en) 1979-09-21 1979-09-21 Moisture measuring method

Country Status (1)

Country Link
JP (1) JPS5644825A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709579A (en) * 1985-08-16 1987-12-01 Westinghouse Electric Corp. Measurement of moisture content
US5138870A (en) * 1989-07-10 1992-08-18 Lyssy Georges H Apparatus for measuring water vapor permeability through sheet materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180057A (en) * 1975-01-08 1976-07-13 Takeshi Kawai KANSODOHANBETSUSOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180057A (en) * 1975-01-08 1976-07-13 Takeshi Kawai KANSODOHANBETSUSOCHI

Also Published As

Publication number Publication date
JPS5644825A (en) 1981-04-24

Similar Documents

Publication Publication Date Title
US4507875A (en) Apparatus for determining the concentration of vapors in a flowing gas stream
CN105784747A (en) Method for detecting silicon dioxide, aluminum sesquioxide, calcium oxide and magnesium oxide in acetylene sludge
CN112858081A (en) Device and method for testing water absorbability of propellant raw materials
CN108548748A (en) A kind of gravitational thermal analysis method and device
CN110262419B (en) Method for regulating and controlling processing strength of drum-dried cut tobacco based on cut tobacco moisture evaporation enthalpy
JPS6153655B2 (en)
CN108663281A (en) A kind of bulk material moisture on-line detection device and its detection method
CN207066916U (en) A kind of bulk material moisture on-line detection means
CN113607295A (en) Low-temperature air temperature and humidity measurement and calculation method
JPS60230036A (en) Method and device for measuring moisture of hydrous material
US2931718A (en) Method and apparatus for automatically measuring and controlling moisture in a sinter mix or the like
CN109173559A (en) A kind of condensation cycle gain of heat batch circulating grain products drying energy saving device
JPS6342745B2 (en)
US4724700A (en) Differential flow gas analyzer
CN108663280A (en) A kind of bulk material moisture on-line detection device and its detection method
JPH0634532A (en) Method of measuring moisture of sinteref material
JP3611022B2 (en) Measurement method for loss of ignition of sludge
JPS60230035A (en) Moisture measuring instrument
CN201298043Y (en) Volatile organic compound concentration measuring mechanism
US6655043B1 (en) Dryer moisture indicator
DK145188B (en) PROCEDURE FOR REGULATING A THROTTLE HEAT EXCHANGED HEAT EXCHANGER FOR HEATING A FINE CORN MATERIAL ISSUES CEMENTRAMEL
JPS6329248Y2 (en)
JPH06159640A (en) Basicity adjusting apparatus and adjusting method therefor
JP3205210B2 (en) Moisture control method for coal humidity control equipment
JP7077832B2 (en) Whitening prediction method for sintered main exhaust gas