JPS6153459A - Ignition controller for internal-combustion engine - Google Patents
Ignition controller for internal-combustion engineInfo
- Publication number
- JPS6153459A JPS6153459A JP60155572A JP15557285A JPS6153459A JP S6153459 A JPS6153459 A JP S6153459A JP 60155572 A JP60155572 A JP 60155572A JP 15557285 A JP15557285 A JP 15557285A JP S6153459 A JPS6153459 A JP S6153459A
- Authority
- JP
- Japan
- Prior art keywords
- ignition coil
- primary current
- time
- ignition
- waveform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/155—Analogue data processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
〔本発明の技術分野〕
本発明は点火コイルの一次電流の通電時間を制御する内
燃機関用点火制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ignition control device for an internal combustion engine that controls the energization time of a primary current in an ignition coil.
従来のマイクロコンピュータを用いた電子進角装置の点
火コイルのi1N1時間制御方式には電源電圧や機関の
回転数の関数としてあらかじめ通電時間をマイクロコン
ピュータのメモリ内に計算手段やマツプの形で格納し、
必要に応じてこれを参照することによりiIN電時開時
間定するものがあった(例えば、特開昭57−1958
67号公報参照)。In the conventional i1N1 time control method of the ignition coil of an electronic advance angle device using a microcomputer, the energization time is stored in advance in the memory of the microcomputer in the form of a calculation means or map as a function of the power supply voltage and engine rotation speed. ,
There was a method to determine the iIN electric time opening time by referring to this as necessary (for example, Japanese Patent Application Laid-Open No. 57-1958).
(See Publication No. 67).
又マイクロコンピュータおよびカウンタなどより成る点
火タイミング発生回路においては、その信号の1!It
、縁が点火時期であるような、機関の一定回転角に相当
する信号を発生し、この信号より別のアナログ回路にて
点火コイル通電時間を作成するものがあった。In addition, in an ignition timing generation circuit consisting of a microcomputer, a counter, etc., the signal 1! It
There was one that generated a signal corresponding to a constant rotation angle of the engine, with the edge indicating the ignition timing, and used this signal to create the ignition coil energization time using a separate analog circuit.
まず前者の方法においては、通電時間はあらかじめ決定
されているので、製造時のばらつきや温度上昇あるいは
加速時等の回転速度変化に対して最適な通電時間を確保
出来ないことがある。ここで点火コイル1次電流が設定
値以上にならないよう制御する定電流制御機能を有する
回路においては、この定電流に達している時間がわずか
に増加すると回路素子の発熱が急激に増え、最悪の場合
には素子の破損に到る。First, in the former method, since the energization time is determined in advance, it may not be possible to ensure the optimum energization time in response to manufacturing variations, temperature rises, or rotational speed changes such as during acceleration. In a circuit that has a constant current control function that controls the ignition coil primary current so that it does not exceed a set value, if the time during which the ignition coil primary current reaches this constant current increases slightly, the heat generation of the circuit elements will rapidly increase, resulting in the worst case scenario. In some cases, the element may be damaged.
次に後者の方法においては製造時のばらつきのような問
題はない反面、通電時間を制御する複雑な回路が必要と
なると共に、加速時の最適な通電時間確保も十分でない
。この方式による点火装置のブロックを第1図に、また
第2図に主要動作波形を示す。ESA制御部2は基準位
置信号発生器1より機関運転状態に応じて点火時期を算
出し、30”CA幅の点火信号をイグナイタ3に出力す
る。イグナイタ3では上記点火信号より閉角度制御を行
ない点火コイル4の1次電流通電開始時期を決定する。Next, while the latter method does not have problems such as variations in manufacturing, it requires a complicated circuit for controlling the energization time, and it is not sufficient to secure the optimum energization time during acceleration. FIG. 1 shows a block diagram of an ignition system using this method, and FIG. 2 shows main operating waveforms. The ESA control section 2 calculates the ignition timing from the reference position signal generator 1 according to the engine operating state, and outputs an ignition signal with a width of 30"CA to the igniter 3. The igniter 3 performs closing angle control based on the above ignition signal. The timing to start supplying the primary current to the ignition coil 4 is determined.
この方式におけるイグナイタ3での閉角度制御方法は第
2図に示すように点火信号の後縁つまり点火時期よりラ
ンプ波を発生する。このランプ波が動作レベルに達した
時点を通電とする。ここでこのランプ波の傾斜を変化さ
せ、高速になるに従い傾斜を急にする。また動作レベル
は低速では高く高速では低(して常にほぼ一定の通電時
間を確保する。そして点火1次電流が所定の値以上であ
る時間(これを定電流時間を呼ぶ)を検出してこの定電
流時間が長(なった場合に動作レベルを上げて常に最適
な閉角度が得られるよう制御する。このように低速から
高速までの幅広い機関の回転域での制御を可能にするよ
うランプ波の傾斜や動作レベルを変化させるため複雑な
回路構成となる等の欠点があった。なお、5は点火プラ
グ、6はイグニッションスイッチ、および7はバッテリ
である。In this method of controlling the closing angle of the igniter 3, a ramp wave is generated from the trailing edge of the ignition signal, that is, from the ignition timing, as shown in FIG. When this ramp wave reaches the operating level, electricity is turned on. Here, the slope of this ramp wave is changed, and becomes steeper as the speed increases. In addition, the operating level is high at low speeds and low at high speeds (so that a nearly constant energizing time is always ensured.The time during which the ignition primary current is above a predetermined value (this is called constant current time) is detected and If the constant current time becomes long, the operating level is raised and control is performed so that the optimal closing angle is always obtained.In this way, the ramp waveform is used to enable control over a wide engine speed range from low speed to high speed. This has disadvantages such as a complicated circuit configuration due to changing the inclination and operating level of the engine.Note that 5 is a spark plug, 6 is an ignition switch, and 7 is a battery.
本発明は上記の問題点に鑑みてなされるものであり、点
火コイルの通電時間制御を行なうものにおいて、特に加
速時の通電時間を補正するべく、点火コイルの一次電流
の立上り特性に合わせてコンデンサを充電し、この充電
波形と所定の基準電圧とから加速状態に応じた加速パル
スを得て、点火コイルの通電時間を長くすることにより
、加速時においても最適な通電時間が得られる内燃機関
用点火制御装置の提供を目的とする。The present invention has been made in view of the above problems, and in a device that controls the energization time of an ignition coil, in order to correct the energization time particularly during acceleration, a capacitor is adjusted in accordance with the rise characteristics of the primary current of the ignition coil. For internal combustion engines, the optimal energization time can be obtained even during acceleration by charging the ignition coil, obtaining an acceleration pulse according to the acceleration state from this charging waveform and a predetermined reference voltage, and extending the energization time of the ignition coil. The purpose is to provide an ignition control device.
以下、本発明に係る内燃機関用点火制御装置を添付図面
について説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An ignition control device for an internal combustion engine according to the present invention will be described below with reference to the accompanying drawings.
第3図は本発明の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the present invention.
10は内燃機関の回転と同期して基準位置信号を発生す
る基準位置信号発生手段である。20は機関の運転条件
を感知するための各種センサである。Reference numeral 10 denotes a reference position signal generating means for generating a reference position signal in synchronization with the rotation of the internal combustion engine. Reference numeral 20 indicates various sensors for sensing the operating conditions of the engine.
100は演算手段であり、機関の負荷や回転数などの運
転条件を信号発生手段10、各種センサ20より入力す
ることにより所定の点火時期を算出し、点火時期より予
め決定された時間だけ以前の点火コイル通電開始時期を
算出し、信号発生手段10の信号を基準として前述の通
電開始時期および点火時期を表示する信号を出力する。100 is a calculation means, which calculates a predetermined ignition timing by inputting operating conditions such as engine load and rotation speed from a signal generation means 10 and various sensors 20, and calculates a predetermined ignition timing by a predetermined time before the ignition timing. The ignition coil energization start timing is calculated, and a signal indicating the above-mentioned energization start timing and ignition timing is output based on the signal from the signal generating means 10.
演算手段100は、CPUI 10、A/D変換器12
0、メモリ130、および人出力ボートやカウンタを含
む入出力器140で構成される。200は制御手段であ
り、演算手段100の出力信号を入力して常に最適な点
火性能を発生するためにその出力信号の通電開始時期を
遅らせ演算手段100で算出した通電時間を縮小して補
正を行なう。制御手段200は、1IrI電時間の縮小
演算をする閉角度制御部210、点火コイ、ル30の1
次電流の通電および1次電流が設定値以上にならないよ
う制御する定電流制御出力部220および点火コイル3
0の1次電流を検出しその電流に応じた信号を発生する
1次電流検出部230より構成される。点火コイル30
は1次巻線の電流を変化させることにより2次巻線に高
電圧を発生させて点火プラグ60にて点火火花を発生さ
せる。イグニションスイッチ40はバッテリー50の通
−電を制御する。The calculation means 100 includes a CPU 10 and an A/D converter 12.
0, a memory 130, and an input/output device 140 including a human output board and a counter. Reference numeral 200 denotes a control means which inputs the output signal of the calculation means 100 and performs correction by delaying the energization start time of the output signal and shortening the energization time calculated by the calculation means 100 in order to always generate optimal ignition performance. Let's do it. The control means 200 includes a closing angle control unit 210, an ignition coil, and one of the
Constant current control output unit 220 and ignition coil 3 that control the conduction of the secondary current and the primary current so that it does not exceed a set value
It is composed of a primary current detection section 230 that detects a primary current of 0 and generates a signal according to the current. Ignition coil 30
By changing the current in the primary winding, a high voltage is generated in the secondary winding, and an ignition spark is generated at the ignition plug 60. Ignition switch 40 controls energization of battery 50.
第4図は演算手段100で行なう演算について時系列的
に説明したものであり、第5図(a)、 (blは第4
図の演算処理の流れを表わすフローチャートである。第
5図(a)はメインルーチンを示し、第5図(b)は割
込みルーチンを示す。メインルーチンでは機関の回転と
同期をとる必要の少ない処理が行なわれ、これに対し割
込みルーチンは機関の回転と同期して実行され、前記メ
インルーチン実行時にこれを中断する割込処理として行
なわれる。メインルーチンではまずプログラムスタート
後に各種の初期化を行ない、次に各種センサ20より機
関の運転状態を入力し、上記割込み処理で求められた機
関のクランク軸iao’回転に要する時間T 180と
からメモリ130の中にデータテーブルとして記憶され
ている進時間TESAをテーブルの補間により求めメモ
リ130に格納する。ここで進時間とはTDCから点火
時期までの進み時間であり、進角量(角度)を時間に変
換したものである。次にバッテリ電圧■3をA/D変換
器120により入力してTVllを算出する。第6図に
TVllの一例を示すが、このようにT V Rは電源
電圧■8の関数として表わされ、実際の処理においては
電圧■、からメモリ130に格納されているTVIのテ
ーブルを補間して所望のTvsを算出し、メモリ130
に格納する。次にT、8.とTVI1より次式より点火
コイル30の1次電流の通電時間T。Nを算出する。FIG. 4 is a chronological explanation of the calculations performed by the calculation means 100, and FIGS.
3 is a flowchart showing the flow of calculation processing in the figure. FIG. 5(a) shows the main routine, and FIG. 5(b) shows the interrupt routine. The main routine performs processing that does not require much synchronization with the rotation of the engine, whereas the interrupt routine is executed in synchronization with the rotation of the engine and is performed as an interrupt process that interrupts the execution of the main routine. In the main routine, first, after starting the program, various initializations are performed, and then the operating state of the engine is input from various sensors 20, and the time T180 required for the rotation of the engine's crankshaft iao' determined by the above interrupt processing is stored in the memory. The advance time TESA stored as a data table in the memory 130 is obtained by interpolating the table and stored in the memory 130. The advance time here is the advance time from TDC to the ignition timing, and is obtained by converting the advance amount (angle) into time. Next, the battery voltage ■3 is inputted by the A/D converter 120 to calculate TVll. An example of TVll is shown in FIG. 6. In this way, TVR is expressed as a function of the power supply voltage ■8, and in actual processing, the TVI table stored in the memory 130 is interpolated from the voltage ■8. to calculate the desired Tvs and store it in the memory 130.
Store in. Next, T, 8. From TVI1, the primary current conduction time T of the ignition coil 30 is determined by the following formula. Calculate N.
TON= (Tlll11 / 16) +Tv++次
に点火コイル30の1次電流のオフ時間T。F。TON=(Tlll11/16) +Tv++ Next, the off time T of the primary current of the ignition coil 30. F.
を算出する。TOFFは第7図に示すように電源電圧■
、より算出される。通電時間T。、4と比較してT。N
が長くてT。F、が確保出来なければT。8を縮小して
これを!開時間T。、fとしてメモリ130に格納する
。この後、その他の処理を行ない以後このループを繰り
返す。Calculate. TOFF is the power supply voltage ■ as shown in Figure 7.
, is calculated from. Energization time T. , T compared to 4. N
is long and T. If F cannot be secured, T. Reduce 8 and get this! Opening hours T. , f in the memory 130. After this, other processing is performed and this loop is repeated thereafter.
割込みルーチンについて説明すると、処理1は基準位置
信号1のTDCの直後に行なわれ、まず110140の
カウンタを用いて計測した機関のクランク軸180@回
転に要する時間Tl1l10をメモリ130に格納し、
次に通電用のカウント時間′tIを次式より算出し、カ
ウンタ140に出力する。To explain the interrupt routine, processing 1 is performed immediately after the TDC of the reference position signal 1, and first, the time Tl1l10 required for the rotation of the engine crankshaft 180, which is measured using the counter 110140, is stored in the memory 130.
Next, the count time 'tI for energization is calculated from the following equation and output to the counter 140.
j l= T +so Toll T’EsAここ
でT。N、TEsAは前記メインルーチンにて算出して
メモリ130に格納した値を使用する。そして所定の通
電カウント後、通電開始の出力信号を発生し、この直後
、処理2の割込み処理ルーチンが実行され、点火時期カ
ウンタにカウント値T。Hをロードし、これにより算出
した点火時期にて点火時期の出力信号を発生させる。j l= T +so Toll T'EsA where T. For N and TEsA, the values calculated in the main routine and stored in the memory 130 are used. Then, after a predetermined energization count, an output signal to start energization is generated, and immediately after this, the interrupt processing routine of process 2 is executed, and the count value T is set in the ignition timing counter. H is loaded, and an ignition timing output signal is generated at the ignition timing calculated thereby.
第8図は、制御手段200の電気回路図を示し、特に閉
角度制御部210を詳細に表わしている。FIG. 8 shows an electrical circuit diagram of the control means 200, particularly showing the closing angle control section 210 in detail.
制御手段200への入力信号は、パルスの立ち下がりで
点火時期とする。2040は定電流源でありコンデンサ
2030を充電、2010はインバータであり、スイッ
チ2020を制御してコンデンサ2030を放電する。The input signal to the control means 200 is set as the ignition timing at the falling edge of the pulse. 2040 is a constant current source that charges the capacitor 2030, and 2010 is an inverter that controls the switch 2020 to discharge the capacitor 2030.
2050は定電流源、2060はスイッチ、2070は
コンデンサ、2080はスイッチである。2090は定
電流源であり、電源電圧■8にて電流値が制御される。2050 is a constant current source, 2060 is a switch, 2070 is a capacitor, and 2080 is a switch. 2090 is a constant current source, the current value of which is controlled by the power supply voltage 8.
2100はスイッチ、2110は定電流源、2120は
コンデンサ2030とコンデンサ2070の電位を比較
するコンパレータ、2130はANDゲート、2210
はパワートランジスタ2220をドライブし点火コイル
30の1次電流が所定の電流値以上にならないようにす
る定電流制御部、230は電流検出抵抗2230の電位
より点火コイル30の1次電流を検出する電流検出回路
である。2100 is a switch, 2110 is a constant current source, 2120 is a comparator that compares the potentials of capacitor 2030 and capacitor 2070, 2130 is an AND gate, 2210
230 is a constant current control unit that drives the power transistor 2220 to prevent the primary current of the ignition coil 30 from exceeding a predetermined current value, and 230 is a current that detects the primary current of the ignition coil 30 from the potential of the current detection resistor 2230. This is a detection circuit.
次に閉角度制御分の加速検出に関する部分の構成として
は、241Oは増幅器であり抵抗2230の電圧を増幅
して、ダイオード2420を通じてコンデンサ2470
に点火コイル30の1次電流波形と相似な電圧波形を発
生させる。2440はANDゲー1−であり、2人力の
片側にインバー夕を持つ。2450はスイッチ、246
0は定電流源、2430はコンデンサ、2470と共に
CRの時定数回路を形成する抵抗、2480はコンパレ
ータ2490の基準電圧、2500はゲートであり加速
パルスACCを発生する。Next, as for the configuration of the part related to acceleration detection for closing angle control, 241O is an amplifier that amplifies the voltage of resistor 2230 and connects it to capacitor 2470 through diode 2420.
A voltage waveform similar to the primary current waveform of the ignition coil 30 is generated. 2440 is an AND game 1-, with an inverter on one side of the two-man force. 2450 is a switch, 246
0 is a constant current source, 2430 is a capacitor, a resistor forms a CR time constant circuit together with 2470, 2480 is a reference voltage for a comparator 2490, and 2500 is a gate that generates an acceleration pulse ACC.
第9図は制御手段200の各部の波形を示したものであ
る。人力信号Aは演算手段100の出力であり、概略の
通電時間が決定され、立上がり及び立下がりを各々通電
、点火時期とする。スイッチ2020は反転入力信号A
の期間導通ずるため、コンデンサ2030の端子電圧■
203は人力信号Aの立上がりより上昇するランプ波と
なり反転入力信号Aにてリセットされる。コンデンサ2
070は定電流時間をおいては定電流源2050の電流
1205により充電される。一方放電は点火コイル30
の1次電流が導通していない反転閉角度出力Bの期間、
定電流源2090の電流1209及び加速パルスが出て
いる量定電流源2110の電流1211により行なわれ
る。コンデンサ2070の端子電圧V2O7はコンパレ
ータ212Oにより比較され、端子電圧■203が端子
電圧V2O7より高くなった時点が点火コイル30の1
次通電開始時間である。コンパレータ2120の出力は
NA’ND回路2130により入力信号Aと論理演算さ
れ点火コイル30の1次コイルの通電及び点火時期を制
御する反転閉角度出力信号Bとなる。コイル1次電流1
1 は点火コイル30の1次側を流れる電流、定電流パ
ルスT、は1次電流11が設定値以上になった期間、電
流検出部230より出力される信号である。FIG. 9 shows waveforms of each part of the control means 200. The human input signal A is the output of the calculation means 100, and the approximate energization time is determined, and the rising and falling edges are used as the energization and ignition timings, respectively. Switch 2020 receives inverted input signal A
Since it is conductive for a period of , the terminal voltage of the capacitor 2030 is
203 is a ramp wave that rises from the rise of the human input signal A and is reset by the inverted input signal A. capacitor 2
070 is charged by the current 1205 of the constant current source 2050 after a constant current time. On the other hand, the discharge is from the ignition coil 30
The period of the inverted closing angle output B during which the primary current of is not conducting,
This is performed by a current 1209 of a constant current source 2090 and a current 1211 of a constant current source 2110 from which the acceleration pulse is output. The terminal voltage V2O7 of the capacitor 2070 is compared by the comparator 212O, and when the terminal voltage 203 becomes higher than the terminal voltage V2O7, the 1st voltage of the ignition coil 30 is detected.
This is the next energization start time. The output of the comparator 2120 is subjected to a logical operation with the input signal A by the NA'ND circuit 2130, and becomes an inverted closing angle output signal B that controls the energization of the primary coil of the ignition coil 30 and the ignition timing. Coil primary current 1
1 is a current flowing through the primary side of the ignition coil 30, and a constant current pulse T is a signal output from the current detection unit 230 during a period when the primary current 11 exceeds a set value.
第10図(al、(b)は閉角度演算により定電流時間
が設定値に収束する様子を示したものであり、第10図
(alは前回の定電流時間が長い場合に次回の通電開始
時期を遅らせる様子を示す。又第10図(blは前回の
定電流時間が少ない場合に次回の1ffl電開始時期を
早める様子を示している。このようにして定電流時間は
常に設定値になるように制御され、その値は第11図で
示される波形により決定される。つまりコンデンサ20
70は定電流時間T、の期間、定電流1205で充電さ
れT、の期間、定電流1207で放電される。従って次
式が成り立つ。Figure 10 (al, (b) shows how the constant current time converges to the set value by the closing angle calculation. This shows how the timing is delayed. Also, Figure 10 (bl) shows how the next 1ffl current start timing is advanced when the previous constant current time is short. In this way, the constant current time is always at the set value. The value of the capacitor 20 is determined by the waveform shown in FIG.
70 is charged with a constant current 1205 during a constant current time T, and discharged with a constant current 1207 during a period T. Therefore, the following formula holds.
1205xTc /c207=i207X (T’s。1205xTc /c207=i207X (T's.
Tc Tco+t) / C207
Te=i 207 (T+ao TcotL) /
(i205+4207)
ここでTcはコイル立上がり時間
c207はコンデンサ2070の容■
第12図は加速検出と力u速時における閉角度の補正を
示したものである。コンパレータ・2470は増幅器2
410の出力電流1241によりコイル1次電流I、の
電流波形と相似な電圧となるよう充電され、その後抵抗
2430を通して充電される。そして信号(A・T、)
によりリセットされる。ここで第12図に示したように
閉角度が小さくコイル1次電流Itが不足した場合にお
いては点火後端子電圧V247がV248に達するまで
の間、加速パルスACCが出力されこのACCの期間、
電流1211でコンデンサ2070を急速放電する。そ
の結果、電流1207は急速に下がり次回の通電開始時
期を早める。抵抗2430の値はコンデンサ2470と
共に点火コイルの立上がり特性を模擬するよう選択され
る。また電圧■248は1次電流1.の定電流値に対応
した電位よりも回路素子の変動を考慮して若干低めに設
定する。Tc Tco+t) / C207 Te=i 207 (T+ao TcotL) /
(i205+4207) Here, Tc is the coil rise time c207 is the capacity of the capacitor 2070. Figure 12 shows acceleration detection and correction of the closing angle when the force is at speed u. Comparator 2470 is amplifier 2
It is charged by the output current 1241 of the coil 410 to a voltage similar to the current waveform of the coil primary current I, and then charged through the resistor 2430. And the signal (A・T,)
It is reset by . Here, as shown in FIG. 12, when the closing angle is small and the coil primary current It is insufficient, the acceleration pulse ACC is output until the terminal voltage V247 reaches V248 after ignition, and during this ACC period,
The current 1211 quickly discharges the capacitor 2070. As a result, the current 1207 rapidly decreases to bring forward the next energization start time. The value of resistor 2430, along with capacitor 2470, is selected to simulate the start-up characteristics of the ignition coil. Also, the voltage ■248 is the primary current 1. The potential is set slightly lower than the potential corresponding to the constant current value, taking into account fluctuations in circuit elements.
本発明に係る内燃機関用点火制御装置は、点火コイルの
1iTl電時間制御を行なうものにおいて、−次電流の
立上がり特性に合わせてコンデンサを充電し、この充電
波形に応じて加速パルスを発生し、通電時間を長くする
ようにしているので、加速時においても点火コイルの通
電時間制jlnが正確、確実、かつ安価に実現すること
ができる。The ignition control device for an internal combustion engine according to the present invention performs 1iTl current time control of the ignition coil, and charges a capacitor in accordance with the rise characteristics of the negative current, generates an acceleration pulse in accordance with this charging waveform, Since the energization time is made longer, the ignition coil energization time jln can be accurately, reliably, and inexpensively realized even during acceleration.
第1図は従来の内燃機関用点火制御装置の構成を示す図
、第2図は第1図の装置における主要部分の信号波形を
示す図、第3図は本発明に係る内燃機関用点火制御装置
の構成を示す図、第4図は本発明装置における基準位置
信号からの点火出力信号が発生するまでの経緯を示す図
、第5図(al、(b)は本発明の点火通電制御のメイ
ンルーチンおよび割込ルーチンを説明するためのフロー
チャート、第6図はTvm Vaの関係を示す図、第
7図はTOFF Vl+の関係を示す図、第8図は本
発明装置における制御回路の電気回路を示す図、第9図
は本発明装置の主要部分の信号波形を示す図、第10図
(a)、(b)は閉角度演算による定電流時間が設定値
に収束する状態を示す信号波形図、第11図は定電流時
間が設定値に制御されることを説明するための信号波形
図、および第12図は加速検出と加速時における閉角度
の補正を示す図である。
10・・・基準位置信号発生器、20・・・各種センサ
、30・・・点火コイル、50・・・バッテリ、60・
・・点火プラグ、100・・・演算手段、200・・・
制御手段、2230・・・インピーダンス素子をなす抵
抗、2410・・・増幅器、2430・・・抵抗、24
50・・・スイッチ、2470・・・コンデンサ、24
80・・・基準電圧、2490・・・コンパレーク。
代理人弁理士 岡 部 隆
第1図
2・2図
牙5図
(a) (b)
オ9図
ぢ−11図
第10図 (。)
(b)FIG. 1 is a diagram showing the configuration of a conventional ignition control device for an internal combustion engine, FIG. 2 is a diagram showing signal waveforms of the main parts of the device in FIG. 1, and FIG. 3 is an ignition control device for an internal combustion engine according to the present invention. A diagram showing the configuration of the device, FIG. 4 is a diagram showing the process of generating the ignition output signal from the reference position signal in the device of the present invention, and FIGS. Flowchart for explaining the main routine and interrupt routine, FIG. 6 is a diagram showing the relationship between Tvm Va, FIG. 7 is a diagram showing the relationship between TOFF Vl+, and FIG. 8 is an electric circuit of the control circuit in the device of the present invention. FIG. 9 is a diagram showing signal waveforms of the main parts of the device of the present invention, and FIGS. 10 (a) and (b) are signal waveforms showing a state in which the constant current time by closing angle calculation converges to the set value. 11 is a signal waveform diagram for explaining that the constant current time is controlled to a set value, and FIG. 12 is a diagram showing acceleration detection and correction of the closing angle during acceleration. 10.・Reference position signal generator, 20... Various sensors, 30... Ignition coil, 50... Battery, 60...
...Spark plug, 100...Calculating means, 200...
Control means, 2230... Resistor forming an impedance element, 2410... Amplifier, 2430... Resistor, 24
50...Switch, 2470...Capacitor, 24
80...Reference voltage, 2490...Comparator. Representative Patent Attorney Takashi Okabe Figure 1 Figure 2 and 2 Figure 5 (a) (b) Figure 9-11 Figure 10 (.) (b)
Claims (1)
行なう内燃機関用点火制御装置において、前記点火コイ
ルの一次電流を検出するためのインピーダンス素子と、
このインピーダンス素子の電圧降下として現われる前記
点火コイルの一次電流波形を増幅する増幅手段と、前記
点火コイルの一次電流の立上り特性を模擬するように充
電されるコンデンサを含む時定数手段と、前記コンデン
サの充電電圧波形と所定の基準電圧値とを比較する比較
手段とを備え、前記点火コイルに一次電流が流れている
間は、前記コンデンサを前記増幅手段により点火コイル
の一次電流波形と相似な電圧波形に充電すると共に、点
火コイルの一次電流遮断後は前記時定数手段の時定数で
引き続き前記コンデンサを充電するようにし、機関の加
速状態に応じたパルス幅の加速パルスを得てこの加速パ
ルスにより前記点火コイルの通電時間を長くすべく補正
することを特徴とする内燃機関用点火制御装置。An ignition control device for an internal combustion engine that controls energization time of an ignition coil according to the rotational speed of the internal combustion engine, comprising: an impedance element for detecting a primary current of the ignition coil;
an amplifying means for amplifying the primary current waveform of the ignition coil that appears as a voltage drop across the impedance element; a time constant means including a capacitor charged to simulate the rise characteristic of the primary current of the ignition coil; and a comparison means for comparing a charging voltage waveform with a predetermined reference voltage value, and while a primary current is flowing through the ignition coil, the capacitor is connected to a voltage waveform similar to the primary current waveform of the ignition coil by the amplification means. At the same time, after the primary current of the ignition coil is cut off, the capacitor is continuously charged using the time constant of the time constant means, and an acceleration pulse having a pulse width corresponding to the acceleration state of the engine is obtained. An ignition control device for an internal combustion engine, characterized in that it corrects the energization time of an ignition coil to lengthen it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60155572A JPS6153459A (en) | 1985-07-15 | 1985-07-15 | Ignition controller for internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60155572A JPS6153459A (en) | 1985-07-15 | 1985-07-15 | Ignition controller for internal-combustion engine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59076390A Division JPS60219462A (en) | 1984-04-16 | 1984-04-16 | Ignition controller for internal-combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6153459A true JPS6153459A (en) | 1986-03-17 |
JPH0327757B2 JPH0327757B2 (en) | 1991-04-16 |
Family
ID=15608973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60155572A Granted JPS6153459A (en) | 1985-07-15 | 1985-07-15 | Ignition controller for internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6153459A (en) |
-
1985
- 1985-07-15 JP JP60155572A patent/JPS6153459A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0327757B2 (en) | 1991-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4649888A (en) | Ignition control apparatus for internal combustion engines | |
US5215066A (en) | Ignition apparatus for an internal combustion engine | |
US4282842A (en) | Fuel supply control system for internal combustion engine | |
US4367722A (en) | Contactless ignition system for internal combustion engine | |
US4377785A (en) | Device for diagnosing ignition system for use in internal combustion engine | |
US4362144A (en) | Contactless ignition system for internal combustion engine | |
US4638785A (en) | Ignition system for internal combustion engines | |
JPH029183B2 (en) | ||
JPS6151139B2 (en) | ||
JPH0735773B2 (en) | Knotting control device for internal combustion engine | |
EP0095081B1 (en) | Ignition timing control system for internal-combustion engine | |
US4452206A (en) | Ignition timing control system for internal combustion engines | |
JPS6153459A (en) | Ignition controller for internal-combustion engine | |
JPS595855A (en) | Idle revolving number stabilizing device for internal-combustion engine | |
JPH0762468B2 (en) | Electronic ignition control device for internal combustion engine | |
JPS6217114B2 (en) | ||
JPS6336427B2 (en) | ||
JPS5936109B2 (en) | igniter | |
JPS6053182B2 (en) | internal combustion engine ignition system | |
JPS58202372A (en) | Ignition angle advancing device for internal combustion engine | |
JPS609426Y2 (en) | engine ignition system | |
US4976240A (en) | Engine ignition system | |
JP3302438B2 (en) | Rotation speed detection device, overspeed prevention device and ignition device | |
JPS6124698Y2 (en) | ||
JPH0631607B2 (en) | Ignition device for internal combustion engine |