JPS6153418A - Variable intake valve device for internal-combustion engine - Google Patents

Variable intake valve device for internal-combustion engine

Info

Publication number
JPS6153418A
JPS6153418A JP17226084A JP17226084A JPS6153418A JP S6153418 A JPS6153418 A JP S6153418A JP 17226084 A JP17226084 A JP 17226084A JP 17226084 A JP17226084 A JP 17226084A JP S6153418 A JPS6153418 A JP S6153418A
Authority
JP
Japan
Prior art keywords
intake
valve
temperature
intake pipe
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17226084A
Other languages
Japanese (ja)
Inventor
Masami Wada
和田 昌巳
Isao Furuta
古田 伊佐男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP17226084A priority Critical patent/JPS6153418A/en
Publication of JPS6153418A publication Critical patent/JPS6153418A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To provide always proper torque characteristics when the diameter of an intake pipe is controlled by an intake pipe diameter controlling valve, by controllably driving said valve according to optimum opening and closing period determined from load information and intake temperature information. CONSTITUTION:An intake system of an internal-combustion engine provided with a throttle valve for controlling intake air amount and an intake pipe diameter controlling valve provided at the downstream side thereof for controlling the diameter of an intake pipe is also provided with a temperature detecting means 1 for detecting directly internal temperature in the intake pipe and a rotational speed detecting means 4 for detecting the rotational speed of the engine. The output signals of said detecting means 1, 4 are sent to the input of a control means 3 provided in a microcomputer 2 where the optimum opening and closing period of said valve is judged from engine load information and temperature information based upon said rotational speed signal to send the opening and closing signal output to a valve driving means 5. And by said means 5 is opened and closed said valve to control intake air amount.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は内燃機関の吸気可変バルブ装置に関し、詳し
くは、吸気系の内部′tjL度変化に応じて吸気管径制
御バルブの最適な開閉時期を決定し、大量の空気を内燃
機関に供給する内燃機関の吸気−可変バルブ装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a variable intake valve device for an internal combustion engine, and more particularly, to a variable intake valve device for an internal combustion engine. The present invention relates to an intake variable valve device for an internal combustion engine that determines the amount of air and supplies a large amount of air to the internal combustion engine.

(従来の技術) 例えば、四輪自動車等の車両に搭載される内燃機関には
吸気系が備えられ、この吸気系には吸入空気量を制御す
るスロットルバルブと、吸気管の管径を制御する吸気管
径制御バルブとが配設されており、これらのバルブの開
閉により所定量の空気を内燃機関に供給するようにして
いるやところで、この吸気管径制御バルブの開閉時期は
吸気管の内径と、その全長及び内燃機関のシリンダ数と
;{速とに支配される。
(Prior art) For example, an internal combustion engine installed in a vehicle such as a four-wheeled vehicle is equipped with an intake system, and this intake system includes a throttle valve that controls the amount of intake air and a valve that controls the diameter of the intake pipe. An intake pipe diameter control valve is installed, and by opening and closing these valves a predetermined amount of air is supplied to the internal combustion engine.The opening and closing timing of this intake pipe diameter control valve depends on the inner diameter of the intake pipe. , its overall length, the number of cylinders of the internal combustion engine, and the speed.

従来から音速の変化は無視されて開閉時期の設定がされ
てきた.しかし、機関の回転速度を広範囲に変えると,
機関の自体の空気の吸い込み濠力はある回転速度で最大
値を示す.この現象は吸気管の動的効果と呼ばれており
、これには脈動効果と、慣性効果の2つがある.脈動効
果は吸気弁を閉じたあと吸気管内に残る脈動波が、つぎ
の吸入過程におよぼす正もしくは負の影響である。また
、慣性効果は吸気管内気柱の慣性によるものであり、吸
気弁閉じ時期の角度と、浣路における流動抵抗係数に主
として左右される。
Conventionally, changes in the speed of sound have been ignored when setting the opening and closing timing. However, if the engine speed is varied over a wide range,
The engine's own air suction force reaches its maximum value at a certain rotational speed. This phenomenon is called the dynamic effect of the intake pipe, and it has two types: pulsation effect and inertial effect. The pulsation effect is the positive or negative influence of the pulsating waves that remain in the intake pipe after the intake valve is closed on the next intake process. In addition, the inertia effect is due to the inertia of the air column in the intake pipe, and is mainly influenced by the angle of the intake valve closing timing and the flow resistance coefficient in the air passage.

前記脈動効果および慣性効果は音速に支配される要因が
大きく、音速は温度により変化する。
The pulsation effect and the inertial effect are largely influenced by the speed of sound, and the speed of sound changes depending on the temperature.

第5図は吸気管径制御バルブで切換え制91シたときの
機関の回転速度とトルクとの関係を示すものである。
FIG. 5 shows the relationship between engine rotational speed and torque when switching control 91 is activated by the intake pipe diameter control valve.

図において、AIは吸気管径制御バルブを閉じたとき、
A2は開いたときの機関トルク曲線を示している。そし
て、B1は温度が高い場合の吸気管径制御バルブを閉じ
たとき、B2は開いたときのトルク曲線を示している。
In the figure, when the AI closes the intake pipe diameter control valve,
A2 shows the engine torque curve when opened. B1 shows the torque curve when the intake pipe diameter control valve is closed when the temperature is high, and B2 shows the torque curve when it is opened.

これらのトルク曲線から明らかなように温度の変化で、
トルク曲線A1からA2への切替時期x1は温度が上昇
するとx2へ移動する。ところが、前記のように吸気管
径制御バルブの開閉時期の設定には、この移動量aは考
慮されていない。
As is clear from these torque curves, with temperature changes,
The switching timing x1 from torque curve A1 to A2 moves to x2 when the temperature rises. However, as described above, this movement amount a is not taken into account when setting the opening and closing timing of the intake pipe diameter control valve.

(発明が解決しようとする問題点) このように吸気管径制御バルブの開閉時期は吸気管の内
部温度の変化を考慮していないため、吸気管の内部一度
の上昇に応じて設定の吸気管径制御バルブの開閉時期と
の差が大きくなる。従って、最適な開閉制御が行なわれ
なくなり、シリンダに供給される空気量が少なく、これ
が機関の出力に影響を及ぼすようになる。
(Problem to be solved by the invention) In this way, the opening/closing timing of the intake pipe diameter control valve does not take into account changes in the internal temperature of the intake pipe, so the setting of the intake pipe The difference between the opening and closing timing of the diameter control valve becomes large. Therefore, optimal opening/closing control is no longer performed, and the amount of air supplied to the cylinder is small, which affects the output of the engine.

この発11はかかる実情を背景にしてなされたもので、
吸気管の内部温度をも考慮し、この温度変化に応じて吸
気管径制御バルブの開閉時期を変え、最っとも大量の空
気を内燃機関に供給する内燃機関の吸気++(変バルブ
装置を提供するものである。
This statement 11 was made against the background of this situation.
The system takes into account the internal temperature of the intake pipe and changes the opening and closing timing of the intake pipe diameter control valve according to this temperature change, supplying the internal combustion engine with the largest amount of air. It is something to do.

(問題点を解決するための手段) この発明は+iij記の問題点を解決するため、内燃機
関に備えられた吸気系に吸入空気量を制御するスロット
ル/ヘルプと、吸気管の管径を制御する吸気管径制御バ
ルブとを備え、これらのバルブを開閉する内燃1:X、
開の吸気可変バルブ装置において、前記内燃機関の回転
速度を検出して回転信号を出力する回転速度検出手段と
、前記吸気系の内部温度を検出して温度信号を出力する
温度検出手段と、前記回転信号に基づく負荷情報と前記
温度信号又は前記温度信号と吸入空気量検出手段からの
空気量信号とに基づく温度情報とから、前記吸気管径制
御バルブの最適開閉時期を判断し、バルブ駆動手段に開
閉信号を出力する制御手段とを含むことを特徴としてい
る。
(Means for Solving the Problems) In order to solve the problems described in +iiij, the present invention provides a throttle/help for controlling the amount of intake air in the intake system of an internal combustion engine, and controlling the pipe diameter of the intake pipe. an internal combustion engine that opens and closes these valves;
In the open variable intake valve device, a rotation speed detection means detects a rotation speed of the internal combustion engine and outputs a rotation signal; a temperature detection means detects an internal temperature of the intake system and outputs a temperature signal; The optimum opening/closing timing of the intake pipe diameter control valve is determined from the load information based on the rotation signal and the temperature signal or the temperature information based on the temperature signal and the air amount signal from the intake air amount detection means, and the valve driving means and a control means for outputting an opening/closing signal.

(作用) この発明では、回転速度検出手段で内燃機関の回転信号
を出力し、また温度検出手段で吸気管の温度信号を出力
する。そして、制御手段で前記回転信号に基づく負荷情
報と、前記温度信号に基づく温度情報とから、又は前記
負荷情報と、温度信号と吸入空気量検出手段の空気量信
号とに基づく温度情報とから吸気管径制御バルブの最適
開閉時期を吸気管内部の温度変化を考慮して決定する。
(Function) In the present invention, the rotation speed detection means outputs a rotation signal of the internal combustion engine, and the temperature detection means outputs a temperature signal of the intake pipe. Then, the control means calculates the intake air from load information based on the rotation signal and temperature information based on the temperature signal, or from the load information and temperature information based on the temperature signal and the air amount signal of the intake air amount detection means. The optimal opening/closing timing of the pipe diameter control valve is determined by taking into account temperature changes inside the intake pipe.

これにより、最つども大量の空気を内燃機関に供給し、
機関のトルクが温度によって影響されることを軽減する
This provides the largest amount of air to the internal combustion engine,
To reduce the effect of engine torque on temperature.

(実施例) 以下、この921J1の実施例を添付図面に基づいて1
祥細に説り1する。
(Example) The following is an example of this 921J1 based on the attached drawings.
Explain in detail 1.

ft51図は吸気系の内部温度を直接検出する実施例を
示している。1は温度検出手段で、内燃機関に備えられ
た吸気系を構成する吸気管の内部温度を直接検出して、
温度信号をマイクロコンピュータ2に設けられた制御手
段3へ出力する。4は回転速度検出手段で、例えばディ
ストリビュータに配設され、回転速度を検出して回転信
号を前記制御手段3へ出力する。制御手段3は前記回転
信号に基づく内燃機関の負荷情報と温度信号に基づく吸
気管の温度情+lJとから、吸気管径制御バルブの最適
開閉時期を判断してバルブ駆動手段5に開閉信号を出力
する。バルブ駆動手段5はこの開閉信号により吸気管に
配設された吸気管径制御バルブを開閉して、吸入空気量
を調整する。
The ft51 diagram shows an embodiment in which the internal temperature of the intake system is directly detected. 1 is a temperature detection means that directly detects the internal temperature of the intake pipe that constitutes the intake system provided in the internal combustion engine;
A temperature signal is output to control means 3 provided in microcomputer 2. Reference numeral 4 denotes rotational speed detection means, which is disposed, for example, in a distributor, detects the rotational speed, and outputs a rotational signal to the control means 3. The control means 3 determines the optimum opening/closing timing of the intake pipe diameter control valve from the load information of the internal combustion engine based on the rotation signal and the intake pipe temperature information +lJ based on the temperature signal, and outputs an opening/closing signal to the valve driving means 5. do. The valve drive means 5 uses this opening/closing signal to open and close an intake pipe diameter control valve disposed in the intake pipe, thereby adjusting the amount of intake air.

第2図は吸気系の内部温度を間接的に検出する実施例を
示している。この実施例では温度検出手段1は例えば吸
気管の吸入口部に設けられ、吸入空気温度を検出して吸
入温度信号を演算手段6に出力する。また、同様に吸入
口部に吸入空気量検出手段7が設けられ、吸入空気量を
検出し空気量信号として前記演算手段6に出力する。こ
の演算手段6は前記吸入温度信号と空気量信号とにより
、吸入管の内部温度を間接的に検出し温度信号として制
御手段3に出力する。
FIG. 2 shows an embodiment in which the internal temperature of the intake system is indirectly detected. In this embodiment, the temperature detection means 1 is provided, for example, at the intake port of an intake pipe, detects the intake air temperature, and outputs an intake temperature signal to the calculation means 6. Similarly, an intake air amount detection means 7 is provided at the intake port to detect the amount of intake air and output it to the calculation means 6 as an air amount signal. The calculating means 6 indirectly detects the internal temperature of the suction pipe based on the suction temperature signal and the air amount signal, and outputs it to the control means 3 as a temperature signal.

第3図はこの発明の更に具体的な実施例を示している。FIG. 3 shows a more specific embodiment of the invention.

図において符号Aは4サイクルの内燃機関、Bは点火装
置、Cは吸気系、Dは燃料供給装置、5は吸気管径制御
バルブEを駆動するバルブ駆動手段、2は前記それぞれ
を制御するマイクロコンピュータである。
In the figure, symbol A is a 4-cycle internal combustion engine, B is an ignition device, C is an intake system, D is a fuel supply device, 5 is a valve driving means for driving the intake pipe diameter control valve E, and 2 is a microcontroller that controls each of the above. It's a computer.

4サイクル内燃機関Aのシリンダ31にはピストン32
が上下動可能に配設され、ピストン32の上方の燃焼室
33には前記燃料供給装置りの作動により得られる燃料
と空気との混合気が供給される。この混合気は圧縮行程
の終りに点火装2tBの一部を構成する点火プラグ34
によって着火され、爆発によりピストン32が上下動し
て回転出力を得る。燃焼ガスは排気系35から大気に排
出される。
A piston 32 is installed in the cylinder 31 of the four-stroke internal combustion engine A.
is arranged to be able to move up and down, and a mixture of fuel and air obtained by the operation of the fuel supply device is supplied to the combustion chamber 33 above the piston 32. At the end of the compression stroke, this air-fuel mixture is transferred to the spark plug 34, which forms part of the 2 tB ignition system.
The explosion causes the piston 32 to move up and down, producing rotational output. The combustion gases are exhausted to the atmosphere through the exhaust system 35.

点火装置J】は無接点式のものが採用されており、前記
点火プラグ34、イグナイタ36、イグニッションコイ
ル37、ディストリビュータ38とから構成されている
。イグナイタ36は前記マイクロコンピュータ2からの
点火信号を検出して、点火時期とイグニッションコイル
37の一次側の通電時間を決定する。ディストリビュー
タ38はイグニッションコイル37の二次側に発生する
高電圧をそれぞれの気筒に配設されている点火プラグ3
4に供給する。このディストリビュータ38には回転速
度検出手段4が配設され1回転灯号を前記マイクロコン
ピュータ2に出力する。
The ignition device J] is of a non-contact type and is composed of the spark plug 34, an igniter 36, an ignition coil 37, and a distributor 38. The igniter 36 detects the ignition signal from the microcomputer 2 and determines the ignition timing and the energization time on the primary side of the ignition coil 37. The distributor 38 transfers the high voltage generated on the secondary side of the ignition coil 37 to the spark plugs 3 disposed in each cylinder.
Supply to 4. The distributor 38 is provided with a rotational speed detecting means 4 and outputs a one-rotation light signal to the microcomputer 2.

前記吸気系Cは吸気管39と、吸気管39に設けられた
サージタンク40と、この上流にエアフロメータ41を
介して接続されたエアクリーナ42とから構成されてい
る。エアクリーナ42は吸入される空気中の塵埃を除去
する。また、エア70メータ41は吸入空気量を測定し
、測定した空気量を空気量信号としてマイクロコンピュ
ータ2へ出力するようになっている。エアフロメータ4
1の上流には温度検出手段lが配設され、吸入温度情報
を温度信号としてマイクロコンピュータ2へ出力する。
The intake system C includes an intake pipe 39, a surge tank 40 provided in the intake pipe 39, and an air cleaner 42 connected upstream of the surge tank 40 via an air flow meter 41. The air cleaner 42 removes dust from the inhaled air. Further, the air 70 meter 41 measures the intake air amount and outputs the measured air amount to the microcomputer 2 as an air amount signal. Air flow meter 4
Temperature detection means 1 is disposed upstream of 1, and outputs intake temperature information to the microcomputer 2 as a temperature signal.

サージタンク40には空気の吸入量を制御するスロット
ルバルブ43が設けられ、サージタンク40の下流側で
前記燃料供給装置りの上Ii側には吸気管径制御バルブ
Eが配設されている。
The surge tank 40 is provided with a throttle valve 43 for controlling the intake amount of air, and an intake pipe diameter control valve E is provided on the downstream side of the surge tank 40 and on the upper Ii side of the fuel supply device.

燃料供給装置りはマイクロコンピュータ2からの制御信
号で内燃機関Aの負荷に応じた燃料を吸気管39内に噴
射し、適切な混合気を得るようになっている。
The fuel supply device injects fuel into the intake pipe 39 according to the load of the internal combustion engine A based on a control signal from the microcomputer 2, thereby obtaining an appropriate air-fuel mixture.

前記吸気管径制御バルブEはバルブ駆動手段5により開
閉され、このバルブ駆動手段5はアクチュエータ44、
駆動バルブ45、バキュームタンク46とから構成され
ている。アクチュエータ44に内蔵されたダイヤフラム
47はバネ48の伸張力で吸気管径制御バルブEを常に
閉じる方向に付勢し、ダイヤフラム47は駆動パルプ4
5で制御される圧力変動により移動する。駆動バルブ4
5にはバネ49により付勢された電磁弁50が配設され
ている。この電磁弁50はマイクロコンピュータ2から
開閉信号が入力されるとバネ49に抗して移動し、バキ
ュームタンク46との連通管51を閉じる。バキューム
タンク46には一方向弁52が内1藏され、サージタン
ク40が減圧状態にあるとき聞き、駆動バルブ45を介
してアクチュエータ44のダイヤフラム47を引き、吸
気管径制御バルブEを閉じる。
The intake pipe diameter control valve E is opened and closed by a valve driving means 5, and this valve driving means 5 includes an actuator 44,
It is composed of a drive valve 45 and a vacuum tank 46. A diaphragm 47 built into the actuator 44 always biases the intake pipe diameter control valve E in the direction of closing with the tension of the spring 48.
It is moved by pressure fluctuations controlled by 5. Drive valve 4
A solenoid valve 50 biased by a spring 49 is disposed at 5 . When an opening/closing signal is input from the microcomputer 2, the solenoid valve 50 moves against the spring 49 and closes the communication pipe 51 with the vacuum tank 46. A one-way valve 52 is installed in the vacuum tank 46, and when the surge tank 40 is in a reduced pressure state, the diaphragm 47 of the actuator 44 is pulled through the drive valve 45, and the intake pipe diameter control valve E is closed.

前記マイクロコンピュータ2はA/Dコンバータ53.
入力インターフェース回路54、定電圧電[55、CP
U56、メモリ57.58、出力インターフェース回路
59とから構成されている。バッテリ60は所定電圧を
A/Dコンバータ53および定電圧電源55に与えてい
る。さらに、A/Dコンバータ53には温度検出手段l
からの温度信号と、エアフロメータ41からの空気歪信
号とが入力され、このアナログ信号をディジタル信号に
変換する。入力インターフェース回路54はディストリ
ビュータ38からの回転信号を入力する回路である。A
/Dコンバータ53および入力インターフェース回路5
4に入力された前記検出情報はCPU56に転送され、
またはメモリ57.58に記憶される。CPU56が出
力指令を出すと、予めメモリ57.58に記憶されてい
た設定情報値と比較し、一致するときバルブ駆動手段5
を駆動する開閉信号が出力インターフェース回路59か
ら出力される。
The microcomputer 2 includes an A/D converter 53.
Input interface circuit 54, constant voltage voltage [55, CP
It consists of U56, memories 57 and 58, and output interface circuit 59. Battery 60 provides a predetermined voltage to A/D converter 53 and constant voltage power supply 55. Furthermore, the A/D converter 53 has temperature detection means l.
A temperature signal from the air flow meter 41 and an air strain signal from the air flow meter 41 are input, and these analog signals are converted into digital signals. The input interface circuit 54 is a circuit that inputs the rotation signal from the distributor 38. A
/D converter 53 and input interface circuit 5
The detection information input to 4 is transferred to the CPU 56,
or stored in memory 57,58. When the CPU 56 issues an output command, it is compared with the setting information value previously stored in the memory 57, 58, and when they match, the valve driving means 5
An opening/closing signal for driving is output from the output interface circuit 59.

この実施例では、温度信号と空気量信号により、予め設
定しておいたメモリ57.58の温度情報値と比較して
吸気管39の内部温度を推定し、さらに回転信号をメモ
リ57.58の速度情報値と比較する。そして、所定の
時期に開閉信号が出力される。
In this embodiment, the internal temperature of the intake pipe 39 is estimated by comparing the temperature signal and the air amount signal with the temperature information value in the memory 57.58 set in advance, and the rotation signal is further stored in the memory 57.58. Compare with speed information value. Then, an opening/closing signal is output at a predetermined time.

なお、第3図に想像線で爪すように、サージタンク40
内部に温度検出手段lを配設し、直接内部温度を検出し
て温度信号をA/Dコンバータ53に入力して、この温
度情報と回転速度情報とから開閉信号を出力するように
してもよい。
In addition, the surge tank 40 is shown as an imaginary line in Figure 3.
A temperature detection means l may be provided inside to directly detect the internal temperature, input the temperature signal to the A/D converter 53, and output the opening/closing signal from this temperature information and rotational speed information. .

次に、この実施例の作動を第3図および第4図に基づい
て説151する。第3図の吸気管径制御バルブEは低中
速回転時の開度状態を示し、第4図は高速回転時の開度
状態を示している。
Next, the operation of this embodiment will be explained based on FIGS. 3 and 4. The intake pipe diameter control valve E in FIG. 3 shows the opening state during low and medium speed rotation, and FIG. 4 shows the opening state during high speed rotation.

t53図に示す低中速回転時にはサージタンク40の上
流側に配設されたスロットルバルブ43を半分開き、サ
ージタンク40内への空気の吸入量が少なく減圧状態に
ある。これにより、バキュームタンク46の一方向弁5
2が開き、駆動バルブ45を介してアクチュエータ44
のダイヤフラム47を引き、下流側の吸気管径制御バル
ブEを閉じている。
At the time of low-medium speed rotation shown in Fig. t53, the throttle valve 43 disposed on the upstream side of the surge tank 40 is opened half way, and the amount of air sucked into the surge tank 40 is small and the pressure is reduced. As a result, the one-way valve 5 of the vacuum tank 46
2 opens, and the actuator 44 is activated via the drive valve 45.
diaphragm 47 is pulled, and the intake pipe diameter control valve E on the downstream side is closed.

このようにして吸気管39内の空気量が制限され、従っ
て燃焼室33への混合気の供給量が制御され、内燃機関
Aに生じるトルクは第5図の曲線A1に示すようになる
。このとき吸入空気の温度が高いと、吸気管39の脈動
効果および慣性効果により曲線Blに示すようなトルク
が得られる。
In this way, the amount of air in the intake pipe 39 is restricted, and therefore the amount of air-fuel mixture supplied to the combustion chamber 33 is controlled, and the torque generated in the internal combustion engine A becomes as shown by curve A1 in FIG. 5. At this time, if the temperature of the intake air is high, a torque as shown by the curve Bl is obtained due to the pulsation effect and inertia effect of the intake pipe 39.

そして、内燃機関Aの回転速度が上昇し高速回転になる
と、第4図に示すようにスロー/ トルクくルブ43は
開状態である。従って、サージタンク40内が高圧にな
り、バキュームタンク46の一方向弁52を閉じる。こ
のため、アクチュエータ44のダイヤフラム47がバネ
48で押動されて吸気管径制御バルブEを開く、そのと
きのトルクは第5図に示すように曲線A1との交点Xl
で切換わり、曲線A2に示すようになる。
Then, when the rotation speed of the internal combustion engine A increases and becomes a high speed rotation, the slow/torque valve 43 is in an open state as shown in FIG. Therefore, the pressure inside the surge tank 40 becomes high, and the one-way valve 52 of the vacuum tank 46 is closed. Therefore, the diaphragm 47 of the actuator 44 is pushed by the spring 48 to open the intake pipe diameter control valve E, and the torque at that time is generated at the intersection Xl with the curve A1 as shown in FIG.
The switching occurs as shown by curve A2.

一方、この高速回転時で吸気管39の内部温度が上昇す
ると、トルクは第5図の曲線B2に示すようになる。と
ころで、温度検出手段1は常時温度情報をマイクロコン
ピュータ2へ入力しており、この温度情報と内燃機関A
の回転速度情報から最適な開閉時期を演算し、出力イン
タフェース回路59から開閉信号が駆動バルブ45へ出
力される。これにより、駆動バルブ45の電磁弁50が
バキュームタンク46との連通管51を閉じ、アクチュ
エータ44を作動させて第4図に示すように吸気管径制
御バルブEを回転速度がv2より早めのVlの時期に開
くことになり、吸入空気量が増加する。
On the other hand, when the internal temperature of the intake pipe 39 increases during this high speed rotation, the torque becomes as shown by curve B2 in FIG. 5. By the way, the temperature detection means 1 constantly inputs temperature information to the microcomputer 2, and this temperature information and the internal combustion engine A
The optimum opening/closing timing is calculated from the rotation speed information of the valve 45, and an opening/closing signal is output from the output interface circuit 59 to the drive valve 45. As a result, the electromagnetic valve 50 of the drive valve 45 closes the communication pipe 51 with the vacuum tank 46, actuates the actuator 44, and as shown in FIG. It will open at this time, and the amount of intake air will increase.

このように、回転速度■1でトルク曲線は曲線B2に切
換わり、このときの切替時期は点x3となり、交点Xi
と略同−な切替点で、温度変化に影響されないトルクを
得ることができる。
In this way, the torque curve switches to curve B2 at rotational speed ■1, and the switching timing at this time is point x3, and the intersection point Xi
It is possible to obtain torque that is unaffected by temperature changes at a switching point that is approximately the same.

この吸気管径制御バルブEの開閉時期は内燃機I3!J
Aの回転速度が例えば5000rpmのとき開き、45
00 r pmになったときに閉じるように、その開閉
作動にヒステリシスを持たせてもよい。
The opening/closing timing of this intake pipe diameter control valve E is internal combustion engine I3! J
It opens when the rotational speed of A is, for example, 5000 rpm, and 45
The opening/closing operation may have hysteresis so that it closes when the speed reaches 00 rpm.

また、この発151はターボチャージャー、スーパーチ
ャージャーを備えた内燃機関Aにも同様に適用でき、こ
の場合同一吸気温度でも、その負荷情況により、温度差
が大きいので吸気管径制御バルブEの開閉時期を吸気管
の内部温度により変化させると、より一層精密な制御が
可詣になる。
Additionally, this statement 151 can be similarly applied to an internal combustion engine A equipped with a turbocharger or a supercharger. By changing the internal temperature of the intake pipe, even more precise control becomes possible.

(発明の効果) この発明は前記のように、回転速度検出手段の回転信号
に基づく負荷情報と、温度検出手段の吸気管の内部温度
の温度信号、又は温度0吋と空気量信号に基づく温度情
報とから、吸気管径制御バルブの最適開閉時期を判断し
てバルブ駆動手段を作動するようになしたから、吸気管
径制御バルブの開閉時期が吸気管内部の温度変化を考慮
して決定される。従って、吸気管径制御バルブの制御が
一層正確になり、最っとも効果的に大量の空気が供給さ
れ、機関のトルクが吸入空気の温度によって影響される
ことを軽減することができ、適切なトルク特性を得るこ
とが回部になる。
(Effects of the Invention) As described above, the present invention provides load information based on the rotation signal of the rotation speed detection means and temperature signal of the internal temperature of the intake pipe of the temperature detection means, or temperature based on the temperature 0 inch and the air amount signal. Since the optimal opening/closing timing of the intake pipe diameter control valve is determined from the information and the valve driving means is operated, the opening/closing timing of the intake pipe diameter control valve is determined by taking into account temperature changes inside the intake pipe. Ru. Therefore, the control of the intake pipe diameter control valve becomes more precise, a large amount of air is supplied most effectively, the engine torque is less affected by the temperature of the intake air, and the appropriate amount of air is supplied. Obtaining torque characteristics is the turning point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を適用した吸気系の内部温度を直接検
出する実施例を示すブロック図、第2図はこの発明を適
用した吸気系の内部温度を間接的に検出する実施例を示
すブロック図、第3図はこの発明を適用した更に具体的
な実施例を示す構成図、第4図は高速回転時の開度状態
を示す概略構成図、第5図は吸気管径制御バルブで切換
え制御したときの機関の回転速度とトルクとの関係を示
す特性図である。 l・・・温度検由[段   3・・・M制御手段4・・
・回転速度検出手段 5・・・バルブ駆動手段  6・・・演算手段7・・・
吸入空気11f検出手段 A・・・内燃機関     B・・・点火装置C・・・
吸気系      D・・・燃料供給装置E・・・吸気
管径制御バルブ
Fig. 1 is a block diagram showing an embodiment in which the internal temperature of the intake system is directly detected to which the present invention is applied, and Fig. 2 is a block diagram showing an embodiment in which the internal temperature of the intake system is indirectly detected to which the present invention is applied. Fig. 3 is a block diagram showing a more specific embodiment to which the present invention is applied, Fig. 4 is a schematic block diagram showing the opening state at high speed rotation, and Fig. 5 is a block diagram showing the opening state at high speed rotation. FIG. 3 is a characteristic diagram showing the relationship between engine rotational speed and torque when controlled. l...Temperature measurement [stage 3...M control means 4...
・Rotational speed detection means 5...Valve drive means 6...Calculation means 7...
Intake air 11f detection means A...Internal combustion engine B...Ignition device C...
Intake system D...Fuel supply device E...Intake pipe diameter control valve

Claims (1)

【特許請求の範囲】[Claims] 内燃機関に備えられた吸気系に吸入空気量を制御するス
ロットルバルブと、吸気管の管径を制御する吸気管径制
御バルブとを備え、これらのバルブを開閉する内燃機関
の吸気可変バルブ装置において、前記内燃機関の回転速
度を検出して回転信号を出力する回転速度検出手段と、
前記吸気系の内部温度を検出して温度信号を出力する温
度検出手段と、前記回転信号に基づく負荷情報と前記温
度信号又は前記温度信号と吸入空気量検出手段からの空
気量信号とに基づく温度情報とから、前記吸気管径制御
バルブの最適開閉時期を判断し、バルブ駆動手段に開閉
信号を出力する制御手段とを含む内燃機関の吸気可変バ
ルブ装置。
In an intake variable valve device for an internal combustion engine, the intake system of the internal combustion engine is equipped with a throttle valve for controlling the amount of intake air, and an intake pipe diameter control valve for controlling the diameter of the intake pipe, and for opening and closing these valves. , rotation speed detection means for detecting the rotation speed of the internal combustion engine and outputting a rotation signal;
temperature detection means for detecting the internal temperature of the intake system and outputting a temperature signal; and a temperature based on load information based on the rotation signal and the temperature signal, or the temperature signal and an air amount signal from the intake air amount detection means. A variable intake valve device for an internal combustion engine, comprising: control means for determining the optimum opening/closing timing of the intake pipe diameter control valve from the information and outputting an opening/closing signal to a valve driving means.
JP17226084A 1984-08-18 1984-08-18 Variable intake valve device for internal-combustion engine Pending JPS6153418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17226084A JPS6153418A (en) 1984-08-18 1984-08-18 Variable intake valve device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17226084A JPS6153418A (en) 1984-08-18 1984-08-18 Variable intake valve device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6153418A true JPS6153418A (en) 1986-03-17

Family

ID=15938594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17226084A Pending JPS6153418A (en) 1984-08-18 1984-08-18 Variable intake valve device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6153418A (en)

Similar Documents

Publication Publication Date Title
JP2002538366A (en) Fuel injection method for internal combustion engine
JPH05240105A (en) Intake air amount calculating device of engine with intake air and exhaust valve stop mechanism
JPH0345474U (en)
JPS6153418A (en) Variable intake valve device for internal-combustion engine
JP2600851Y2 (en) Engine with turbocharger
JPH0641151Y2 (en) Knocking detection device
JPH1136898A (en) Electronic controller for fuel injection for motorcycle
US4499874A (en) System for controlling the ignition timing of an engine
JPS633432Y2 (en)
JP2519726B2 (en) Ignition timing control device for dual intake engine
JP2772659B2 (en) Fuel injection device for two-cycle engine
JPH0315660A (en) Knocking control device for internal combustion engine
JPS5943506Y2 (en) Ignition timing control device for supercharged engines
JPS6210468Y2 (en)
JPS6137814Y2 (en)
JPH0555696B2 (en)
JPS60256532A (en) Knocking controller
JPS6380028A (en) Fuel injection quantity controller
JPS60256534A (en) Knocking controller
JPS6052314B2 (en) Ignition timing control method for turbocharged engine
JPH04194322A (en) Supercharging pressure control method for ffv engine
JPS62237060A (en) Supercharge pressure control device for internal combustion engine
JPS5824615B2 (en) engine output stabilizer
JPH0251051B2 (en)
JPH0243896B2 (en)