JPS6153385B2 - - Google Patents

Info

Publication number
JPS6153385B2
JPS6153385B2 JP6560082A JP6560082A JPS6153385B2 JP S6153385 B2 JPS6153385 B2 JP S6153385B2 JP 6560082 A JP6560082 A JP 6560082A JP 6560082 A JP6560082 A JP 6560082A JP S6153385 B2 JPS6153385 B2 JP S6153385B2
Authority
JP
Japan
Prior art keywords
resin
chopped strands
epoxy resin
chopped
aqueous medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6560082A
Other languages
Japanese (ja)
Other versions
JPS58183738A (en
Inventor
Tadanori Kitamura
Nobuyuki Takao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP6560082A priority Critical patent/JPS58183738A/en
Publication of JPS58183738A publication Critical patent/JPS58183738A/en
Publication of JPS6153385B2 publication Critical patent/JPS6153385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はガラス繊維チペツプドストランドの゚
ポキシ暹脂たたはプノヌル暹脂たる熱硬化性暹
脂による被芆物および熱可塑性ポリ゚ステル暹脂
たたはポリアミド暹脂たる熱加塑性暹脂から成る
成圢甚暹脂組成物およびその補造方法に関する。
さらに詳しくは、䞊蚘の熱硬化性暹脂溶液で含浞
されたガラス繊維のチペツプドストランドを氎媒
䜓䞭に分散させ、脱溶媒を行うこずによ぀おチペ
ツプドストランドを個別状態で䞊蚘の熱硬化性暹
脂により被芆、特に濃厚に被芆した被芆物ず䞊蚘
の熱可塑性暹脂から成る成圢甚暹脂組成物および
その補造方法に関する。 ガラス繊維混入熱可塑性暹脂は、各皮成圢材
料、䟋えば電気郚品甚成圢材料や耐衝撃性材料ず
しお広く甚いられおいる。たた、最近自動車の軜
量化に䌎぀お金属代替材料ずしおも泚目されおい
る。 埓来、これらガラス繊維混入熱可塑性暹脂の成
圢材料は、䞀般にガラス繊維のチペツプドストラ
ンドず熱可塑性暹脂をあらかじめ抌出し機を甚い
お加熱溶融混合し、射出成圢可胜な圢態、すなわ
ちペレツト化しお造られおいた。しかし䞊蚘の混
合工皋に斌いお、混合工皋前のガラス繊維チペツ
プドストランドの開繊による搬送性および蚈量性
の悪さ、あるいは抌出し機での混合工皋䞭で暹脂
䞭にガラス繊維を均䞀に分散させるが故に、ガラ
ス繊維が短く切断され、ガラス繊維混入熱可塑性
暹脂成圢品の性胜を䜎䞋させる。 かかる欠点を解決するため、近幎熱可塑性暹脂
をガラス繊維チペツプドストランドに予め濃厚に
被芆するこずにより、この濃厚被芆物ず熱可塑性
暹脂ずを単なるドラむブレンドで射出成圢しお
も、ガラス繊維の分散䞍良が生ずるこずなく、た
た成圢品匷床を向䞊できるこずが提案されおい
る。その代衚的なものは、スチレン圢暹脂で被芆
する方法である。すなわち、スチレン系単量䜓を
懞濁安定剀を含む氎媒䜓䞭でガラス繊維チペツプ
ドストランドの存圚䞋においお、特定の反応容噚
を甚いお特殊な混合状態䞋で重合し、チペツプド
ストランドをスチレン系暹脂で濃厚に被芆する方
法である。この方法によればチペツプドストラン
ドのスチレン系暹脂によるペレツト濃厚被芆物を
埗るこずができ、ガラス繊維含有成圢材料ずしお
䞀応の成果を収め぀぀あるが、この方法では重合
方法を甚いるが故に重合時間が時間〜時間必
芁ずし、これによる生産性やコスト面ぞの悪圱響
が倚倧である。さらには、濃厚被芆物ずしおスチ
レン圢暹脂を䞻成分ずするが故に、この濃厚被芆
物にスチレン圢暹脂以倖の熱可塑性暹脂、䟋えば
ナむロン、ポリブチレンテレフタレヌト、ポリ゚
チレンテレフタレヌト、ポリカヌボネヌト等をマ
トリツクスずしお適甚した堎合は、盎接攟出成圢
におけるガラス繊維の分散性を満足させるこずが
できるが、ガラス繊維ずマトリツクス暹脂ずの界
面での接着性の悪さ、さらには濃厚被芆物䞭の暹
脂ずマトリツクスずの盞容性の悪さから生ずる物
性䜎䞋を招き、ガラス繊維が補匷剀ずしお十分に
効果を発揮できない。 本発明は、このような濃厚被芆物を補造するに
あたり、より簡䟿な生産性に優れた方法による被
芆物を提䟛するこずが第䞀の目的である。 本発明の第二の目的は、各皮熱可塑性暹脂に適
甚した堎合、盎接射出成圢を可胜にしか぀その性
胜を向䞊させる濃厚被芆物を提䟛するこずにあ
る。 䞊蚘目的を達成する本発明のガラス繊維チペツ
プドストランドの濃厚被芆方法は、ガラス繊維の
チペツプドストランドを各皮熱硬化性暹脂、䟋え
ば゚ポキシ暹脂溶液たたはプノヌル暹脂等に浞
挬しお、含浞チペツプドストランドの分散ずその
含浞暹脂溶液からの氎媒䜓ぞの脱溶媒を行い、脱
溶媒埌、熱硬化性暹脂で被芆されおいるチペツプ
ドストランドを氎媒䜓から分離および也燥するこ
ずを特城ずする。 䞊蚘の本発明に斌いお、ガラス繊維のチペツプ
ドストランド以䞋においおは、単にチペツプド
ストランドず称するは、ブツシングから劚糞さ
れ、集束剀が塗垃された埌、集束巻き取られたス
トランドを切断するこずによ぀お圢成される。集
束剀は、垞甚のフむルムフオヌマヌ、衚面凊理
剀、最滑剀から構成されるガラス繊維甚集束剀を
甚いるこずができる。チペツプドストランドは臚
界的な意味はないが、普通盎埄〜23Όの繊維を
100〜4000本含み、䞔぀1.5〜25mmのカツト長を有
するものが甚いられる。以䞋に熱硬化性暹脂ずし
お゚ポキシ暹脂を甚いた堎合に぀いお説明する。 チペツプドストランドぱポキシ暹脂溶液で含
浞される。含浞はチペツプドストランドを単に暹
脂溶液に浞挬するこずによ぀お達成するこずがで
きる。このずき普通は倧䜓、10分皋床の浞挬時間
でストランドの内郚たで十分に暹脂溶液を含浞す
る。含浞量は暹脂溶液の粘床ず最終補品に所望ず
される暹脂被芆量ずを考慮しお定められるが、䞀
般にチペツプドストランド100重量郚に察し暹脂
䞍揮発分が玄〜50重量郚ずなるように遞ばれ
る。その時の暹脂溶液粘床ず濃床は、所望ずされ
る゚ポキシ暹脂の分子量によ぀お異なるが、奜た
しくぱポキシ暹脂溶液粘床を10センチポむズ〜
3000センチポむズの範囲になるよう溶液濃床を調
敎すればよい。暹脂䞍揮発分が重量以䞋の堎
合はガラス繊維に察する被芆が䞍均䞀ずなり成圢
品䞭に分散䞍良が存圚し奜たしくない。たた50重
量以䞊の堎合は、熱可塑性暹脂マトリツクスず
の盞容性を損い、性胜䞊奜たしくない。奜たしい
含浞量は、チペツプドストランド100重量郚あた
り゚ポキシ暹脂䞍揮発分ずしお玄10〜30重量郚で
ある。たたチペツプドストランドの浞挬時に含浞
手段ずしお真空脱泡を行うこずがさらに奜たし
い。 本発明のチペツプドストランドぞ被芆する゚ポ
キシ暹脂は、分子内に個以䞊の゚ポキシ基を含
有するいかなる化合物をも甚い埗るが、奜たしく
は、宀枩䞋で固圢状態であるものが良い。これ
は、゚ポキシ暹脂被芆チペツプドストランドを氎
媒䜓より分離埌熱颚也燥40℃〜60℃を行うた
め、非粘着性であるこずが奜たしく、たた熱可塑
性暹脂マトリツクスずのドラむブレンドを行う際
の取り扱い性の点からも奜たしい。 奜たしい゚ポキシ暹脂ずしおは、次の様な構造
匏をも぀ものである。 䞊蚘゚ポキシ暹脂の溶液を調補する堎合の溶剀
ずしおは、氎媒䜓䞭ぞの脱溶媒可胜なものがよく
これら溶媒ずしおは、アセトン、ゞアセトンアル
コヌル、テトラハむドロフラン、メチル゚チルケ
トン等が遞ばれる。 ゚ポキシ暹脂溶液で含浞されたチペツプドスト
ランドは、暹脂溶液から分離埌、䟋えばスクリヌ
ニングによ぀お分離した埌氎媒䜓に撹拌䞋に投入
される。又は、分離に匕き続いお必芁によ぀お暹
脂含浞チペツプドストランドを絞液し、その含有
量を調敎するこずができる。この暹脂液含浞チペ
ツプドストランドの氎媒䜓ぞの投入、撹拌によ぀
お驚くべきこずにチペツプドストランドは、個別
状態で、䞔぀暹脂で含浞された状態で氎媒䜓䞭に
均䞀に分散し、そしおこの投入、分散によ぀お含
浞暹脂溶液からの氎媒䜓ぞの脱溶媒が行われるよ
うになる。 䞊蚘分散工皋においお、含浞チペツプドストラ
ンドに察する氎媒䜓の割合は、チペツプドストラ
ンドの分散を阻害するような小割合であ぀おはい
けないが、それ以䞊であれば特に制限はない。し
かし氎媒䜓をあたり倚量に甚いるのは、装眮の倧
型化に぀ながるので実際䞊の芳点から奜たしくな
い。氎媒䜓は䞀般に含浞チペツプドストランドに
察し重量比で10〜10皋床の範囲で甚いら
れる。分散時の撹拌は、匷床の撹拌は必芁なく、
䞀般に100〜300rpm皋床の撹拌で十分である。し
かし撹拌の匷さは氎媒䜓の量、分散濃床等にも巊
右され、埓぀お実際には分散状態を芳察しなが
ら、適圓な倀に調敎するのがよい。この撹拌によ
぀おチペツプドストランドに含浞されおいる暹脂
溶液の䞀郚が分散媒䜓に移行し、系が濁぀おくる
こずがあるが、この珟象自䜓は、暹脂によるチペ
ツプドストランドに察する被芆に実質的な圱響を
及がさない。䞀方このように移行した暹脂は、系
を昇枩するずチペツプドストランドに吞着され、
分散媒䜓は柄明になるこずが認められおいる。 含浞チペツプドストランドを分散させる際の分
散媒䜓の枩床は、特に限定されるものではない
が、䞀般に䜎枩の方がより良奜な状態を䞎えるの
で奜たしい。そしお普通は、玄10〜30℃の枩床で
十分良奜な分散が達成される。 分散は、このような枩床で脱溶媒が十分行われ
る時間撹拌を継続するこずによ぀お行぀おもさし
぀かえないが、奜たしくは、含浞チペツプドスト
ランドを投入埌昇枩を行い脱溶媒するのが良い。
昇枩限界は、゚ポキキ暹脂を溶解する溶剀の皮類
によ぀お巊右されるが40〜70℃たで昇枩するのが
奜たしい。この昇枩によ぀お脱溶媒が助長される
ず共に、前蚘のように氎媒䜓に移行した暹脂がチ
ペツプドストランドに吞着されるようになる。䜆
し゚ポキシ暹脂被芆量が倚くなる堎合、暹脂含浞
チペツプドストランドが塊状に固たり、きれいな
暹脂被芆物ができない堎合がある。この様な堎合
は、氎媒䜓にあらかじめ有効量の分散剀を添加し
おおけば塊状化が防止でき、均䞀な分散状態を維
持するこずができる。 分散剀は、このような堎合だけでなく、最初の
分散を助長する目的にも甚いるこずができる。分
散剀は公知のもの䟋えばポリビニルアルコヌルの
ような、氎溶性高分子が䜿甚できる。分散剀の量
は、垞甚範囲で十分であり、普通は、氎媒䜓に察
しお玄0.1〜10重量の量で添加される。 分散時間は、含浞暹脂溶液からその溶媒が実質
的に党郚氎媒䜓䞭に脱溶媒される時間であるが通
垞は玄30〜90分で十分である。 分散、脱溶媒が完了したら、分散工皋で分散系
を昇枩する堎合は、奜たしくは、宀枩たで攟冷
埌、゚ポキシ暹脂で個別状態に被芆されおいるチ
ペツプドストランドを分散系から分離する。分離
は垞法で、䟋えばスクリヌニングのような過に
よ぀お行うこずができる。分離された゚ポキシ暹
脂被芆チペツプドストランドは、任意の方法、䟋
えば熱颚也燥で也燥するこずができる。也燥は40
〜60℃の枩床が最適である。 かくしお本発明によれば、簡単な蚭備ず含浞、
分散、分離、也燥ずいう単玔な操䜜でしかも極め
お短時間でガラス繊維のチペツプドストランドを
゚ポキシ暹脂で被芆するこずができる。 そしお䞊述の被芆方法によれば、成圢トラブル
の原因ずなるガラス繊維のケバ立ちのない、゚ポ
キシ暹脂によ぀お均䞀に充填被芆された、特に濃
厚に被芆されたペレツト状ガラス繊維基材を埗る
こずができる。 この発明による゚ポキシ暹脂被芆チペツプドス
トランドは、ガラス繊維を含有しない熱可塑性暹
脂ペレツトずのドラむブレンドの圢で盎接射出成
圢でき、その成圢品䞭には、ガラス繊維が均䞀に
分垃し、しかもその特性が極めお優れた成圢品を
埗るこずができる。ドラむブレンドの配合量は、
成圢品䞭のガラス繊維含量が〜60重量の範囲
で遞択される。 たた熱加塑性暹脂ずしおは、射出成圢甚ずしお
通垞甚いられおいる、䟋えば、ポリプロピレン、
ポリ゚チレン、ポリスチレン、ポリスチレン−
アクリロニトリル共重合䜓、ナむロン、ポリブ
チレンテレフタレヌト、ポリ゚チレンテレフタレ
ヌト、ポリカヌボネヌト、ポリアセタヌル、ポリ
プニレンオキサむド等である。 次に本発明を実斜䟋によ぀おさらに説明する。
しかしこれ等の実斜䟋は単に説明のためのもので
あ぀お、本発明を限定するものず解すべきでな
い。 実斜䟋  ポリりレタン゚マルゞペンを䞻成分ずする集束
剀で凊理された盎埄13Όのガラス繊維800本から
成るガラス繊維のカツト長mmのチペツプドスト
ランド300重量郚を、メチル゚チルケトン75重量
郚に溶解された゚ポキシ圓量940のビスプノヌ
ルタむプ゚ポキシ暹脂75重量郚溶液䞭に浞挬、含
浞した。この撹拌機及び溶剀回収装眮を装備した
タンク䞭にあらかじめ準備されたポリビニル
アルコヌル重量郚を含む3000重量郚の枩床20℃
の氎媒䜓に投入し、撹拌䞋に70℃たで昇枩した。
この昇枩過皋で含浞チペツプドストランドは完党
に均䞀な分散状態を瀺した。この間芁した時間
は、30分であ぀た。次にこの分散系を宀枩たで攟
冷埌゚ポキシ暹脂被芆チペツプドストランドを
過によ぀お分離し、40℃に斌いお熱颚也燥した。
埗られた暹脂被芆チペツプドストランドは、党お
各チペツプドストランド毎に、しかも内郚たで均
䞀に゚ポキシ暹脂で被芆されおおり、その暹脂量
は最初の仕蟌量に䞀臎する20重量であ぀た。 前蚘の゚ポキシ暹脂被芆チペツプドストランド
ずポリブチレンテレフタレヌト東レ補1401ず
をドラむブレンドした。このドラむブレンド䞭の
ガラス含量を30重量ずし、射出成圢法によ぀お
詊隓片を䜜成し、諞物性を枬定した。枬定項目ず
しお、アむゟツト衝撃倀及び匕匵り匷さを枬定
JIS K6911した。結果を第衚に瀺す。 比范䟋 実斜䟋ずの比范 ポリりレタン゚マルゞペンを䞻成分ずする集束
剀で凊理された盎埄13Όのガラス繊維800本から
成るガラス繊維のカツト長mmのチペツプドスト
ランド300重量郚ずポリブチレンテレフタレヌト
東レ補1401700郚ずを混合し、通垞の抌出し機
でペレタむズ埌、射出成圢法によ぀お詊隓片を䜜
成し諞物性を枬定した。結果を衚に瀺す。 実斜䟋  ゚ポキシ暹脂゚マルゞペンを䞻成分ずする集束
剀で凊理された実斜䟋ず同様の圢態を有するガ
ラス繊維チペツプドストランド300重量郚をメチ
ル゚チルケトン34重量郚に溶解された゚ポキシ圓
量箄450のビスプノヌルタむプ゚ポキシ暹脂34
重量郚溶液䞭に浞挬、含浞した。これをポリビニ
ルアルコヌルを含たない氎媒䜓䞭にお実斜䟋ず
同様な操䜜によ぀お゚ポキシ暹脂被芆チペツプド
ストランドを埗た。埗られた゚ポキシ暹脂被芆物
は、党お各チペツプドストランド毎に、しかも内
郚たで均䞀に被芆されおおり、その暹脂量は10重
量であ぀た。 この暹脂被芆チペツプドストランドを実斜䟋
ず同配合で成圢を行぀た。埗られた詊隓片の物性
枬定の結果を衚に瀺す。 比范䟋 実斜䟋ずの比范 ゚ポキシ暹脂゚マルゞペンを䞻成分ずする集束
剀で凊理された比范䟋ず同様の圢態を有するガ
ラス繊維チペツプドストランドを比范䟋ず同様
な操䜜によ぀お詊隓片を䜜成し諞物性を枬定し
た。結果を衚に瀺す。
The present invention relates to a coating of chopped glass fiber strands with a thermosetting resin such as an epoxy resin or a phenolic resin, a molding resin composition comprising a thermoplastic resin such as a thermoplastic polyester resin or a polyamide resin, and a method for producing the same.
More specifically, the chopped strands of glass fiber impregnated with the above thermosetting resin solution are dispersed in an aqueous medium, and the chopped strands are individually prepared by dispersing the chopped strands in an aqueous medium and removing the solvent. The present invention relates to a molding resin composition comprising a thermosetting resin coating, particularly a thick coating, and the above-mentioned thermoplastic resin, and a method for producing the same. Glass fiber-containing thermoplastic resins are widely used as various molding materials, such as molding materials for electrical parts and impact-resistant materials. Additionally, as automobiles become lighter in weight, they are also attracting attention as an alternative material to metals. Conventionally, these glass fiber-containing thermoplastic resin molding materials are generally produced by heating and melting mixing chopped glass fiber strands and thermoplastic resin using an extruder, and then forming the mixture into a form that can be injection molded, that is, into pellets. It was getting worse. However, in the above mixing process, the glass fiber chopped strands are opened before the mixing process, resulting in poor conveyance and metering properties, or the glass fibers are not uniformly dispersed in the resin during the extruder mixing process. As a result, the glass fibers are cut short, reducing the performance of the glass fiber-containing thermoplastic resin molded product. In order to solve this problem, in recent years, glass fiber chopped strands have been coated thickly with thermoplastic resin in advance. It has been proposed that the strength of molded products can be improved without causing poor dispersion. A typical method is coating with styrene resin. That is, styrenic monomers are polymerized in an aqueous medium containing a suspension stabilizer in the presence of chopped glass fiber strands using a specific reaction vessel under special mixing conditions. This is a method in which the strands are heavily coated with styrene resin. According to this method, it is possible to obtain a pellet-rich coating of chopped strands of styrene resin, and it has achieved some success as a glass fiber-containing molding material, but since this method uses a polymerization method, It takes 2 to 8 hours, and this has a significant negative impact on productivity and cost. Furthermore, since the thick coating mainly consists of styrene type resin, if a thermoplastic resin other than styrene type resin such as nylon, polybutylene terephthalate, polyethylene terephthalate, polycarbonate, etc. is applied as a matrix to this thick coating. Although it can satisfy the dispersibility of glass fibers in direct injection molding, it has poor adhesion at the interface between glass fibers and matrix resin, as well as poor compatibility between resin and matrix in dense coatings. Due to the poor quality, the physical properties deteriorate, and the glass fiber cannot fully exert its effect as a reinforcing agent. The first object of the present invention is to provide a coating by a simpler method with excellent productivity in manufacturing such a dense coating. A second object of the present invention is to provide a thick coating that enables direct injection molding and improves its performance when applied to various thermoplastic resins. The method for thickly coating chopped glass fiber strands of the present invention which achieves the above object is to immerse chopped glass fiber strands in various thermosetting resins, such as epoxy resin solution or phenolic resin, to impregnate the chopped strands. Dispersing the chopped strands and removing the solvent from the impregnated resin solution in an aqueous medium, and after removing the solvent, separating the chopped strands coated with a thermosetting resin from the aqueous medium and drying them. It is characterized by In the above-mentioned invention, the chopped strands of glass fibers (hereinafter simply referred to as chopped strands) are twisted from a bushing, coated with a binding agent, and then bundled and wound up. It is formed by cutting the strands. As the sizing agent, a commonly used sizing agent for glass fibers consisting of a film former, a surface treatment agent, and a lubricant can be used. Chopped strands have no critical meaning, but they usually contain fibers with a diameter of 7 to 23Ό.
Those containing 100 to 4000 pieces and having a cut length of 1.5 to 25 mm are used. A case where an epoxy resin is used as the thermosetting resin will be described below. The chopped strands are impregnated with an epoxy resin solution. Impregnation can be accomplished by simply dipping the chopped strands into a resin solution. At this time, the strands are usually soaked for about 10 minutes to be sufficiently impregnated with the resin solution. The amount of impregnation is determined by considering the viscosity of the resin solution and the amount of resin coating desired for the final product, but generally the non-volatile content of the resin is about 5 to 50 parts by weight per 100 parts by weight of the chopped strand. are selected as such. The viscosity and concentration of the resin solution at this time vary depending on the desired molecular weight of the epoxy resin, but preferably the epoxy resin solution viscosity is 10 centipoise to 10 centipoise.
The solution concentration may be adjusted to within 3000 centipoise. If the resin non-volatile content is less than 5% by weight, the glass fibers will not be coated uniformly and poor dispersion will occur in the molded product, which is not preferable. Moreover, if it is more than 50% by weight, the compatibility with the thermoplastic resin matrix is impaired, which is unfavorable in terms of performance. A preferred amount of impregnation is about 10 to 30 parts by weight of epoxy resin non-volatile content per 100 parts by weight of chopped strands. Further, it is more preferable to perform vacuum defoaming as an impregnating means when dipping the chopped strands. The epoxy resin to be coated on the chopped strands of the present invention may be any compound containing two or more epoxy groups in the molecule, but preferably one that is solid at room temperature. This is preferably non-stick since the epoxy resin-coated chopped strands are separated from the aqueous medium and then dried with hot air (40°C to 60°C), and dry blended with the thermoplastic resin matrix. It is also preferable from the point of view of ease of handling. Preferred epoxy resins have the following structural formula. The solvent for preparing the epoxy resin solution is preferably one that can be removed into an aqueous medium, such as acetone, diacetone alcohol, tetrahydrofuran, methyl ethyl ketone, and the like. After the chopped strands impregnated with the epoxy resin solution have been separated from the resin solution, for example by screening, they are introduced into an aqueous medium with stirring. Alternatively, following the separation, the resin-impregnated chopped strands may be squeezed if necessary to adjust the content. Surprisingly, by adding the resin-impregnated chopped strands to an aqueous medium and stirring them, the chopped strands are uniformly dispersed individually and impregnated with resin in the aqueous medium. By this addition and dispersion, the impregnating resin solution is desolvented into the aqueous medium. In the above-mentioned dispersion step, the ratio of the aqueous medium to the impregnated chopped strands must not be so small as to inhibit the dispersion of the chopped strands, but there is no particular restriction as long as it is higher than that. However, it is not preferable from a practical point of view to use too much aqueous medium because it leads to an increase in the size of the apparatus. The aqueous medium is generally used in a weight ratio of about 10:1 to 10:3 to the impregnated chopped strand. Stirring during dispersion does not require strong stirring;
Generally, stirring at about 100 to 300 rpm is sufficient. However, the strength of stirring depends on the amount of aqueous medium, the dispersion concentration, etc., and therefore it is better to adjust it to an appropriate value while actually observing the dispersion state. Due to this stirring, a part of the resin solution impregnated into the chopped strands may transfer to the dispersion medium and the system may become cloudy. Does not substantially affect the coating. On the other hand, the resin that has migrated in this way is adsorbed to the chopped strands when the system is heated, and
It has been observed that the dispersion medium becomes clear. The temperature of the dispersion medium when dispersing the impregnated chopped strands is not particularly limited, but lower temperatures are generally preferred because they provide better conditions. And normally a sufficiently good dispersion is achieved at a temperature of about 10-30°C. Dispersion may be carried out by continuing stirring at such a temperature for a sufficient time to remove the solvent, but it is preferable to remove the solvent by raising the temperature after adding the impregnated chopped strands. is good.
Although the temperature increase limit depends on the type of solvent used to dissolve the epoxy resin, it is preferable to increase the temperature to 40 to 70°C. This temperature increase promotes desolvation and causes the resin transferred to the aqueous medium as described above to be adsorbed onto the chopped strands. However, if the amount of epoxy resin coated is large, the resin-impregnated chopped strands may harden into lumps, making it impossible to form a clean resin coat. In such a case, by adding an effective amount of a dispersant to the aqueous medium in advance, agglomeration can be prevented and a uniform dispersion state can be maintained. Dispersants can be used not only in this case but also for the purpose of promoting initial dispersion. As the dispersant, known ones such as water-soluble polymers such as polyvinyl alcohol can be used. The amount of dispersant is sufficient within the conventional range and is usually added in an amount of about 0.1 to 10% by weight relative to the aqueous medium. The dispersion time is the time during which substantially all of the solvent is removed from the impregnated resin solution into the aqueous medium, and usually about 30 to 90 minutes is sufficient. After dispersion and solvent removal are completed, if the temperature of the dispersion system is raised in the dispersion process, preferably, after cooling to room temperature, the chopped strands individually coated with the epoxy resin are separated from the dispersion system. . Separation can be carried out in a conventional manner, for example by screening. The separated epoxy resin coated chopped strands can be dried by any method, such as hot air drying. Drying is 40
A temperature of ~60°C is optimal. Thus, according to the invention, simple equipment and impregnation,
Chopped glass fiber strands can be coated with epoxy resin by simple operations of dispersion, separation, and drying, and in an extremely short time. According to the above-mentioned coating method, it is possible to obtain a pellet-like glass fiber base material that is uniformly filled and coated with an epoxy resin, and is particularly densely coated, without causing the glass fibers to become fluffed, which can cause molding troubles. I can do it. The epoxy resin-coated chopped strands according to the invention can be directly injection molded in the form of a dry blend with glass fiber-free thermoplastic resin pellets, and the glass fibers are evenly distributed in the molded article and A molded article with extremely excellent properties can be obtained. The amount of dry blend is
The glass fiber content in the molded article is selected in the range of 5 to 60% by weight. In addition, examples of thermoplastic resins include polypropylene, which is commonly used for injection molding.
polyethylene, polystyrene, poly(styrene)
acrylonitrile) copolymer, nylon, polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polyacetal, polyphenylene oxide, etc. Next, the present invention will be further explained with reference to Examples.
However, these examples are merely illustrative and should not be construed as limiting the invention. Example 1 300 parts by weight of chopped strands of glass fibers with a cut length of 3 mm consisting of 800 glass fibers with a diameter of 13 ÎŒm treated with a sizing agent mainly composed of polyurethane emulsion were dissolved in 75 parts by weight of methyl ethyl ketone. The sample was immersed in a solution of 75 parts by weight of a bisphenol type epoxy resin having an epoxy equivalent of 940. 3000 parts by weight containing 3 parts by weight of polyvinyl alcohol prepared in advance in 5 tanks equipped with this stirrer and solvent recovery device at a temperature of 20℃
The mixture was poured into an aqueous medium, and the temperature was raised to 70°C while stirring.
During this heating process, the impregnated chopped strands exhibited a completely uniform dispersion state. The time required during this time was 30 minutes. After this dispersion was allowed to cool to room temperature, the chopped strands coated with the epoxy resin were separated by filtration and dried with hot air at 40°C.
All of the resulting resin-coated chopped strands were coated with epoxy resin uniformly on each chopped strand, even to the inside, and the amount of resin was 20% by weight, which matched the initial charge amount. It was hot. The epoxy resin-coated chopped strand and polybutylene terephthalate (Toray 1401) were dry blended. The glass content in this dry blend was set to 30% by weight, test pieces were prepared by injection molding, and various physical properties were measured. As measurement items, Izot impact value and tensile strength were measured (JIS K6911). The results are shown in Table 1. Comparative Example 1 (Comparison with Example 1) 300 parts by weight of chopped strands of glass fibers each having a cut length of 3 mm and consisting of 800 glass fibers with a diameter of 13 ÎŒm treated with a sizing agent mainly composed of polyurethane emulsion. The mixture was mixed with 700 parts of polybutylene terephthalate (Toray 1401), pelletized using an ordinary extruder, and then injection molded to prepare test pieces and their physical properties were measured. The results are shown in Table 1. Example 2 300 parts by weight of chopped glass fibers having the same morphology as in Example 1 treated with a sizing agent mainly composed of an epoxy resin emulsion were dissolved in 34 parts by weight of methyl ethyl ketone and having an epoxy equivalent of about 450. Bisphenol type epoxy resin 34
Part by weight solution was immersed and impregnated. This was subjected to the same operation as in Example 1 in an aqueous medium containing no polyvinyl alcohol to obtain an epoxy resin-coated chopped strand. In the obtained epoxy resin coating, each chopped strand was uniformly coated to the inside, and the amount of resin was 10% by weight. Example 1 This resin-coated chopped strand
Molding was carried out using the same composition. Table 1 shows the results of measuring the physical properties of the obtained test piece. Comparative Example 2 (Comparison with Example 2) Glass fiber chopped strands having the same morphology as in Comparative Example 1 and treated with a sizing agent mainly composed of epoxy resin emulsion were subjected to the same operation as in Comparative Example 1. Therefore, test pieces were prepared and various physical properties were measured. The results are shown in Table 1.

【衚】 実斜䟋  実斜䟋ず同様のガラス繊維チペツプドストラ
ンド300重量郚をメチル゚チルケトン75重量郚に
溶解された゚ポキシ圓量玄3200のビスプノヌル
タむプ゚ポキシ暹脂75重量郚溶液䞭で゚ポキシ暹
脂被芆チペツプドストランド䜜成した。この被芆
量は20重量であ぀た。 この゚ポキシ暹脂被芆チペツプドストランドを
ドラむブレンドの圢で・−ナむロンペレツト
ずガラス繊維含量30重量になるように混合し、
射出成圢機で詊隓片を䜜成した。成圢品倖芳は、
ガラス繊維の分散䞍良は党く認められなか぀た。
この物性を衚に瀺す。 比范䟋 実斜䟋ずの比范 ポリブチレンテレフタレヌトの代りに・−
ナむロンを䜿甚しお比范䟋を繰返した。埗られ
た詊隓片の物性の枬定結果を衚に瀺す。
[Table] Example 3 300 parts by weight of the same chopped glass fiber strand as in Example 1 was coated with epoxy resin in a solution of 75 parts by weight of a bisphenol type epoxy resin having an epoxy equivalent of about 3200 dissolved in 75 parts by weight of methyl ethyl ketone. I created chopped strands. The coverage was 20% by weight. This epoxy resin-coated chopped strand is mixed with 6,6-nylon pellets in the form of a dry blend so that the glass fiber content is 30% by weight.
A test piece was created using an injection molding machine. The appearance of the molded product is
No poor dispersion of glass fibers was observed at all.
The physical properties are shown in Table 2. Comparative Example 3 (Comparison with Example 3) 6.6- instead of polybutylene terephthalate
Comparative Example 1 was repeated using nylon. Table 2 shows the measurement results of the physical properties of the obtained test piece.

【衚】 定
衚、より本発明方法で埗られた゚ポキシ暹
脂被芆チペツプドストランドを甚いた成圢品物性
は、比范䟋に比べ優れた特性を有し、䞔぀通垞甚
いられる抌し出し機工皋を省略しお、盎接射出成
圢機に䟛せうるこずが明らかである。 なお熱硬化性暹脂ずしお゚ポキシ暹脂の代りに
プノヌル暹脂を䜿甚しおも同様の結果が埗られ
た。
[Table] From Tables 1 and 2, the physical properties of the molded product using the epoxy resin-coated chopped strand obtained by the method of the present invention are superior to those of the comparative example, and the extruder process commonly used It is clear that it is possible to omit this and directly apply it to the injection molding machine. Similar results were obtained when a phenolic resin was used instead of the epoxy resin as the thermosetting resin.

Claims (1)

【特蚱請求の範囲】  集束剀で凊理されたガラス繊維衚面を、曎に
ガラス繊維100重量郚に察し〜50重量郚の゚ポ
キシ暹脂たたはプノヌル暹脂で被芆したガラス
繊維のチペツプドストランド、および熱可塑性ポ
リ゚ステル暹脂たたはポリアミド暹脂から成る、
成圢甚暹脂組成物。  玡糞、集束埌、所定の長さに切断しお圢成さ
れたガラス繊維のチペツプドストランドを、゚ポ
キシ暹脂たたはプノヌル暹脂の溶液に浞挬しお
チペツプドストランドに゚ポキシ暹脂たたはプ
ノヌル暹脂溶液を含浞させ、含浞されたチペツプ
ドストランドを分離埌、これを氎媒䜓䞭で撹拌し
お含浞チペツプドストランドの分散ずチペツプド
ストランドに含浞されおいる暹脂溶液からの氎媒
䜓ぞの脱溶媒を行い、次いで脱溶媒埌の゚ポキシ
暹脂たたはプノヌル暹脂で被芆されおいるチペ
ツプドストランドを氎媒䜓から分離および也燥
し、埗られた゚ポキシ暹脂たたはプノヌル暹脂
で被芆されたガラス繊維のチペツプドストランド
を、熱可塑性ポリ゚ステル暹脂たたはポリアミド
暹脂にドラむブレンドするこずを特城ずする、成
圢甚暹脂組成物の補造方法。
[Scope of Claims] 1. A chopped strand of glass fiber whose surface has been treated with a sizing agent and which is further coated with 5 to 50 parts by weight of an epoxy resin or phenolic resin per 100 parts by weight of the glass fiber, and consisting of thermoplastic polyester resin or polyamide resin,
Molding resin composition. 2 After spinning and convergence, cut the chopped strands of glass fiber into a predetermined length and dip them in an epoxy resin or phenolic resin solution to coat the chopped strands with the epoxy resin or phenolic resin solution. After separating the impregnated chopped strands, this is stirred in an aqueous medium to disperse the impregnated chopped strands and remove the resin solution impregnated into the chopped strands from the aqueous medium. The chopped strands coated with the epoxy resin or phenolic resin after the solvent removal are separated from the aqueous medium and dried, and the resulting glass fibers coated with the epoxy resin or phenolic resin are separated from the aqueous medium and dried. A method for producing a molding resin composition, comprising dry blending chopped strands of the above with a thermoplastic polyester resin or a polyamide resin.
JP6560082A 1982-04-20 1982-04-20 Molding resin composition containing glass fiber and its preparation Granted JPS58183738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6560082A JPS58183738A (en) 1982-04-20 1982-04-20 Molding resin composition containing glass fiber and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6560082A JPS58183738A (en) 1982-04-20 1982-04-20 Molding resin composition containing glass fiber and its preparation

Publications (2)

Publication Number Publication Date
JPS58183738A JPS58183738A (en) 1983-10-27
JPS6153385B2 true JPS6153385B2 (en) 1986-11-17

Family

ID=13291667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6560082A Granted JPS58183738A (en) 1982-04-20 1982-04-20 Molding resin composition containing glass fiber and its preparation

Country Status (1)

Country Link
JP (1) JPS58183738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118921U (en) * 1988-02-04 1989-08-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118921U (en) * 1988-02-04 1989-08-11

Also Published As

Publication number Publication date
JPS58183738A (en) 1983-10-27

Similar Documents

Publication Publication Date Title
US3702356A (en) Process for production of glass-filled thermoplastic pellets suitable for blending with thermoplastic
US2877501A (en) Glass-reinforced thermoplastic injection molding compound and injection-molding process employing it
EP0994978B1 (en) Nonaqueous sizing system for glass fibers and injection moldable polymers
US3639331A (en) Glass fiber reinforced resins containing dispersion aid
DK168392B1 (en) Injection molding material in the form of elongated granules containing filaments, its preparation and method for injection molding and injection molding material
EP0317628B1 (en) Fiber-reinforced thermosetting resin molding material and process for its production
JP2002533296A (en) Non-aqueous sizing system for glass fibers and injection moldable polymers
US4944965A (en) Elongated molding granules and injection-molding process employing them
US5387468A (en) Size composition for impregnating filament strands
JP2545171B2 (en) Resin coated carbon fiber chopped strand
EP0440970B1 (en) Molding granules, their manufacture and their use in the production of molded articles
JPS6153385B2 (en)
JPS60202154A (en) Injection-molded thermoplastic resin product
DE3686369T2 (en) EXTENDED MOLD GRANULES AND THEIR USE IN THE INJECTION MOLDING PROCESS.
US5430076A (en) Glass fiber strand for reinforcing a thermoplastic resin and process for preparing a fiber-reinforced resin product
US4407866A (en) Process for coating chopped strand of glass fiber with thermosetting resin
JPS58188624A (en) Coating by thermosetting resin of chopped fibers of high elastic modulus fiber
JP2000072492A (en) Glass fiber and glass fiber reinforced thermoplastic resin using the same
JP3008481B2 (en) Short carbon fiber aggregate and fiber reinforced thermoplastic resin composition using the same as reinforcing material
JPH0859847A (en) Glass fiber for direct injection molding and glass fiber-reinforced thermoplastic resin composition
JPH05507676A (en) Size composition for impregnating filament strands
JPH10324544A (en) Glass fiber and glass fiber-reinforced thermoplastic resin using the fiber
CN114507400A (en) Modified glass fiber reinforced polypropylene composition and preparation method thereof
JPH0192234A (en) Carbon short fiber aggregate and fiber reinforced thermoplastic resin composition comprising said aggregate is reinforcing material
JPS624056B2 (en)