JPS6152843B2 - - Google Patents

Info

Publication number
JPS6152843B2
JPS6152843B2 JP53159985A JP15998578A JPS6152843B2 JP S6152843 B2 JPS6152843 B2 JP S6152843B2 JP 53159985 A JP53159985 A JP 53159985A JP 15998578 A JP15998578 A JP 15998578A JP S6152843 B2 JPS6152843 B2 JP S6152843B2
Authority
JP
Japan
Prior art keywords
fluorinated
group
carbon atoms
perfluoroalkyl group
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53159985A
Other languages
Japanese (ja)
Other versions
JPS5589312A (en
Inventor
Tatsuro Asawa
Haruhisa Myake
Masami Yamashita
Takashi Miegi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15998578A priority Critical patent/JPS5589312A/en
Publication of JPS5589312A publication Critical patent/JPS5589312A/en
Publication of JPS6152843B2 publication Critical patent/JPS6152843B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、イオン交換性フツ素化重合体の製造
法に関し、更に詳しく言えば、カルボン酸型陽イ
オン交換基含有のフツ素化重合体の水性媒体中共
重合反応による製造方法の改良に関する。 カルボン酸型フツ素樹脂陽イオン交換膜は、塩
化アルカリ水溶液の隔膜電解方法における隔膜と
して、高純度の水酸化アルカリを与えるばかりで
なく、高い電流効率、高い電流密度での操業を可
能にし、更に陰極室に水酸化アルカリを高濃度で
与えうるものであることが知られている。例え
ば、生成水酸化ナトリウムの濃度が40%以上の場
合であつても、その電流効率を90%以上に保持で
きるという優秀な性能が認められるのである。 而して、前記の如きカルボン酸型陽イオン交換
基含有のフツ素化重合体において、高いイオン交
換容量で且つ分子量が可及的に高いフツ素化重合
体を水性媒体中共重合反応により製造する場合、
水性媒体/カルボン酸型官能性単量体の重量比を
20/1以下にして、且つ共重合反応圧力を7Kg/
cm2以上にすることが有効であるということが提案
されている。例えば、特開昭53−49090号公報な
どを参照。 本発明者は、カルボン酸型官能性単量体と四弗
化エチレンの如き弗素化オレフイン化合物の水性
媒体中共重合反応について種々の研究、検討を重
ねた結果、生成ポリマー濃度を高めるに伴なつて
生成ポリマーの組成が変化し、官能基濃度の不均
質なフツ素化重合体が生成してしまうという事実
を見出した。特に、ポリマー濃度の増大に伴なつ
て生成ポリマーのイオン交換容量が低下するとい
う難点が認められる。そして、本発明者は、乳化
剤としてはC8F17COONH4の如き炭素数8個のパ
ーフルオロアルキル基含有化合物を使用すること
により、前記難点が有利に解消され、20重量%以
上の高いポリマー濃度でもイオン交換容量を低下
せずに、均質な組成を有するフツ素化重合体を製
造可能であるという驚くべき事実を見出したもの
である。 かくして、本発明は、前記知見に基いて完成さ
れたものであり、弗素化したエチレン系不飽和単
量体とカルボン酸基もしくはカルボン酸基に転換
しうる官能基を有する重合能ある官能性単量体と
を、重合開始源の作用により弗素系界面活性剤の
存在下に水性媒体中で乳化共重合せしめ、前記官
能性単量体含有量5〜30モル%の共重合体を生成
せしめることからなるイオン交換性フツ素化重合
体の製造法において、前記弗素系界面活性剤とし
て炭素数8個のパーフルオロアルキル基含有化合
物を使用することを特徴とするイオン交換性フツ
素化重合体の製造法を新規に提供するものであ
る。 本発明においては、官能性単量体としてカルボ
ン酸基もしくはカルボン酸基に転換し得る官能基
を含有する重合能ある単量体を使用することが重
要である。かゝるカルボン酸型官能性単量体
()は、生成重合体の耐塩素性、耐酸化性など
を考慮して、通常はフルオロビニル化合物である
ことが望ましく、好適なものとしては、一般式
CF2=CX−(OCF2CFY)l−(O)n−(CFY′)o−A
(ここで、lは0〜3、mは0〜1、nは0〜12
の整数であり、Xはフツ素原子又は−CF3であ
り、Y、Y′はフツ素原子又は炭素数1〜10のパ
ーフルオロアルキル基である。またAは、−CN、
−COF、−COOH、−COOR1、−COOM又は−
CONR2R3であり、R1は炭素数1〜10のアルキル
基、R2、R3は水素原子又はR1であり、Mはアル
カリ金属又は第四級アンモニウム基である)で表
わされるフルオロビニル化合物が例示される。性
能上及び入手性の点から、Xはフツ素原子、Yは
−CF3、Y′はフツ素原子、lは0〜1、mは0〜
1、nは0〜8であり、またAは、共重合反応性
などから−COOR1が好ましい。かゝるフルオロ
ビニル化合物の好ましい代表例としては、 CF2=CFO(CF21〜8COOCH3、 CF2=CFO(CF21〜8COOC2H5、 CF2=CF(CF20〜8COOCH3、 CF2=CFOCF2CF(CF3)OCF2CF2 CF2COOCH3 などがあげられる。 次に、弗素化したエチレン系不飽和単量体
()としては、四弗化エチレン、三弗化塩化エ
チレン、六弗化プロピレン、三弗化エチレン、弗
化ビニリデン、弗化ビニルなどが例示され、好適
には一般式CF2=CZZ′(こゝで、Z、Z′はフツ素
原子、塩素原子、水素原子、又は−CF3である)
で表わされるフツ素化オレフイン化合物である。
なかでもパーフルオロオレフイン化合物が好まし
く、特に四弗化エチレンが好適である。 本発明においては、前記官能性単量体()及
びエチレン系不飽和単量体()の各モノマー化
合物のそれぞれを二種以上で使用することもで
き、またこれらの化合物の他に、他の成分、例え
ば一般式CH2=CR4R5(こゝで、R4、R5は水素原
子、炭素数1〜8のアルキル基又は芳香核を示
す)で表わされるオレフイン化合物()、CF2
=CFORf(Rfは炭素数1〜10のパーフルオロア
ルキル基を示す)の如きフルオロビニルエーテ
ル、CF2=CF−CF=CF2、CF2=CFO
(CF21〜4OCF=CF2の如きジビニルモノマー、
更にはスルホン酸型官能基など他の官能性単量体
などの一種又は二種以上を併用することもでき
る。オレフイン化合物()の好ましい代表例と
しては、エチレン、プロピレン、ブテン−1、イ
ソブチレン、スチレン、α−メチルスチレン、ペ
ンテン−1、ヘキセン−1、ヘプテン−1、3−
メチル−ブテン−1・4−メチル−ペンテン−1
などがあげられ、なかでも製造上及び生成共重合
体の性能上などから、エチレン、プロピレン、イ
ソブチレンなどの使用が特に好ましい。また、例
えばジビニルモノマーの併用により、得られる共
重合体を架橋し、膜にした場合の機械的強度を改
善せしめることが可能である。 本発明のイオン交換基含有フツ素化重合体にお
いて、前記の官能性単量体()、フツ素化オレ
フイン化合物()、更には前記オレフイン化合
物()その他の成分の組成割合は、電解槽用イ
オン交換膜とした場合の全ての性能に関係するの
で重要である。まず、官能性単量体()の存在
量は、イオン交換容量と直接関係するが、共重合
体中5〜30モル%が好適である。該官能性単量体
()の存在量が大きすぎると、イオン交換膜と
した場合の機械的強度を損ない、更には含水量の
増大によるイオン交換性能の低下をきたし、また
余りに少ない存在量ではイオン交換機能を示さな
いので好ましくない。 而して、本発明の共重合体中における前記
()の化合物の残りは、前記()と更には
()その他の化合物が占めることになるが、
()のオレフイン化合物の存在量は、イオン交
換膜としての電気的、機械的性質及び耐塩素性な
どに大きく関係するので重要である。従つて、オ
レフイン化合物()を併用する場合には、オレ
フイン化合物()/フツ素化オレフイン化合物
()のモル比が、好ましくは5/95〜70〜30、
特には10/90〜60/40にするのが好適である。ま
た、フルオロビニルエーテルやジビニルエーテル
などを併用する場合にも、共重合体中30モル%以
下、好ましくは2〜20モル%程度の使用割合とす
るのが好適である。 本発明では、イオン交換容量は、0.5〜2.2ミリ
当量/グラム乾燥樹脂という広い範囲から選択さ
れるが、特徴的なことは、イオン交換容量を大き
くしても、生成共重合体の分子量を高くでき、従
つて共重合体の機械的性質や耐久性は低下するこ
とがないのである。イオン交換容量は、上記の範
囲でも、共重合体の種類に応じて異なるが、好ま
しくは0.8ミリ当量/グラム乾燥樹脂以上、特に
1.0ミリ当量/グラム乾燥樹脂以上の場合が、イ
オン交換膜としての機械的性質及び電気化学的性
能上好ましい。また、本発明で得られるフツ素化
重合体の分子量は、イオン交換膜としての機械的
性能及び成膜性と関係するので重要であり、TQ
の値で表示すると、150℃以上、好ましくは170〜
340℃、特に180〜300℃程度とするのが好適であ
る。 本明細書中において「TQ」なる言葉は、次の
ように定義されるものである。即ち、共重合体の
分子量に関係する容量流速100mm/秒を示す温
度がTQと定義される。こゝにおいて容量流速
は、共重合体を30Kg/cm2加圧下、一定温度の径1
mm、長さ2mmのオリフイスから熔融流出せしめ、
流出する共重合体量をmm/秒の単位で示したも
のである。尚、「イオン交換容量」は、次のよう
にして求めた。即ち、H型の陽イオン交換樹脂膜
を、1NのHCl中で60℃、5時間放置し、完全にH
型に転換し、HClが残存しないように水で充分洗
浄した。その後、このH型の膜0.5gを、0.1Nの
NaOH25mlに水を25ml加えてなる溶液中に、室温
で2日間静置した。次いで膜をとり出して、溶液
中のNaOHの量を0.1NのHClで逆滴定することに
より求めるものである。 本発明においては、官能性単量体とフツ素化オ
レフイン化合物との共重合反応を、水性媒体の使
用量を水性媒体/官能性単量体の重量比で20/1
以下にし、好ましくは10/1以下に制御して実施
することが好適である。水性媒体の使用量が多す
ぎる場合には、共重合反応速度が著しく低下し、
高い共重合体収量を得るために長時間を要するこ
とになる。また、水性媒体が多すぎると高イオン
交換容量にした場合に高い分子量を達成するのが
難しくなる。更に水性媒体の多量使用には、次の
如き難点が認められる。例えば、反応装置の大型
化あるいは共重合体分離回収など作業操作面の不
利があげられる。 次に、本発明においては、7Kg/cm2以上の共重
合反応圧力を採用することが好適である。共重合
反応圧力が低くすぎる場合には、共重合反応速度
を実用上満足し得る高さに維持することができ
ず、高分子量の共重合体の形成にも難点が認めら
れる。又、共重合反応圧力が低くすぎると、生成
共重合体のイオン交換容量が極端に高くなり、含
水量増大などによる機械的強度、イオン交換性能
の低下傾向が増大することになる。尚、共重合反
応圧力は、工業的実施における反応装置上又は作
業操作上などを考慮して、50Kg/cm2以下から選定
されるのが望ましい。かゝる範囲よりも高い共重
合反応圧力の採用は可能であるが、本発明の目的
を比例的に向上せしめ得るものではない。従つ
て、本発明においては、共重合反応圧力を7〜50
Kg/cm2、好ましくは9〜30Kg/cm2の範囲から選定す
るのが最適である。 本発明においては、パーフルオロアルキル基の
炭素数が8個であるところのパーフルオロアルキ
ル基を含有する化合物からなる弗素系界面活性剤
の存在下に前記共重合反応を実施することが重要
である。パーフルオロアルキル基の炭素数が8個
でない、例えばC7F15基、C6F13基、C10F21基の
如き場合には、パーフルオロアルキル基含有化合
物からなる弗素系界面活性剤であつても、ポリマ
ー濃度の増大に伴なつて、生成ポリマーのイオン
交換容量が低下し、均質な組成のフツ素化重合体
を得ることが困難である。これに対して、本発明
におけるパーフルオロアルキル基の炭素数が8個
であるC8F17基を含有する化合物を弗素形界面活
性剤として使用する場合には、ポリマー濃度が増
大しても生成ポリマーのイオン交換容量は低下せ
ず、均質な組成を有するフツ素化重合体を得るこ
とができる。そして、本発明においては、
C8F17COONH4、C8F17OONa、C8F17COOK、
C8F17COOH、C8F17SO3K、
The present invention relates to a method for producing an ion-exchangeable fluorinated polymer, and more specifically, to an improvement in the method for producing a fluorinated polymer containing a carboxylic acid type cation exchange group by copolymerization reaction in an aqueous medium. Carboxylic acid type fluororesin cation exchange membranes not only provide high purity alkali hydroxide as a diaphragm in the diaphragm electrolysis method of aqueous alkali chloride solutions, but also enable operation at high current efficiency and high current density. It is known that a high concentration of alkali hydroxide can be supplied to the cathode chamber. For example, even when the concentration of sodium hydroxide produced is 40% or more, the current efficiency can be maintained at 90% or more, which is an excellent performance. Therefore, in the fluorinated polymer containing a carboxylic acid type cation exchange group as described above, a fluorinated polymer having a high ion exchange capacity and a molecular weight as high as possible is produced by a copolymerization reaction in an aqueous medium. case,
The weight ratio of aqueous medium/carboxylic acid type functional monomer is
20/1 or less, and the copolymerization reaction pressure is 7Kg/
It has been proposed that it is effective to increase the temperature to cm 2 or more. For example, see Japanese Patent Application Laid-Open No. 53-49090. The present inventor has conducted various studies and studies on the copolymerization reaction of a carboxylic acid type functional monomer and a fluorinated olefin compound such as tetrafluoroethylene in an aqueous medium. It was discovered that the composition of the resulting polymer changes, resulting in a fluorinated polymer with a non-uniform concentration of functional groups. In particular, there is a problem in that the ion exchange capacity of the resulting polymer decreases as the polymer concentration increases. The present inventor has found that by using a perfluoroalkyl group-containing compound having 8 carbon atoms such as C 8 F 17 COONH 4 as an emulsifier, the above-mentioned drawbacks can be advantageously overcome, and a high polymer content of 20% by weight or more can be obtained. The surprising fact has been discovered that it is possible to produce a fluorinated polymer having a homogeneous composition without decreasing the ion exchange capacity regardless of the concentration. Thus, the present invention has been completed based on the above findings, and uses a fluorinated ethylenically unsaturated monomer and a polymerizable functional monomer having a carboxylic acid group or a functional group convertible to a carboxylic acid group. emulsion copolymerization in an aqueous medium in the presence of a fluorine-containing surfactant by the action of a polymerization initiation source to produce a copolymer having a functional monomer content of 5 to 30 mol%. A method for producing an ion-exchangeable fluorinated polymer comprising using a perfluoroalkyl group-containing compound having 8 carbon atoms as the fluorinated surfactant. This provides a new manufacturing method. In the present invention, it is important to use a polymerizable monomer containing a carboxylic acid group or a functional group convertible to a carboxylic acid group as the functional monomer. In consideration of the chlorine resistance, oxidation resistance, etc. of the resulting polymer, such carboxylic acid type functional monomer () is usually desirably a fluorovinyl compound, and preferred examples include general fluorovinyl compounds. formula
CF 2 =CX−(OCF 2 CFY) l −(O) n −(CFY′) o −A
(Here, l is 0-3, m is 0-1, n is 0-12
X is a fluorine atom or -CF3 , and Y and Y' are a fluorine atom or a perfluoroalkyl group having 1 to 10 carbon atoms. Also, A is -CN,
−COF, −COOH, −COOR 1 , −COOM or −
CONR 2 R 3 , R 1 is an alkyl group having 1 to 10 carbon atoms, R 2 and R 3 are hydrogen atoms or R 1 , and M is an alkali metal or a quaternary ammonium group). Vinyl compounds are exemplified. From the viewpoint of performance and availability, X is a fluorine atom, Y is -CF 3 , Y' is a fluorine atom, l is 0 to 1, and m is 0 to
1, n is 0 to 8, and A is preferably -COOR 1 from the viewpoint of copolymerization reactivity. Preferred representative examples of such fluorovinyl compounds include CF2 = CFO ( CF2 ) 1-8 COOCH3 , CF2 = CFO( CF2 ) 1-8 COOC2H5 , CF2 = CF(CF2 ). ) 0 to 8 COOCH 3 , CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CF 2 COOCH 3 , etc. Next, examples of the fluorinated ethylenically unsaturated monomer () include ethylene tetrafluoride, ethylene trifluoride chloride, propylene hexafluoride, ethylene trifluoride, vinylidene fluoride, and vinyl fluoride. , preferably the general formula CF 2 =CZZ' (where Z and Z' are a fluorine atom, a chlorine atom, a hydrogen atom, or -CF 3 )
It is a fluorinated olefin compound represented by
Among these, perfluoroolefin compounds are preferred, and tetrafluoroethylene is particularly preferred. In the present invention, each of the functional monomers () and ethylenically unsaturated monomers () may be used in combinations of two or more, and in addition to these compounds, other monomer compounds may also be used. components, such as olefin compounds () represented by the general formula CH 2 =CR 4 R 5 (where R 4 and R 5 represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aromatic nucleus), CF 2
= Fluorovinyl ether such as CFOR f (R f represents a perfluoroalkyl group having 1 to 10 carbon atoms), CF 2 =CF−CF=CF 2 , CF 2 =CFO
( CF2 ) 1~4 OCF=Divinyl monomer such as CF2 ,
Furthermore, one or more types of other functional monomers such as sulfonic acid type functional groups can also be used in combination. Preferred representative examples of the olefin compound () include ethylene, propylene, butene-1, isobutylene, styrene, α-methylstyrene, pentene-1, hexene-1, heptene-1, 3-
Methyl-butene-1,4-methyl-pentene-1
Among them, ethylene, propylene, isobutylene and the like are particularly preferred from the viewpoint of production and performance of the resulting copolymer. Furthermore, for example, by using a divinyl monomer in combination, it is possible to crosslink the resulting copolymer and improve the mechanical strength when formed into a membrane. In the ion-exchange group-containing fluorinated polymer of the present invention, the composition ratios of the functional monomer (), the fluorinated olefin compound (), and the olefin compound () and other components are as follows: This is important because it is related to all the performances when used as an ion exchange membrane. First, the amount of the functional monomer () is directly related to the ion exchange capacity, but is preferably 5 to 30 mol% in the copolymer. If the amount of the functional monomer () present is too large, the mechanical strength of the ion exchange membrane will be impaired, and furthermore, the ion exchange performance will be reduced due to an increase in water content. It is not preferred because it does not exhibit ion exchange function. Therefore, the remainder of the compound () in the copolymer of the present invention is occupied by the () and other compounds (),
The amount of the olefin compound in parentheses () is important because it greatly affects the electrical, mechanical properties, chlorine resistance, etc. of the ion exchange membrane. Therefore, when the olefin compound () is used in combination, the molar ratio of the olefin compound ()/fluorinated olefin compound () is preferably 5/95 to 70 to 30,
In particular, it is preferable to set the ratio to 10/90 to 60/40. Further, when fluorovinyl ether, divinyl ether, etc. are used in combination, it is suitable to use the proportion of 30 mol % or less, preferably about 2 to 20 mol %, in the copolymer. In the present invention, the ion exchange capacity is selected from a wide range of 0.5 to 2.2 milliequivalents/gram dry resin, but the characteristic feature is that even if the ion exchange capacity is increased, the molecular weight of the resulting copolymer remains high. Therefore, the mechanical properties and durability of the copolymer do not deteriorate. The ion exchange capacity varies depending on the type of copolymer even within the above range, but is preferably 0.8 meq/g dry resin or more, especially
A ratio of 1.0 milliequivalent/g dry resin or more is preferable in terms of mechanical properties and electrochemical performance as an ion exchange membrane. In addition, the molecular weight of the fluorinated polymer obtained in the present invention is important because it is related to the mechanical performance and film formability as an ion exchange membrane, and T Q
When expressed as a value of 150℃ or higher, preferably 170~
The temperature is preferably about 340°C, particularly about 180 to 300°C. In this specification, the term " TQ " is defined as follows. That is, TQ is defined as the temperature at which the volume flow rate is 100 mm 3 /sec, which is related to the molecular weight of the copolymer. Here, the volumetric flow rate is the copolymer under a pressure of 30 kg/cm 2 and a diameter of 1 at a constant temperature.
mm, let the melt flow out from the orifice with a length of 2 mm,
The amount of copolymer flowing out is shown in units of mm 3 /sec. Incidentally, the "ion exchange capacity" was determined as follows. That is, an H-type cation exchange resin membrane was left in 1N HCl at 60°C for 5 hours to completely remove H.
The mixture was converted into a mold and thoroughly washed with water to ensure that no HCl remained. Then, 0.5g of this H-type film was heated to 0.1N.
It was left standing at room temperature for 2 days in a solution prepared by adding 25 ml of water to 25 ml of NaOH. The membrane is then taken out and the amount of NaOH in the solution is determined by back titration with 0.1N HCl. In the present invention, the copolymerization reaction between the functional monomer and the fluorinated olefin compound is carried out at a weight ratio of 20/1 of the aqueous medium/functional monomer.
It is preferable to control the ratio to below, preferably 10/1 or less. If the amount of aqueous medium used is too large, the copolymerization reaction rate will decrease significantly,
It takes a long time to obtain a high copolymer yield. Also, too much aqueous medium makes it difficult to achieve high molecular weights when high ion exchange capacities are used. Furthermore, the following difficulties are recognized when using a large amount of an aqueous medium. For example, there are disadvantages in operational aspects such as an increase in the size of the reactor and separation and recovery of the copolymer. Next, in the present invention, it is preferable to employ a copolymerization reaction pressure of 7 kg/cm 2 or more. If the copolymerization reaction pressure is too low, the copolymerization reaction rate cannot be maintained at a level that is practically satisfactory, and there are also difficulties in forming a high molecular weight copolymer. Furthermore, if the copolymerization reaction pressure is too low, the ion exchange capacity of the resulting copolymer will become extremely high, and the mechanical strength and ion exchange performance will tend to decrease due to increased water content. In addition, the copolymerization reaction pressure is desirably selected from 50 Kg/cm 2 or less, taking into account the reaction apparatus or work operation in industrial implementation. Although it is possible to employ copolymerization reaction pressures higher than this range, it may not proportionately improve the objectives of the present invention. Therefore, in the present invention, the copolymerization reaction pressure is set at 7 to 50
Kg/cm 2 , preferably from the range of 9 to 30 Kg/cm 2 . In the present invention, it is important to carry out the copolymerization reaction in the presence of a fluorine-based surfactant made of a compound containing a perfluoroalkyl group in which the number of carbon atoms in the perfluoroalkyl group is 8. . When the number of carbon atoms in the perfluoroalkyl group is not 8, such as C 7 F 15 groups, C 6 F 13 groups, or C 10 F 21 groups, a fluorine-based surfactant consisting of a perfluoroalkyl group-containing compound can be used. Even in this case, as the polymer concentration increases, the ion exchange capacity of the resulting polymer decreases, making it difficult to obtain a fluorinated polymer with a homogeneous composition. On the other hand, when a compound containing a C 8 F 17 group in which the perfluoroalkyl group has 8 carbon atoms is used as a fluorosurfactant in the present invention, even if the polymer concentration increases, the formation of The ion exchange capacity of the polymer is not reduced, and a fluorinated polymer having a homogeneous composition can be obtained. In the present invention,
C 8 F 17 COONH 4 , C 8 F 17 OONa, C 8 F 17 COOK,
C8F17COOH , C8F17SO3K , _

【式】の如きパーフルオロア ルキル基含有化合物が弗素系界面活性剤として採
用され、通常は水性媒体中0.001〜5重量%、好
ましくは0.05〜2.0重量%程度の濃度で使用され
得る。 本発明の共重合反応に際しては、前記反応条件
の他の条件や操作は、特に限定されることなく広
い範囲にわたつて採用され得る。例えば、共重合
反応温度は、重合開始源の種類や反応モル比など
により最適値が選定され得るが、通常は余りに高
温度や低温度は工業的実施に対して不利となるの
で、20〜90℃、好ましくは30〜80℃程度から選定
される。 而して、本発明において重合開始源としては、
前記の好適な反応温度において高い活性を示すも
のを選定するのが望ましい。例えば、室温以下で
も高活性の電離性放射線を採用することもできる
が、通常はアゾ化合物やパーオキシ化合物を採用
する方が工業的実施に対して有利である。本発明
で好適に採用される重合開始源は、前記共重合反
応条件下に20〜90℃程度で高活性を示すジコハク
酸パーオキサイド、ベンゾイルパーオキサイド、
ラウロイルパーオキサイド、ジペンタフルオロプ
ロピオニルパーオキサイド等のジアシルパーオキ
サイド、2・2′−アゾビス(2−アミノジノプロ
パン)塩酸塩、4・4′−アゾビス(4−シアノワ
レリアン酸)、アゾビスイソブチロニトリル等の
アゾ化合物、t−ブチルパーオキシイソブチレー
ト、t−ブチルパーオキシピバレート等のパーオ
キシエステル類、ジイソプロピルパーオキシジカ
ーボネート、ジ−2−エチルヘキシルパーオキシ
ジカーボネート等のパーオキシジカーボネート、
ジイソプロピルベンゼンハイドロパーオキサイド
等のハイドロパーオキサイド類、過硫酸カリウ
ム、過硫酸アンモニウム等の無機過酸化物及びそ
れらのレドツクス系等である。 本発明においては、重合開始剤濃度は、全単量
体に対して0.0001〜3重量%、好ましくは0.001
〜2重量%程度である。開始剤濃度を下げること
によつて、生成共重合体の分子量を高めることが
可能であり、高イオン交換容量を保持することが
可能である。開始剤濃度を余りに高くすると、分
子量の低下傾向が増し、高イオン交換容量で高分
子量の共重合体の生成に対して不利となる。 その他通常の水性媒体重合において用いられる
界面活性剤、分散剤、緩衝剤、分子量調整剤等を
添加することもできる。又、フツ素化オレフイン
化合物と特定官能性単量体の共重合反応を阻害し
ないもので、連鎖移動の少ないものであれば、例
えばフロン系溶媒として知られている弗素化系又
は弗素化塩素化系飽和炭化水素等の不活性有機溶
媒を添加することもできる。 而して、本発明においては、生成共重合体濃度
を40重量%以下、好ましくは30重量%以下に制御
して実施するのが好適である。余りに高濃度にす
ると、撹拌負荷の増大、除熱困難、弗素化オレフ
インモノマーの拡散不充分などの難点が認められ
る。 本発明のフツ素化重合体は、適宜手段にて製膜
され得る。例えば、必要により官能基を加水分解
でカルボン酸基に転換するが、かゝる加水分解処
理は製膜前でも製膜後でも可能である。通常は製
膜後に加水分解処理する方が望ましい。製膜手段
には種々のものが採用可能であり、例えば加熱熔
融成形、ラテツクス成形、適当な溶液に溶解させ
ての注型成形など公知乃至周知の方法を適宜採用
し得る。 本発明のフツ素化重合体からのイオン交換膜
は、種々の優れた性能を有するために、各種分
野、目的、用途などに広範囲に採用され得る。例
えば、拡散透析、電解還元、燃料電池の隔膜など
として、特に耐蝕性が要求される分野で好適に使
用される。なかでも、アルカリ電解用の陽イオン
選択性隔膜として使う場合には、従来のイオン交
換膜では得られなかつた高い性能を発揮し得るも
のである。例えば、本発明のフツ素化重合体から
の陽イオン交換樹脂膜にて、陽極と陰極とを区画
して陽極室と陰極室とを構成し、陽極室に塩化ア
ルカリ水溶液を供給して電解し、陰極室から水酸
化アルカリを得る所謂二室型槽の場合でも、2規
定以上の濃度の塩化ナトリウム水溶液を原料にし
て5〜20A/dm2の電流密度で電解することによ
り、40%以上の高濃度の水酸化ナトリウムが90%
以上の高電流効率で長期にわたつて安定して製造
できる。更に、4.5ボルト以下の低い槽電圧での
電解が可能である。 次に、本発明の実施例について、更に具体的に
説明するが、かゝる説明によつて本発明が限定さ
れるものでないことは勿論である。 実施例 1 2枚の邪魔板を設置した2の電磁誘導型撹拌
機つきのオートクレーブに水を1000g、
C8F17COONH4を2g、Na2HPO4・12H2Oを5
g、NaH2PO4・2H2Oを3g、(NH42S2O8を0.26
g仕込み、次いでCF2=CFO(CF23COOCH3
200g仕込んだ。液体窒素で充分脱気した後、55
℃に昇温し四弗化エチレンを10.7Kg/cm2迄導入し
反応を開始させた。反応中に四弗化エチレンを系
内に導入し圧力を10.7Kg/cm2に保持した。反応途
中、下記第1表に示す時間毎にオートクレーブか
らラテツクスの一部を抜き出し、ラテツクスのポ
リマー濃度と得られたポリマーの組成を測定し
た。ポリマー中のCF2=CFO(CF23COOCH3
組成はポリマーを常法により加水分解し−
COOCH3を−COOHとした後、カルボン酸をア
ルカリで滴定することによつて官能基容量として
ポリマー単位重量当りのカルボン酸のミリ当量で
示した。
A perfluoroalkyl group-containing compound as shown in the formula is employed as a fluorine-based surfactant, and can be used usually at a concentration of about 0.001 to 5% by weight, preferably about 0.05 to 2.0% by weight in an aqueous medium. In the copolymerization reaction of the present invention, conditions and operations other than the above-mentioned reaction conditions are not particularly limited and may be adopted over a wide range. For example, the optimum copolymerization reaction temperature can be selected depending on the type of polymerization initiation source, reaction molar ratio, etc., but normally, too high or too low a temperature is disadvantageous for industrial implementation. ℃, preferably from about 30 to 80℃. Therefore, in the present invention, as a polymerization initiation source,
It is desirable to select one that exhibits high activity at the above-mentioned suitable reaction temperature. For example, it is possible to use ionizing radiation that is highly active even at room temperature or lower, but it is usually more advantageous to use an azo compound or a peroxy compound for industrial implementation. Polymerization initiation sources suitably employed in the present invention include disuccinic acid peroxide, benzoyl peroxide, which exhibits high activity at about 20 to 90°C under the copolymerization reaction conditions,
Diacyl peroxides such as lauroyl peroxide and dipentafluoropropionyl peroxide, 2,2'-azobis(2-aminodinopropane) hydrochloride, 4,4'-azobis(4-cyanowallerianic acid), azobisiso Azo compounds such as butyronitrile, peroxy esters such as t-butyl peroxy isobutyrate and t-butyl peroxy pivalate, peroxy compounds such as diisopropyl peroxy dicarbonate, di-2-ethylhexyl peroxy dicarbonate, etc. dicarbonate,
These include hydroperoxides such as diisopropylbenzene hydroperoxide, inorganic peroxides such as potassium persulfate and ammonium persulfate, and their redox systems. In the present invention, the concentration of the polymerization initiator is 0.0001 to 3% by weight, preferably 0.001% by weight based on the total monomers.
It is about 2% by weight. By lowering the initiator concentration, it is possible to increase the molecular weight of the resulting copolymer and maintain a high ion exchange capacity. If the initiator concentration is too high, the tendency to decrease the molecular weight increases, which is disadvantageous to the production of high ion exchange capacity, high molecular weight copolymers. Other surfactants, dispersants, buffers, molecular weight regulators, etc. used in ordinary aqueous medium polymerization can also be added. In addition, as long as it does not inhibit the copolymerization reaction between the fluorinated olefin compound and the specific functional monomer and has low chain transfer, for example, fluorinated or fluorinated chlorinated solvents known as fluorocarbon solvents can be used. Inert organic solvents such as saturated hydrocarbons can also be added. Therefore, in the present invention, it is preferable to control the concentration of the produced copolymer to 40% by weight or less, preferably 30% by weight or less. If the concentration is too high, problems such as increased stirring load, difficulty in removing heat, and insufficient diffusion of the fluorinated olefin monomer will occur. The fluorinated polymer of the present invention can be formed into a film by any appropriate means. For example, if necessary, functional groups are converted to carboxylic acid groups by hydrolysis, but such hydrolysis treatment can be performed either before or after film formation. It is usually preferable to perform hydrolysis treatment after film formation. Various methods can be used for forming the film, and known methods such as hot melt molding, latex molding, and cast molding after dissolving it in an appropriate solution can be used as appropriate. Since the ion exchange membrane made from the fluorinated polymer of the present invention has various excellent performances, it can be widely adopted in various fields, purposes, and uses. For example, it is suitably used in fields where corrosion resistance is particularly required, such as in diffusion dialysis, electrolytic reduction, and as diaphragms in fuel cells. In particular, when used as a cation-selective diaphragm for alkaline electrolysis, it can exhibit high performance that cannot be obtained with conventional ion exchange membranes. For example, an anode and a cathode are separated using a cation exchange resin membrane made of the fluorinated polymer of the present invention to form an anode chamber and a cathode chamber, and an aqueous alkali chloride solution is supplied to the anode chamber for electrolysis. Even in the case of a so-called two-chamber type tank in which alkali hydroxide is obtained from the cathode chamber, 40% or more can be obtained by electrolyzing at a current density of 5 to 20 A/dm 2 using a sodium chloride aqueous solution with a concentration of 2N or higher as a raw material. 90% high concentration of sodium hydroxide
With this high current efficiency, stable production can be achieved over a long period of time. Furthermore, electrolysis is possible at low cell voltages of 4.5 volts or less. Next, examples of the present invention will be described in more detail, but it goes without saying that the present invention is not limited by such explanations. Example 1 1000g of water was placed in an autoclave equipped with 2 baffle plates and equipped with an electromagnetic induction stirrer.
C 8 F 17 2 g of COONH 4 , 5 g of Na 2 HPO 4・12H 2 O
g, 3 g of NaH 2 PO 4 2H 2 O, 0.26 g of (NH 4 ) 2 S 2 O 8
g, then CF 2 = CFO (CF 2 ) 3 COOCH 3
I prepared 200g. After thoroughly degassing with liquid nitrogen, 55
The temperature was raised to .degree. C., and ethylene tetrafluoride was introduced up to 10.7 Kg/ cm.sup.2 to start the reaction. During the reaction, tetrafluoroethylene was introduced into the system and the pressure was maintained at 10.7 Kg/cm 2 . During the reaction, a portion of the latex was extracted from the autoclave at intervals shown in Table 1 below, and the polymer concentration of the latex and the composition of the obtained polymer were measured. The composition of CF 2 = CFO (CF 2 ) 3 COOCH 3 in the polymer is obtained by hydrolyzing the polymer by a conventional method.
After converting COOCH 3 to -COOH, the carboxylic acid was titrated with an alkali, and the functional group capacity was expressed as milliequivalents of the carboxylic acid per unit weight of the polymer.

【表】 ポリマーの官能基容量はポリマー濃度により変
化せず一定組成のポリマーが得られる。 比較例 1 2オートクレーブに水を1000g、
C7F15COONH4を5g、Na2HPO4・12H2Oを5
g、NaH2PO4・2H2Oを3g、(NH42S2O8を0.15
g仕込み、次いでCF2=CFO(CF23COOCH3
200g仕込んだ。液体窒素で充分脱気した後57℃
に昇温し、四弗化エチレンを12.0Kg/cm2迄導入し
反応を開始させた。反応中は四弗化エチレンを系
内に導入し圧力を12Kg/cm2に保持した。実施例1
と同様にして反応途中に、下記第2表により示す
時間毎にオートクレーブよりラテツクスの一部を
抜き出しポリマー濃度と組成を求めた。
[Table] The functional group capacity of the polymer does not change depending on the polymer concentration, and a polymer with a constant composition can be obtained. Comparative example 1 2 1000g of water in an autoclave,
C 7 F 15 5 g of COONH 4 , 5 g of Na 2 HPO 4・12H 2 O
g, 3 g of NaH 2 PO 4 2H 2 O, 0.15 g of (NH 4 ) 2 S 2 O 8
g, then CF 2 = CFO (CF 2 ) 3 COOCH 3
I prepared 200g. 57℃ after sufficient degassing with liquid nitrogen
The temperature was raised to 1, and tetrafluoroethylene was introduced up to 12.0 Kg/cm 2 to start the reaction. During the reaction, tetrafluoroethylene was introduced into the system and the pressure was maintained at 12 Kg/cm 2 . Example 1
In the same manner as above, a portion of the latex was extracted from the autoclave at intervals shown in Table 2 below during the reaction, and the polymer concentration and composition were determined.

【表】 ポリマー濃度の増大と共に官能基容量は低下し
ている。得られている組成は、累積ポリマー組成
であり各ポリマー濃度領域で瞬間生成しているポ
リマーの官能基容量はこれより更に低く不均質な
ポリマー組成となつていることがわかる。 比較例 2 界面活性剤としてC6F13COONH4及び
C10F21COONH4を用い同様に実験したが比較例
1と同様にポリマー濃度の増大と伴に官能基容量
が低下することが認められた。
[Table] Functional group capacity decreases with increasing polymer concentration. It can be seen that the obtained composition is a cumulative polymer composition, and the functional group capacity of the polymer instantaneously generated in each polymer concentration range is lower than this, resulting in a non-uniform polymer composition. Comparative Example 2 C 6 F 13 COONH 4 and
A similar experiment was conducted using C 10 F 21 COONH 4 , but as in Comparative Example 1, it was observed that the functional group capacity decreased as the polymer concentration increased.

Claims (1)

【特許請求の範囲】 1 弗素化したエチレン系不飽和単量体とカルボ
ン酸基もしくはカルボン酸基に転換しうる官能基
を有する重合能ある官能性単量体とを、重合開始
源の作用により弗素系界面活性剤の存在下に水性
媒体中で乳化共重合せしめ、前記官能性単量体含
有量5〜30モル%の共重合体を生成せしめること
からなるイオン交換性フツ素化重合体の製造法に
おいて、前記弗素系界面活性剤としてパーフルオ
ロアルキル基の炭素数が8個であるパーフルオロ
アルキル基含有化合物を使用することを特徴とす
るイオン交換性フツ素化重合体の製造法。 2 官能性単量体として一般式CF2=CX−
(OCF2CFY)l−(O)n−(CFY′)o−A(但し、式
中のlは0〜3、mは0〜1、nは0〜12の整数
であり、Xはフツ素原子又は−CF3であり、Y、
Y′はフツ素原子又は炭素数1〜10のパーフルオ
ロアルキル基であり、Aは−CN、−COF、−
COOH、−COOR1、−COOM又は−CONR2R3であ
り、R1は炭素数1〜10のアルキル基、R2、R3
水素原子又はR1であり、Mはアルカリ金属又は
第四級アンモニウム基である)で表わされるフル
オロビニル化合物を使用する特許請求の範囲第1
項記載の製造法。 3 弗素化したエチレン系不飽和単量体として一
般式CF2=CZZ′(但し、Z、Z′はフツ素原子、塩
素原子、水素原子、又はCF3である)で表わされ
るフツ素化オレフイン化合物を使用する特許請求
の範囲第1項記載の製造法。 4 官能性単量体として一般式 (但し、式中のlは0〜1、mは0〜1、nは0
〜8の整数であり、Aは−COOR1であり、R1
低級アルキル基である)で表わされるフルオロビ
ニル化合物を使用する特許請求の範囲第2項記載
の製造法。 5 弗素化したエチレンン系不飽和単量体として
四弗化エチレンを使用する特許請求の範囲第3項
記載の製造法。 6 共重合反応温度20〜90℃で実施する特許請求
の範囲第1項記載の製造法。 7 生成共重合体スラリー中の共重合体濃度を40
重量%以下に制御して共重合反応を実施する特許
請求の範囲第1項記載の製造法。 8 パーフルオロアルキル基の炭素数が8個であ
るパーフルオロアルキル基含有化合物からなる弗
素系界面活性剤を水性媒体中0.001〜5重量%の
濃度で使用する特許請求の範囲第1項記載の製造
法。
[Claims] 1. A fluorinated ethylenically unsaturated monomer and a polymerizable functional monomer having a carboxylic acid group or a functional group convertible to a carboxylic acid group are combined by the action of a polymerization initiation source. An ion-exchangeable fluorinated polymer comprising emulsion copolymerization in an aqueous medium in the presence of a fluorosurfactant to produce a copolymer containing 5 to 30 mol% of the functional monomer. A method for producing an ion-exchangeable fluorinated polymer, characterized in that a perfluoroalkyl group-containing compound in which the perfluoroalkyl group has 8 carbon atoms is used as the fluorine-based surfactant. 2 As a functional monomer, the general formula CF 2 =CX−
(OCF 2 CFY) l −(O) n −(CFY′) o −A (in the formula, l is an integer from 0 to 3, m is an integer from 0 to 1, n is an integer from 0 to 12, and X is an integer from 0 to 12. is an elementary atom or -CF3 , Y,
Y' is a fluorine atom or a perfluoroalkyl group having 1 to 10 carbon atoms, and A is -CN, -COF, -
COOH, -COOR1 , -COOM or -CONR2R3 , R1 is an alkyl group having 1 to 10 carbon atoms, R2 , R3 are a hydrogen atom or R1 , M is an alkali metal or a quaternary Claim 1 using a fluorovinyl compound represented by
Manufacturing method described in section. 3. A fluorinated olefin represented by the general formula CF 2 =CZZ′ (where Z and Z′ are a fluorine atom, a chlorine atom, a hydrogen atom, or CF 3 ) as a fluorinated ethylenically unsaturated monomer. The manufacturing method according to claim 1, which uses the compound. 4 General formula as a functional monomer (However, l in the formula is 0-1, m is 0-1, n is 0
8, A is -COOR 1 and R 1 is a lower alkyl group. 5. The manufacturing method according to claim 3, wherein tetrafluoroethylene is used as the fluorinated ethylenically unsaturated monomer. 6. The production method according to claim 1, which is carried out at a copolymerization reaction temperature of 20 to 90°C. 7 Reduce the copolymer concentration in the produced copolymer slurry to 40
2. The method according to claim 1, wherein the copolymerization reaction is carried out by controlling the amount to be less than or equal to % by weight. 8. The production according to claim 1, wherein a fluorine-based surfactant comprising a perfluoroalkyl group-containing compound whose perfluoroalkyl group has 8 carbon atoms is used at a concentration of 0.001 to 5% by weight in an aqueous medium. Law.
JP15998578A 1978-12-27 1978-12-27 Preparation of ion-exchange fluorinated polymer Granted JPS5589312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15998578A JPS5589312A (en) 1978-12-27 1978-12-27 Preparation of ion-exchange fluorinated polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15998578A JPS5589312A (en) 1978-12-27 1978-12-27 Preparation of ion-exchange fluorinated polymer

Publications (2)

Publication Number Publication Date
JPS5589312A JPS5589312A (en) 1980-07-05
JPS6152843B2 true JPS6152843B2 (en) 1986-11-14

Family

ID=15705471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15998578A Granted JPS5589312A (en) 1978-12-27 1978-12-27 Preparation of ion-exchange fluorinated polymer

Country Status (1)

Country Link
JP (1) JPS5589312A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599958B2 (en) * 2004-04-07 2010-12-15 ダイキン工業株式会社 Fluorine-containing elastomer polymer and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349090A (en) * 1976-10-15 1978-05-04 Asahi Glass Co Ltd Preparation of fluorinated plymer containing ion exchange group

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349090A (en) * 1976-10-15 1978-05-04 Asahi Glass Co Ltd Preparation of fluorinated plymer containing ion exchange group

Also Published As

Publication number Publication date
JPS5589312A (en) 1980-07-05

Similar Documents

Publication Publication Date Title
US4116888A (en) Process for producing fluorinated copolymer having ion-exchange groups
JPS63449B2 (en)
US4138373A (en) Process for producing fluorinated copolymer having ion-exchange groups
US4683040A (en) Process for electrolysis of sodium chloride
WO2009133902A1 (en) Method for producing fluorine-containing polymer and fluorine-containing ion exchange membrane
JP2002088103A (en) Method for polymerizing sulfon monomer
JPS6258370B2 (en)
EP0030104B1 (en) Process for preparing organic dispersion of acid-type fluorinated polymer
JPS60250009A (en) Production of perfluorocarbon polymer having sulfonic acid functional group
US4298699A (en) Process for producing fluorinated polymer having ion-exchange groups
JPS62288617A (en) Production of perfluorocarbon polymer having sulfonic acid type functional group
JP3525462B2 (en) Recovery method of fluorinated monomer
JP3356474B2 (en) Method for producing perfluorocarbon polymer having sulfonic acid type functional group
JP3280727B2 (en) Method for producing perfluorocarbon polymer
JP2780590B2 (en) Method for producing perfluorocarbon polymer having sulfonic acid type functional group
JPS6152843B2 (en)
JPH0689074B2 (en) Process for producing perfluorocarbon polymer having sulfonic acid type functional group
JPS6256886B2 (en)
JPS6131724B2 (en)
JPS6139962B2 (en)
JPH0689075B2 (en) Process for producing perfluorocarbon polymer having sulfonic acid type functional group
JPS62288614A (en) Production of perfluorocarbon polymer having sulfonic acid type functional group
JPH06199959A (en) Production of perfluorocarbon polymer having sulfonic acid-type functional group
EP0033354B1 (en) Process for producing fluorinated polymer ion-exchange membranes
JPS6256901B2 (en)