JPS6152800B2 - - Google Patents

Info

Publication number
JPS6152800B2
JPS6152800B2 JP17239279A JP17239279A JPS6152800B2 JP S6152800 B2 JPS6152800 B2 JP S6152800B2 JP 17239279 A JP17239279 A JP 17239279A JP 17239279 A JP17239279 A JP 17239279A JP S6152800 B2 JPS6152800 B2 JP S6152800B2
Authority
JP
Japan
Prior art keywords
layer
vulcanization
compressible
rubber
blanket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17239279A
Other languages
Japanese (ja)
Other versions
JPS5693591A (en
Inventor
Ichiro Tominaga
Hisao Kagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP17239279A priority Critical patent/JPS5693591A/en
Publication of JPS5693591A publication Critical patent/JPS5693591A/en
Publication of JPS6152800B2 publication Critical patent/JPS6152800B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた印刷適正を発揮しうる印刷機用
ブランケツト、殊に中空微小球を混入したゴム状
弾性体からなる圧縮性層をそなえる圧縮性ブラン
ケツトを製造するための改良された製造方法に関
するものである。 従来、ゴム状弾性体を主材とする各種印刷用ブ
ランケツトにおける圧縮復元性の欠除に基因する
印刷適性上の欠陥を改良するために、その構成体
中に多胞質な圧縮性層を導入する技術が提案され
ているが、例えば、特公昭37−13110号および特
公昭38−7761号公報に開示される技術において
は、該圧縮性層は絡み合つた繊維材料にエラスト
マー材料を含浸させて形成されたものであるの
で、各細胞間は互いに連通され、各細胞室の隔壁
は必然的に極薄で耐圧力が小さく、また、実公昭
47−18243号公報に開示される技術における圧縮
性層は発泡剤によりゴムを発泡させて形成するも
のであるので、発泡剤の量、加硫温度および圧力
等のバラツキに基因して均一な気泡室を形成する
ことが困難である等、いずれも耐圧力の不足や部
分的バラツキのため所期の印刷適性を満足させる
に至つていない。 かかる先行技術の欠点を解消し、均一な微小細
泡室をそなえた多泡質の圧縮性層を形成するべ
く、熱可塑性プラスチツク等でつくられた無数の
弾力性中空微小球を混入したゴム状弾性体材料で
圧縮性層を構成する技術が、特公昭52−7371号公
報に所載の発明により提案されている。 上記発明に係る印刷機用ブランケツトは、ゴム
状弾性体からなる表面印刷層と、少なくとも一層
の繊維補強層と、無数の弾力性中空微小球を混入
したゴム弾性体からなる圧縮性層とから構成され
るが、該ブランケツトの実際の製造工程におい
て、前記圧縮性層は、その内部に包埋される前記
中空微小球体の圧壊防止、寸法安定性および常法
の展延操作(spreading)上の必要要件等の見地
から、前記表面印刷層等の残余構成部材との積層
に先立つて、予め所要厚みの長尺シートの型に形
成され、かつ、加硫用ドラム上に巻き取られた
上、加硫缶中で加圧加熱して加硫成形される。 ところで、かように加硫成形された圧縮性層の
厚みのバラツキが加硫前のそれより大きくなり、
これが完成製品における耐圧力の部分的バラツ
キ、ひいては印刷適性のバラツキの大きな原因と
なつている。 かかる圧縮性層の加硫工程中における厚みのバ
ラツキ増大の原因は、構成材料であるゴム組成物
中の溶剤の揮発によることもさることながら、加
硫用ドラムに巻き取られている圧縮性層の内巻部
分および外巻部分と比較して、その中巻部分にお
ける温度上昇が遅いため、該部分の加硫速度が遅
れ、該部分に混入されている中空微少球体が溶
融・圧壊されることによることが判明した。 本発明者らは斯る欠点を解消する方法につき検
討した結果、長尺シート状に形成された圧縮性層
を加硫用ドラムへ巻き取るに先立ち、予め該長尺
シート物を不完全に加硫(半加硫)しておき、こ
れを前記ドラムに巻き取つて常法通り加硫を完成
させることを着想し、従来汎用の赤外線等を用い
る加熱加硫法により半加硫する実験を行なつたと
ころ、かかる加熱加硫による場合にはゴム自体の
温度や室温等の温度条件、あるいは熱伝達係数等
のバラツキに影響されて、一定の半加硫状態を達
成することが困難で、しかもゴム弾性体内に包埋
される中空微小球体は熱加塑性プラスチツクによ
りつくられたものであるので、不均一な加熱によ
り該微小球体の一部が過度に膨径し、あるいは溶
融圧壊されるなどして、新たな好ましくない結果
を招来することが判明した。 本発明者らはそこで、昇熱を伴なうことなくゴ
ム分子間の架橋反応を生起させうる電子線照射法
により前記圧縮性層の所望の半加硫状態を達成さ
せる方法につき実験を繰返し行なつた結果、本発
明を完成するに至つたものである。 本発明に係る印刷機用ブランケツトの製造方法
は、ゴム状弾性体からなる表面印刷層と、少なく
とも一層の繊維補強層と、無数の弾力性中空微小
球を混入したゴム状弾性体からなる圧縮性層とか
らなる圧縮性ブランケツトの製造において、前記
圧縮性層は無数の弾力性中空微小球を混入した未
加硫ゴム状弾性体により所要厚みの長尺シートの
型に形成し、この長尺シートを約9メガrad以下
の電子線照射に曝露して不完全に加硫した上、こ
れを加硫用ドラムに巻き取り、常法により加熱加
圧して加硫を完成し、次いで前記表面印刷層等の
残余の所要各層と積層し、それら各層を加硫して
最終製品を完成することを特徴とする。 以下、本発明にしたがう印刷機用ブランケツト
の製造方法の一実施例を添付図面によつて説明す
る。 第1図に例示する本発明方法により製造される
圧縮性ブランケツトは、耐溶媒性のニトリル・ブ
タジエン共重合体ゴム(NBR)からなる表面印
刷層1と、綿布(これはポリエステル、レーヨ
ン、ガラス繊維であつてもよい)からなる繊維補
強層2と、塩化ビニル・塩化ビニリデン共重合体
のような熱加塑性プラスチツクの中空微小球(直
径0.12mm以下)の多数を均一に分散混入したゴム
状弾性体(例えば、NBR)からなる圧縮性層3
と、ゴム状弾性体層4を介して積層された2層の
繊維補強層5および6とからなる。 本発明方法によれば、先づ、上記圧縮性ブラン
ケツトの圧縮性層3が次のようにしてつくられ
る。 すなわち、公知展延装置を用い、その回動無端
ベルトコンベアー上で、一巻数10mmに及ぶ繊維補
強層5上に、無数の前記中空微小球を混入した糊
状のニトリル・ブタジエン共重合体ゴム組成物を
展延し、かように繊維補強層で裏当てされた未加
硫ゴム弾性体の長尺シート物を乾燥室内を通過さ
せることにより該ゴム組成物中の溶剤を揮発さ
せ、次いで前記長尺シート物を電子線照射装置内
の回動無端ベルトコンベアー上を搬送しつつ、電
子線照射に曝露し、不完全に加硫(半加硫)した
上、加硫用ドラムに巻き取り、常法により加硫缶
内で加硫を完成させる。 上記圧縮性層の半加硫のための電子線の適切な
照射量は、実験の結果に基いて次のように選択さ
れた。 すなわち、無数の中空微小球を混入され、繊維
補強層により裏当てされた未加硫ゴム状弾性体か
らなる数種の試料シート物に、それぞれ照射量が
3メガrad、6メガrad、9メガradの電子線を照
射して予め半加硫した上、最終的に120℃、150分
の条件で加硫を完成させ、これら各試料につき、
その厚みの変化を測定した。その結果を表1に示
す。
The present invention relates to an improved manufacturing method for producing a blanket for a printing press that can exhibit excellent printability, and in particular a compressible blanket having a compressible layer made of a rubber-like elastic material mixed with hollow microspheres. It is. In order to improve the printability defects caused by the lack of compressibility in conventional printing blankets based on rubber-like elastic materials, a porous compressible layer was introduced into the structure. For example, in the technology disclosed in Japanese Patent Publication No. 37-13110 and Japanese Patent Publication No. 38-7761, the compressible layer is formed by impregnating an elastomer material into an entangled fiber material. Because the cells are formed, each cell communicates with each other, and the partition walls of each cell chamber are necessarily extremely thin and have low pressure resistance.
Since the compressible layer in the technology disclosed in Publication No. 47-18243 is formed by foaming rubber with a foaming agent, uniform bubbles may be formed due to variations in the amount of foaming agent, vulcanization temperature, pressure, etc. All of them have not been able to satisfy the desired printability due to insufficient pressure resistance and local variations such as difficulty in forming chambers. In order to overcome the shortcomings of the prior art and form a multicellular compressible layer with uniform microbubble chambers, a rubber-like material containing numerous elastic hollow microspheres made of thermoplastic plastic or the like is used. A technique for constructing a compressible layer using an elastic material has been proposed by an invention disclosed in Japanese Patent Publication No. 7371/1983. The blanket for a printing press according to the above invention is composed of a surface printing layer made of a rubber-like elastic material, at least one fiber-reinforced layer, and a compressible layer made of a rubber elastic material mixed with countless elastic hollow microspheres. However, in the actual manufacturing process of the blanket, the compressible layer meets the requirements for crush prevention, dimensional stability, and conventional spreading of the hollow microspheres embedded therein. From the viewpoint of requirements, etc., prior to lamination with the remaining structural members such as the surface printing layer, a long sheet is formed in advance into a mold with a required thickness, wound on a vulcanization drum, and then vulcanized. It is vulcanized and molded by heating under pressure in a sulfur can. By the way, the variation in the thickness of the compressible layer formed by vulcanization becomes larger than that before vulcanization,
This is a major cause of local variations in pressure resistance in finished products and, ultimately, variations in printability. The reason for the increase in the thickness variation of the compressible layer during the vulcanization process is not only due to the volatilization of the solvent in the rubber composition that is the constituent material, but also due to the increase in the thickness variation of the compressible layer being wound around the vulcanization drum. Since the temperature rise in the middle part is slower than that in the inner part and the outer part, the vulcanization rate in this part is delayed, and the hollow microspheres mixed in this part are melted and crushed. It turned out to be due to. The inventors of the present invention have studied methods to eliminate such drawbacks, and have found that before winding up the compressible layer formed in the form of a long sheet onto a vulcanization drum, the long sheet is incompletely cured in advance. We came up with the idea of curing (semi-vulcanizing) the material, winding it up on the drum, and completing the vulcanization in the usual way, and conducted an experiment to semi-vulcanize it using a heat vulcanization method that uses conventional general-purpose infrared rays. However, when such heat vulcanization is used, it is difficult to achieve a constant semi-vulcanized state due to the influence of the temperature of the rubber itself, temperature conditions such as room temperature, and variations in heat transfer coefficients, etc. Since the hollow microspheres embedded in the rubber elastic body are made of thermoplastic plastic, uneven heating may cause some of the microspheres to expand excessively or be melted and crushed. It turns out that this leads to new undesirable results. The present inventors therefore conducted repeated experiments on a method of achieving the desired semi-vulcanized state of the compressible layer using an electron beam irradiation method that can cause a crosslinking reaction between rubber molecules without increasing heat. As a result, we have completed the present invention. The method for producing a printing press blanket according to the present invention includes a surface printing layer made of a rubber-like elastic material, at least one fiber-reinforced layer, and a compressible material made of a rubber-like elastic material mixed with countless elastic hollow microspheres. In the production of a compressible blanket consisting of a layer, the compressible layer is formed into a long sheet mold of a desired thickness from an unvulcanized rubber-like elastic material mixed with a countless number of elastic hollow microspheres, and the long sheet is is exposed to electron beam irradiation of about 9 megarad or less to be incompletely vulcanized, then wound onto a vulcanizing drum, heated and pressurized in a conventional manner to complete vulcanization, and then the surface printed layer The final product is completed by laminating the remaining required layers, etc., and vulcanizing each layer. DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for manufacturing a printing press blanket according to the present invention will be described below with reference to the accompanying drawings. The compressible blanket manufactured by the method of the present invention illustrated in FIG. A fiber-reinforced layer 2 consisting of a fiber reinforced layer 2 (which may be made of polyvinyl chloride/vinylidene chloride copolymer) and a rubber-like elastic material in which a large number of hollow microspheres (diameter 0.12 mm or less) of thermoplastic plastic such as vinyl chloride/vinylidene chloride copolymer are uniformly dispersed. a compressible layer 3 consisting of a material (e.g. NBR)
and two fiber reinforcing layers 5 and 6 laminated with a rubber-like elastic layer 4 in between. According to the method of the present invention, the compressible layer 3 of the compressible blanket is first made as follows. That is, a paste-like nitrile-butadiene copolymer rubber composition in which countless hollow microspheres are mixed is spread on a fiber reinforcing layer 5 with a number of turns of 10 mm on a rotary endless belt conveyor using a known spreading device. The long sheet of unvulcanized rubber elastic material backed with a fiber reinforcing layer is passed through a drying chamber to volatilize the solvent in the rubber composition, and then The long sheet is conveyed on a rotating endless belt conveyor in an electron beam irradiation device, exposed to electron beam irradiation, completely vulcanized (semi-vulcanized), wound on a vulcanization drum, and constantly exposed to electron beam irradiation. Vulcanization is completed in a vulcanization can using the method. The appropriate dose of electron beam for semi-vulcanization of the compressible layer was selected as follows based on experimental results. That is, irradiation doses of 3 mega rad, 6 mega rad, and 9 mega rad were applied to several types of sample sheets consisting of an unvulcanized rubber-like elastic material mixed with countless hollow microspheres and backed by a fiber reinforcing layer. After pre-semi-vulcanization by irradiation with rad electron beam, final vulcanization was completed at 120℃ for 150 minutes, and each sample was
The change in thickness was measured. The results are shown in Table 1.

【表】 上表から、各試料の乾燥後における厚みは、当
然のことながら、殆んど差は認められないが、本
発明に基づく電子線照射に曝露されなかつた試料
においては加硫後の厚みは平均して約0.1mm程度
も減少しているのに対して、電子線照射を受けて
一旦半加硫された後、最終的に完全な加硫された
本発明方法に基づく試料では、加硫中の厚み減少
量は約0.03mmないし0.01mmと極めて少なく、試料
中の厚みのバラツキも殆んど認められず、これは
加硫工程中に中空微小球が殆んど破壊されなかつ
たことを示す。 ただし、照射量9メガradの電子線照射を受け
た試料では、照射後にむしろ厚みの増加したもの
(0.02mm程度)も若干認められ、照射量によつて
は中空微小球の一部が膨径することもありうると
推定される。 上記電子線照射による圧縮性層の厚み減少量の
改善効果、換言すれば、加硫中における中空微小
球の膨径あるいは溶融破壊の防止効果はまた、第
2図にグラフをもつて示す。 一方、圧縮性層の電子線照射により一旦半加硫
する本発明方法による圧縮応力の改善効果を第3
図に示す。 同図において、例えば実用範囲の35%圧縮時
(すなわち、印胴の転圧によつて圧縮性層がその
当初厚みの35%厚みまで圧縮された時)の各試料
の圧縮応力を比較すると、電子線照射を受けなか
つた試料(一旦半加硫しなかつた試料)のそれは
約9.3Kgfであるのに対して、本発明方法にした
がう試料では7.3〜7.9Kgfと、約15%小さく、こ
れは加硫中の厚みの減小が小さくなつたため包埋
中空微小球が損なわれることが少なくなつたこと
によるものである。 上記実験結果から、本発明にしたがう圧縮性層
の予備半加硫のための電子線の照射量は、9メガ
rad以下、、好ましくは1メガradないし6メガrad
の範囲を選択された。 以上のごとく加硫成形された圧縮性層3は次い
で、その下面にゴム状弾性体層4を展延された繊
維補強層6を、また、該圧縮性層3の上面に、ゴ
ム状弾性体を展延された繊維補強層2および表面
印刷層1を夫々積層され、常法により加熱缶内で
加熱加圧により加硫され、全体として約1.9mm厚
みの圧縮性ブランケツトとして完成される。 本発明に係る印刷機用ブランケツトの製造方法
は以上に詳説した通り、特に該ブランケツトの圧
縮性層の成形に際して、該圧縮性層を予め電子線
照射により不完全に加硫(半加硫)した上、常法
通り加硫用ドラムに巻き取り、加硫缶内で完全に
加硫するようにしたので、従来慣用の製造方法の
場合のごとく、前記圧縮性層が、加硫のための加
熱や温度のバラツキ等に基因して、その内部に包
埋される中空微小球の一部を破壊されたり、過度
に膨径されて、折角均一径の中空微小球を埋入す
ることにより均一な細泡室を備えて優れた印刷適
性に寄与しうる圧縮性層を導入したことの利点が
満足に活用しえなくなるといつた欠点を完全に解
消するものであり、優れた印刷適性を発揮しうる
圧縮性ブランケツトの製造を可能にするものであ
る。
[Table] From the above table, it can be seen that there is almost no difference in the thickness of each sample after drying, but the thickness after vulcanization of the samples that were not exposed to the electron beam irradiation according to the present invention is as follows. The thickness decreased by about 0.1 mm on average, whereas the sample based on the method of the present invention, which was partially vulcanized by electron beam irradiation and finally fully vulcanized, The amount of thickness reduction during vulcanization was extremely small, approximately 0.03 mm to 0.01 mm, and there was almost no variation in thickness among the samples. This was because the hollow microspheres were hardly destroyed during the vulcanization process. Show that. However, in samples that were irradiated with electron beams at a dose of 9 megarad, some of them were observed to have slightly increased thickness (about 0.02 mm) after irradiation, and depending on the dose, some of the hollow microspheres expanded in diameter. It is estimated that it is possible. The effect of improving the amount of decrease in the thickness of the compressible layer due to electron beam irradiation, in other words, the effect of preventing the hollow microspheres from expanding in diameter or melting and breaking during vulcanization is also shown graphically in FIG. On the other hand, the effect of improving compressive stress by the method of the present invention, in which the compressible layer is semi-vulcanized by electron beam irradiation, was evaluated in the third section.
As shown in the figure. In the same figure, for example, when comparing the compressive stress of each sample at 35% compression (that is, when the compressible layer is compressed to 35% of its original thickness by the rolling pressure of the printing cylinder), which is the practical range, While that of the sample that was not exposed to electron beam irradiation (the sample that was not once semi-vulcanized) was about 9.3 Kgf, that of the sample according to the method of the present invention was 7.3 to 7.9 Kgf, which was about 15% smaller. This is because the decrease in thickness during vulcanization became smaller, so that the embedded hollow microspheres were less likely to be damaged. From the above experimental results, the dose of electron beam for pre-semi-vulcanization of the compressible layer according to the present invention is 9 M
less than rad, preferably 1 merad to 6 merad
A range of was selected. The compressible layer 3 that has been vulcanized and molded as described above is then covered with a fiber reinforced layer 6 on which the rubbery elastic material layer 4 is spread, on the lower surface thereof, and a rubbery elastic material layer 6 on the upper surface of the compressible layer 3. The expanded fiber reinforcement layer 2 and the surface printing layer 1 are laminated and vulcanized by heat and pressure in a heating can in a conventional manner to complete a compressible blanket having a total thickness of about 1.9 mm. As explained in detail above, the method for manufacturing a blanket for a printing press according to the present invention, in particular, when forming the compressible layer of the blanket, the compressible layer is incompletely vulcanized (semi-vulcanized) by electron beam irradiation in advance. The above is wound up on a vulcanizing drum in the usual manner and completely cured in a vulcanizing can, so that the compressible layer is heated for vulcanization as in the conventional manufacturing method. Due to temperature variations, etc., some of the hollow microspheres embedded inside the microspheres may be destroyed or the diameter may expand excessively. This completely eliminates the disadvantage of not being able to fully utilize the advantages of introducing a compressible layer that is equipped with small bubble chambers and can contribute to excellent printability, and exhibits excellent printability. This makes it possible to produce moist, compressible blankets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により製造される印刷機用
ブランケツトの一例を示す断面図、第2図は本発
明によるブランケツトの圧縮性層の厚み減小防止
効果を示すグラフ、第3図は前記圧縮性層の圧縮
応力の改良効果を示すグラフである。 1……表面印刷層、2……繊維補強層、3……
圧縮性層、4……ゴム状弾性体層、5,6……繊
維補強層。
FIG. 1 is a cross-sectional view showing an example of a blanket for a printing press manufactured by the method of the present invention, FIG. 2 is a graph showing the effect of preventing the thickness reduction of the compressible layer of the blanket according to the present invention, and FIG. 3 is a graph showing the effect of improving the compressive stress of the elastic layer. 1... Surface printing layer, 2... Fiber reinforcement layer, 3...
Compressible layer, 4... rubber-like elastic layer, 5, 6... fiber reinforced layer.

Claims (1)

【特許請求の範囲】[Claims] 1 ゴム状弾性体からなる表面印刷層と、少なく
とも一層の繊維補強層と、無数の弾力性中空微小
球を混入したゴム状弾性体からなる圧縮性層とか
らなる圧縮性ブランケツトの製造において、前記
圧縮性層は無数の弾力性中空微小球を混入した未
加硫ゴム状弾性体により所要厚みの長尺シートの
型に形成し、この長尺シートを約9メガrad以下
の電子線照射に曝露して不完全に加硫した上、こ
れを加硫用ドラムに巻き取り、常法により加熱加
圧して加硫を完成し、次いで前記表面印刷層等の
残余の所要各層と積層し、それら各層を加硫して
最終製品を完成することを特徴とする印刷機用ブ
ランケツトの製造方法。
1. In the production of a compressible blanket comprising a surface printing layer made of a rubber-like elastic material, at least one fiber-reinforced layer, and a compressible layer made of a rubber-like elastic material mixed with countless elastic hollow microspheres, the above-mentioned The compressible layer is formed from an unvulcanized rubber-like elastic material mixed with countless elastic hollow microspheres into a long sheet of the desired thickness, and this long sheet is exposed to electron beam irradiation of approximately 9 megarad or less. After completing the vulcanization process, it is wound up on a vulcanization drum, and vulcanization is completed by applying heat and pressure in a conventional manner.Then, it is laminated with the remaining required layers such as the surface printing layer, and each of these layers is A method of manufacturing a blanket for a printing press, characterized by completing the final product by vulcanizing the blanket.
JP17239279A 1979-12-27 1979-12-27 Manufacture of blanket for printing machine Granted JPS5693591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17239279A JPS5693591A (en) 1979-12-27 1979-12-27 Manufacture of blanket for printing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17239279A JPS5693591A (en) 1979-12-27 1979-12-27 Manufacture of blanket for printing machine

Publications (2)

Publication Number Publication Date
JPS5693591A JPS5693591A (en) 1981-07-29
JPS6152800B2 true JPS6152800B2 (en) 1986-11-14

Family

ID=15941072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17239279A Granted JPS5693591A (en) 1979-12-27 1979-12-27 Manufacture of blanket for printing machine

Country Status (1)

Country Link
JP (1) JPS5693591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004157A1 (en) * 1989-09-19 1991-04-04 Kinyosha Co., Ltd. Compressible rubber blanket for offset printing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034268A (en) * 1987-10-07 1991-07-23 Sumitomo Rubber Industries, Ltd. Offset blanket
DE102008018753A1 (en) * 2007-05-09 2008-11-13 Heidelberger Druckmaschinen Ag Blanket for use in a cold foil stamping process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004157A1 (en) * 1989-09-19 1991-04-04 Kinyosha Co., Ltd. Compressible rubber blanket for offset printing

Also Published As

Publication number Publication date
JPS5693591A (en) 1981-07-29

Similar Documents

Publication Publication Date Title
JP2670188B2 (en) Compressible layer for printing blanket
US3887750A (en) Compressible printing blanket
US3306967A (en) Molding of resinous foams
US3818085A (en) Press method of making expanded thermoplastic sheet
EP0191779B1 (en) Method of making a compressible printing blanket and a compressible printing blanket produced thereby
US6899029B2 (en) Multi-layered gapped cylindrical printing blanket
US3027599A (en) Method of molding articles from scrap tire material
US3622412A (en) Method of covering volume-compressible articles
US3108852A (en) Method of making resilient and flexible cushioning and sealing elements
US6316509B1 (en) Process for reuse of vulcanized rubber
JPH02258326A (en) Expansile fiber complex structure and its producing method
JPS6152800B2 (en)
US6689301B1 (en) Method of manufacturing a molded door skin from a wood composite, door skin produced therefrom, and door manufactured therewith
US2405345A (en) Manufacture of expanded thermoplastic resinous compositions
US2500573A (en) Method of making roll coverings
GB2364269A (en) Press-moulding a door skin from a wood composite blank
US2121872A (en) Manufacture of articles from plastics
US20210047491A1 (en) Complex structure material, resin component, method of producing resin component
US3662050A (en) Method for making molded printing plates
EP0342286B2 (en) Method of curing a compressible printing blanket and a compressible printing blanket produced thereby
JPH03244595A (en) Production of compressible rubber blanket
GB831077A (en) Self-supporting multi-layer articles and method of making the same
JP3239114B2 (en) Compressible rubber blanket
JPH0524104A (en) Method for molding open cell porous sheet material
EP1882573A1 (en) Vulcanizing method for mono- and multilayer components having a large surface