JPS6152730B2 - - Google Patents

Info

Publication number
JPS6152730B2
JPS6152730B2 JP54031549A JP3154979A JPS6152730B2 JP S6152730 B2 JPS6152730 B2 JP S6152730B2 JP 54031549 A JP54031549 A JP 54031549A JP 3154979 A JP3154979 A JP 3154979A JP S6152730 B2 JPS6152730 B2 JP S6152730B2
Authority
JP
Japan
Prior art keywords
exhaust gas
denitrification
catalyst
oxidation
sintering furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54031549A
Other languages
Japanese (ja)
Other versions
JPS55124531A (en
Inventor
Takao Yamada
Kunimasa Wakai
Nobuhiro Tsuboi
Yozo Ogino
Senji Niwa
Hayamizu Ito
Yoshitaka Kajihata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK, Kawasaki Steel Corp filed Critical Kawasaki Jukogyo KK
Priority to JP3154979A priority Critical patent/JPS55124531A/en
Publication of JPS55124531A publication Critical patent/JPS55124531A/en
Publication of JPS6152730B2 publication Critical patent/JPS6152730B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、焼結炉排ガスの脱硝方法に係り、特
にアンモニア接触還元法の改良に関する。 〔従来技術とその問題点〕 製鉄所の焼結炉排ガスの脱硝触媒としては、安
価で且つ廃触媒がそのまま焼結炉原料として使用
できる利点があることから鉄鉱石が使用されてい
る。しかし、鉄鉱石はそのままでは脱硝触媒とし
ては低活性であり、そのため、これを活性化する
必要がある。活性化の方法としては、Cu,Cr,
V,Ti,Al等の金属酸化物を添加しり、酸処理
する方法が開示されている。しかし、これらの活
性化方法は、調整、焼成、廃液処理等の複雑な工
程を含み、そのためのコスト上昇は免れることが
できない。 また、脱硝後の排ガスを熱交換器により熱回収
して未処理の排ガスを昇温する方法、ならびに焼
結炉排ガス中に含まれる一酸化炭素を触媒を使用
して酸化燃焼し、この燃焼熱で排ガスを昇温する
方法が先に提案されている。しかし、一酸化炭素
酸化触媒としては、従来からPt,Pd等の貴金属
系、Co,Mn,Cu,Ni,Zn,Fe,Cr,Cd等の卑
金属酸化物が使用されているが、これらの触媒
は、性能を維持するためには触媒の交換、補充が
不可欠になり、高価な触媒ではランニングコスト
が高くなる欠点を持つ。 本発明は上記事情に鑑みなされたものでその目
的とするところは、焼結炉原料としての鉄鉱石を
まず一酸化炭素酸化反応器に充填して酸化触媒と
して使用すると同時に脱硝触媒としての活性化を
行ない、次いでそれを脱硝反応器に充填して脱硝
触媒として再度使用することにより、安価に効率
よく脱硝を行うことができる焼結炉排ガスの脱硝
方法を提供しようとするものである。 〔問題点を解決するための手段および作用〕 すなわち本発明は、焼結炉排ガス中にアンモニ
アガスを吹込む工程と、前記排ガスを脱硝触媒を
充填した脱硝反応器に導入する工程と、前記脱硝
された排ガスを酸化触媒を充填した一酸化炭素酸
化反応器に導入する工程と、前記一酸化炭素の酸
化により昇温した排ガスにより未脱硝処理の排ガ
スを加熱する工程を包含する焼結炉排ガス脱硝方
法において、焼結炉原料としての鉄鉱石を一酸化
炭素酸化反応器に充填して酸化触媒として使用す
ると同時に脱硝触媒としての活性化を行ない、前
記一酸化炭素の酸化に使用したのちに排出する鉄
鉱石の一部を前記脱硝反応器に充填して脱硝触媒
として再度使用するようにしたものである。 〔実施例〕 本発明の詳細ならびに実施例を添付図面によつ
て説明する。第1図は本発明の工程図の一例であ
る。すなわち、焼結炉1において発生した排ガス
2は、電気集塵機3により除塵される。脱硫装置
4で排ガス2は通常石灰水等のシヤワーにより洗
浄されるので排ガス温度が著しく低下する。 一方、鉄鉱石を脱硝触媒とした脱硝反応に必要
な適温350〜450℃であるので、この温度まで排ガ
ス2を昇温しなければならない。この昇温のため
に排ガス2は熱交換器5に導入される。熱交換器
5により低温の脱硫排ガス2を昇温させる高温ガ
スとして後記一酸化炭素酸化反応器9より排出さ
れたガスを利用し、これと熱交換を行うものであ
つて、40〜60℃の脱硫排ガス2は熱交換後300〜
350℃に昇温する。300〜350℃に昇温した排ガス
2はブロアー6で昇圧された後、アンモニアガス
が添加され脱硝反応器8に導入される。この脱硝
反応器8に導入される排ガス2の温度が前記350
〜450℃に達しない場合には助燃炉7にて加熱昇
温される。脱硝反応器8では次の(1)式、(2)式また
は(3)式により排ガス中の窒素酸化物(以下NOx
と称する)が還元されて無害のN2となる。 NO+NH3+1/4O2→N2+3/2H2O …(1) 3NO+4/3NH3→7/6N2+2H2O …(2) NO+NO2+2NH3→2N2+3H2O …(3) 次いで、脱硝された排ガス2は、一酸化炭素
(CO)酸化反応器9に導入される。焼結炉原料と
しての鉄鉱石を酸化触媒としたCO酸化反応に必
要な適温は350〜450℃である。焼結炉排ガス中に
は、容量にて0.5〜3.0%のCOを含有するので、
これを酸化してCO2とすることにより排ガスの昇
温が可能となる。例えば容量比でCO1%含有する
排ガスを酸化燃焼させることにより約80℃の温度
上昇が可能である。CO酸化反応器9により昇温
され、かつCO2となつて無害化された排ガス2
は、熱交換器5に導入されて、その保有熱を放熱
し、脱硫装置4を出て温度低下した排ガス2の加
熱に有効に利用した後大気中に放出される。 前記触媒としての鉄鉱石は、そのままでも高い
CO酸化活性を有するが、脱硝活性が低い。とこ
ろが、本発明者らは、脱硫後の排ガスの如く5〜
20ppmのSOxを含むガスに300〜500℃の温度条件
でさらすと、鉄鉱石表面の酸化鉄の一部が硫酸塩
化されCO酸化活性が時間とともに低下するが、
それとともに脱硝活性が急激に上昇するという特
性を有していることを見出した。本発明では、こ
の特性を利用して、焼結炉原料としての鉄鉱石
を、まずCO酸化反応器9に充填して酸化触媒と
して使用すると同時に上記の如くSOxにより脱硝
触媒としての活性化を行なう。次いでそれを脱硝
反応器8に充填して脱硝触媒として再度使用し、
脱硝触媒としての鉄鉱石の脱硝活性が最高活性の
70〜90%に低下した次点で、これを廃棄し、廃棄
した廃棄触媒はそのまま製鉄原料として焼結炉1
に送る。 なお、CO酸化反応器9を脱硝反応器8の前段
に設けることも考えられるが、鉄鉱石を触媒とし
て用いる場合、両反応に必要な適温は350〜450℃
と等しいために、CO酸化反応器9を脱硝反応器
8の前段に設けると、脱硝反応器8に導入される
排ガスの温度が、適温の上限となるか適温を上ま
わることとなり好ましくない。 実施例 第1表の容量比組成を有する100Nm3/Hの排
ガス流2を370℃に温度調整した後、約18N/
Hのアンモニアガスを添加し、これを5〜10mm粒
度の鉄鉱石を充填した固定床型反応器に導入し、
NOxの除去率およびCO酸化率を測定した。この
時の排ガスの空間速度SVは2000H-1であつた。こ
の試験結果は第2図に示すとおりである。
[Industrial Field of Application] The present invention relates to a method for denitrating sintering furnace exhaust gas, and particularly to improvements in an ammonia catalytic reduction method. [Prior art and its problems] Iron ore is used as a denitrification catalyst for sintering furnace exhaust gas in steel plants because it is inexpensive and has the advantage that the spent catalyst can be used as a raw material for the sintering furnace. However, iron ore as it is has low activity as a denitrification catalyst, so it is necessary to activate it. Activation methods include Cu, Cr,
A method is disclosed in which metal oxides such as V, Ti, Al, etc. are added and acid treatment is performed. However, these activation methods involve complicated steps such as adjustment, calcination, and waste liquid treatment, which inevitably increases costs. In addition, we have developed a method for recovering heat from denitrified exhaust gas using a heat exchanger to raise the temperature of untreated exhaust gas, as well as a method for oxidizing and burning carbon monoxide contained in sintering furnace exhaust gas using a catalyst. A method of increasing the temperature of exhaust gas was previously proposed. However, as carbon monoxide oxidation catalysts, noble metals such as Pt and Pd, and base metal oxides such as Co, Mn, Cu, Ni, Zn, Fe, Cr, and Cd have been used, but these catalysts In order to maintain performance, catalyst replacement and replenishment are essential, and expensive catalysts have the disadvantage of high running costs. The present invention was developed in view of the above circumstances, and its purpose is to first fill iron ore as a raw material in a sintering furnace into a carbon monoxide oxidation reactor and use it as an oxidation catalyst, and at the same time activate it as a denitrification catalyst. The object of the present invention is to provide a method for denitrating sintering furnace exhaust gas, which can perform denitration at low cost and efficiently by filling the denitration reactor with the denitration reactor and using it again as a denitration catalyst. [Means and effects for solving the problem] That is, the present invention includes a step of injecting ammonia gas into the sintering furnace exhaust gas, a step of introducing the exhaust gas into a denitrification reactor filled with a denitrification catalyst, and a step of injecting the ammonia gas into the sintering furnace exhaust gas. A sintering furnace exhaust gas denitrification process that includes the steps of introducing the denitrified exhaust gas into a carbon monoxide oxidation reactor filled with an oxidation catalyst, and heating the undenitrated exhaust gas with the flue gas whose temperature has been raised by the oxidation of the carbon monoxide. In the method, iron ore as a raw material for a sintering furnace is charged into a carbon monoxide oxidation reactor and used as an oxidation catalyst, and simultaneously activated as a denitrification catalyst, used for oxidizing the carbon monoxide, and then discharged. A portion of the iron ore is charged into the denitrification reactor and used again as a denitrification catalyst. [Example] Details and examples of the present invention will be explained with reference to the accompanying drawings. FIG. 1 is an example of a process diagram of the present invention. That is, the exhaust gas 2 generated in the sintering furnace 1 is removed by the electrostatic precipitator 3. In the desulfurization device 4, the exhaust gas 2 is usually washed with a shower of lime water or the like, so that the temperature of the exhaust gas is significantly lowered. On the other hand, since the appropriate temperature is 350 to 450°C, which is necessary for the denitrification reaction using iron ore as a denitrification catalyst, the temperature of the exhaust gas 2 must be raised to this temperature. For this temperature increase, the exhaust gas 2 is introduced into the heat exchanger 5. The heat exchanger 5 uses the gas discharged from the carbon monoxide oxidation reactor 9 described later as a high-temperature gas to raise the temperature of the low-temperature desulfurization exhaust gas 2, and performs heat exchange with this gas. Desulfurization exhaust gas 2 has a temperature of 300~ after heat exchange
Raise the temperature to 350℃. The exhaust gas 2 heated to 300 to 350°C is pressurized by a blower 6, and then ammonia gas is added thereto and introduced into the denitrification reactor 8. The temperature of the exhaust gas 2 introduced into this denitrification reactor 8 is 350°C.
If the temperature does not reach ~450°C, the temperature is increased in the auxiliary combustion furnace 7. In the denitrification reactor 8, nitrogen oxides (hereinafter NOx
) is reduced to harmless N2 . NO+NH 3 +1/4O 2 →N 2 +3/2H 2 O…(1) 3NO+4/3NH 3 →7/6N 2 +2H 2 O…(2) NO+NO 2 +2NH 3 →2N 2 +3H 2 O…(3) Next, The denitrified exhaust gas 2 is introduced into a carbon monoxide (CO) oxidation reactor 9. The appropriate temperature required for the CO oxidation reaction using iron ore as a sintering furnace raw material as an oxidation catalyst is 350 to 450°C. Sintering furnace exhaust gas contains 0.5 to 3.0% CO by volume, so
By oxidizing this to CO2 , it is possible to raise the temperature of the exhaust gas. For example, by oxidizing and burning exhaust gas containing 1% CO by volume, it is possible to raise the temperature by approximately 80°C. Exhaust gas 2 heated by the CO oxidation reactor 9 and turned into CO 2 and rendered harmless
is introduced into the heat exchanger 5, radiates its retained heat, and is effectively used to heat the exhaust gas 2, which exits the desulfurization device 4 and whose temperature has decreased, and is then released into the atmosphere. Iron ore as the catalyst is expensive even as it is.
It has CO oxidation activity but low denitrification activity. However, the present inventors discovered that the exhaust gas after desulfurization
When exposed to gas containing 20ppm SOx at a temperature of 300 to 500℃, some of the iron oxide on the surface of iron ore becomes sulfated, and CO oxidation activity decreases over time.
At the same time, it was found that the denitrification activity rapidly increases. In the present invention, taking advantage of this characteristic, iron ore as a raw material for the sintering furnace is first charged into the CO oxidation reactor 9 and used as an oxidation catalyst, and at the same time is activated as a denitrification catalyst by SOx as described above. . Then, it is charged into the denitrification reactor 8 and used again as a denitrification catalyst.
The denitrification activity of iron ore as a denitrification catalyst is the highest
When the runner-up rate decreased to 70-90%, it was discarded, and the discarded waste catalyst was used as raw material for steelmaking in sintering furnace 1.
send to It is also possible to install the CO oxidation reactor 9 before the denitrification reactor 8, but when iron ore is used as a catalyst, the appropriate temperature required for both reactions is 350 to 450°C.
Therefore, if the CO oxidation reactor 9 is installed before the denitrification reactor 8, the temperature of the exhaust gas introduced into the denitrification reactor 8 will reach the upper limit of the optimum temperature or exceed the optimum temperature, which is not preferable. EXAMPLE After temperature-adjusting the exhaust gas stream 2 of 100 Nm 3 /H with the volumetric composition shown in Table 1 to 370°C, about 18 N/H
Add H ammonia gas and introduce it into a fixed bed reactor filled with iron ore with a particle size of 5 to 10 mm.
The NOx removal rate and CO oxidation rate were measured. The space velocity SV of the exhaust gas at this time was 2000H -1 . The test results are shown in Figure 2.

〔発明の効果〕〔Effect of the invention〕

上記実施例で明らかなとおり、本発明は焼結炉
排ガス中にアンモニアガスを吹込む工程と、前記
排ガスを脱硝触媒を充填した脱硝反応器に導入す
る工程と、前記脱硝された排ガスを酸化触媒を充
填した一酸化炭素酸化反応器に導入する工程と、
前記一酸化炭素の酸化により昇温した排ガスによ
り未脱硝処理の排ガスを加熱する工程を包含する
焼結炉排ガスの脱硝方法において、焼結炉原料と
しての鉄鉱石をまず一酸化炭素酸化反応器に充填
して酸化触媒として使用すると同時に脱硝触媒と
しての活性化を行ない、次いでそれを脱硝反応器
に充填して脱硝触媒として再度使用するようにし
たので、酸化触媒と脱硝触媒を同一物を使用でき
ることおよび鉄鉱石触媒の特別な脱硝活性化が不
要となることで触媒コスト安価に保持できると共
に脱硝の高効率化を収めることができる。
As is clear from the above examples, the present invention includes a step of injecting ammonia gas into the sintering furnace exhaust gas, a step of introducing the exhaust gas into a denitrification reactor filled with a denitrification catalyst, and a step of introducing the denitrified exhaust gas into the oxidation catalyst. a step of introducing the carbon monoxide into a carbon monoxide oxidation reactor filled with
In the denitrification method for sintering furnace exhaust gas, which includes the step of heating undenitrated exhaust gas with the exhaust gas whose temperature has increased due to the oxidation of carbon monoxide, iron ore as a raw material for the sintering furnace is first introduced into a carbon monoxide oxidation reactor. The same catalyst can be used as the oxidation catalyst and the denitrification catalyst because it is charged and used as an oxidation catalyst and activated as a denitration catalyst at the same time, and then it is charged into the denitration reactor and used again as the denitration catalyst. In addition, since no special denitrification activation of the iron ore catalyst is required, the cost of the catalyst can be kept low and denitrification efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による方法の実施例を示す工程
図、第2図は本発明の固定床型反応器による実施
例における運転経過時間による鉄鋼石触媒の
NOx脱硝率およびCO酸化率の変化を示す相関図
である。 1…焼結炉、2…排ガス、3…脱硫装置、5…
熱交換器、8…脱硝反応器、9…酸化反応器。
FIG. 1 is a process diagram showing an example of the method according to the present invention, and FIG. 2 is a flowchart showing the changes in the iron ore catalyst according to the elapsed operating time in the example using the fixed bed reactor of the present invention.
FIG. 3 is a correlation diagram showing changes in NOx denitrification rate and CO oxidation rate. 1... Sintering furnace, 2... Exhaust gas, 3... Desulfurization equipment, 5...
Heat exchanger, 8... Denitrification reactor, 9... Oxidation reactor.

Claims (1)

【特許請求の範囲】[Claims] 1 焼結炉排ガス中にアンモニアガスを吹込む工
程と、前記排ガスを脱硝触媒を充填した脱硝反応
器に導入する工程と、前記脱硝された排ガスを酸
化触媒を充填した一酸化炭素酸化反応器に導入す
る工程と、前記一酸化炭素の酸化により昇温した
排ガスにより未脱硝処理の排ガスを加熱する工程
を包含する焼結炉排ガスの脱硝方法において、前
記一酸化炭素酸化反応器に充填する酸化触媒とし
て焼結炉原料としての鉄鉱石を使用するととも
に、前記一酸化炭素の酸化に使用したのちに排出
する鉄鉱石の一部を前記脱硝反応器に充填して脱
硝触媒として再度使用することを特徴とする焼結
炉排ガスの脱硝方法。
1 A step of injecting ammonia gas into the sintering furnace exhaust gas, a step of introducing the exhaust gas into a denitrification reactor filled with a denitrification catalyst, and a step of introducing the denitrified exhaust gas into a carbon monoxide oxidation reactor filled with an oxidation catalyst. and a step of heating undenitrated exhaust gas with the exhaust gas heated by the oxidation of carbon monoxide. Iron ore is used as a sintering furnace raw material, and a part of the iron ore discharged after being used to oxidize the carbon monoxide is charged into the denitrification reactor and used again as a denitrification catalyst. A method for denitrating sintering furnace exhaust gas.
JP3154979A 1979-03-16 1979-03-16 Denitrification of waste gas from sintering furnace Granted JPS55124531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3154979A JPS55124531A (en) 1979-03-16 1979-03-16 Denitrification of waste gas from sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3154979A JPS55124531A (en) 1979-03-16 1979-03-16 Denitrification of waste gas from sintering furnace

Publications (2)

Publication Number Publication Date
JPS55124531A JPS55124531A (en) 1980-09-25
JPS6152730B2 true JPS6152730B2 (en) 1986-11-14

Family

ID=12334261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3154979A Granted JPS55124531A (en) 1979-03-16 1979-03-16 Denitrification of waste gas from sintering furnace

Country Status (1)

Country Link
JP (1) JPS55124531A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3423744A1 (en) * 1984-06-28 1986-01-09 Bergwerksverband Gmbh, 4300 Essen Process for separating out SO2 and NOx
US5078973A (en) * 1985-01-30 1992-01-07 Babcoco-Hitachi Kabushiki Kaisha Apparatus for treating flue gas
CN1004990B (en) * 1985-01-30 1989-08-16 巴布考克日立株式会社 Apparatus for treating flue gas

Also Published As

Publication number Publication date
JPS55124531A (en) 1980-09-25

Similar Documents

Publication Publication Date Title
AU693966B2 (en) Regeneration of catalyst/absorber
JP3589529B2 (en) Method and apparatus for treating flue gas
JPH08503880A (en) Method for removing NOx from combustion gas by adsorption
JP7223154B2 (en) Method for storing, reducing, and denitrifying industrial exhaust gas
CN103433034A (en) Low-temperature SCR (Selective Catalytic Reduction) catalyst based on active coke loaded manganese-cerium composite oxide and preparation method of low-temperature SCR catalyst
CN107899568A (en) A kind of preparation method for loading O composite metallic oxide catalyst and its application in exhaust-gas treatment field
JPS6152730B2 (en)
JP2005508727A (en) Method for treating ammonia-containing combustion exhaust gas
JP2694911B2 (en) Exhaust gas desulfurization / denitration equipment
JP2674428B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides
JPH10225641A (en) Low temperature denitration catalyst and its production and low temperature denitration method
JP3779889B2 (en) Catalyst regeneration method
JPH08155300A (en) Dry denitration of sulfur oxide-containing low temperature exhaust gas and desulfurizing-denitrating catalyst
JPH0747227A (en) Purification of exhaust gas containing nitrogen oxide in low concentration
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
JP4429404B2 (en) Dry exhaust gas treatment method and treatment apparatus
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPH08196920A (en) Regenerating method for denitrating catalyst
JP2014237080A (en) Carbon monoxide oxidation catalyst and method of installation for desulfurization/denitrification of exhaust gas from sintering furnace
JPS581616B2 (en) Denitrification reaction tower
JPS594422A (en) Denitrating method of waste gas of sintering furnace
JP3795114B2 (en) Waste incinerator exhaust gas treatment method and apparatus
KR20210077018A (en) Method for treating exhaust gas
JP3499713B2 (en) Exhaust gas treatment method
CA2207275C (en) Regeneration of catalyst/absorber