JPS6152612B2 - - Google Patents

Info

Publication number
JPS6152612B2
JPS6152612B2 JP54057803A JP5780379A JPS6152612B2 JP S6152612 B2 JPS6152612 B2 JP S6152612B2 JP 54057803 A JP54057803 A JP 54057803A JP 5780379 A JP5780379 A JP 5780379A JP S6152612 B2 JPS6152612 B2 JP S6152612B2
Authority
JP
Japan
Prior art keywords
relay
terminal
carrier wave
power supply
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54057803A
Other languages
Japanese (ja)
Other versions
JPS55150725A (en
Inventor
Ichiro Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5780379A priority Critical patent/JPS55150725A/en
Publication of JPS55150725A publication Critical patent/JPS55150725A/en
Publication of JPS6152612B2 publication Critical patent/JPS6152612B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は方向比較搬送保護継電装置の改良に関
する。 一般に、電力系統を事故から保護するような搬
送保護継電方式として、被保護区間の両端に夫々
故障検出継電器、内部故障継電器及び外部故障継
電器を設置し、各端相互に伝送し合つて電力系統
を保護するようにした方向比較保護継電方式が用
いられている。つまり、この方式は搬送信号を引
外し阻止信号として用い、(以後の説明では搬送
波送出とは、トリツプ阻止信号を送出しているも
のとする)外部故障継電器が動作すると搬送波端
局装置の送信回路を開放して阻止信号を阻止し、
相手端の引外し回路をロツクする。また、内部故
障継電器が動作すると、送信回路を短絡して送信
を停止する。結局、引外し指令回路は内部方向継
電器の動作時、外部方向継電器の不動作時及び阻
止信号の受信無の条件が備つた時に成立するもの
である。 また、この方式は搬送信号の伝送方式から、(a)
故障時送出方式、(b)常時送出方式の2つに大別さ
れる。前者(a)は、常時及び外部故障無の時には搬
送波送出を停止し、例えば電圧低下等に基づく故
障検出により搬送波を送出する方式である。ま
た、後者(b)は常時及び外部故障時は搬送波を送出
し、内部故障検出により搬送波の送出を停止する
方式である。そして、前者(a)においてその引外し
回路は、故障検出有、相手端からの搬送波受信無
及び外部故障検出無のアンド条件により形成され
る。一方、後者(b)においては内部故障検出有と相
手端からの搬送波受信無とのアンド条件により形
成される。 これらの方式には、各端子の周波数として同一
周波を用いる同一周波方式と、各端子の周波数と
して異なる周波を用いる異周波方式とがあり、次
の4通りの組合せが考えられる。 (1) 同一周波故障時送出方式 (2) 〃 常時送出方式 (3) 異周波故障時送出方式 (4) 〃 常時送出方式 ところで、一般に送電系統においては一端は故
障発生時確実に故障電流を供給することができる
電源端となるが、他端は故障電流を供給しない非
電源端となることを考慮しなければならない。こ
の場合、非電源端では系統故障による故障検出条
件により非電源対策回路を設けている。この非電
源対策回路とは、非電源端においては外部故障検
出は行なえるが、内部故障時には事故電流が流れ
ない為、故障検出を行なえない事に対する対策回
路である。そして、通常これは不足電圧リレー等
からなる故障検出リレーの動作と、外部故障リレ
ーの不動作によつて、内部故障検出と等価に扱う
ことで構成される。 この場合、常時送出方式では常に搬送波を送出
しているので、例えば電圧変成器回路の故障等で
不用意に非電源対策回路を構成しても誤動作はし
ないが、故障時送出方式の場合には電圧変成器回
路の故障時はすぐに誤動作に結びついてしまう。
つまり、以上の事から考えて常時送出方式による
方向比較がよいことになる。しかし、多端子系統
の場合(2)の同一周波常時送出方式では、いずれか
1端子の搬送波を停止しても他端子からの回り込
みで搬送波停止を行なえない為、搬送波停止点検
が行なえないという問題が生じる。また、(4)の異
周波常時送出の場合には点検は可能であるが、操
作シーケンスが複雑となるという問題が生じる。
そこで、従来は以上の点を考慮して、常時送出方
式と故障時送出方式の利点を生かし、同一周波、
異周波の何れにも適用可能な方式として、電源端
を常時送出また非電源端を故障時送出とするよう
にしたものが用いられている。 次に、このような方式による従来の方向比較搬
送保護継電装置を、同一周波、異周波の場合につ
いて述べる。まず、第1図aは同一周波方式の場
合の構成を示すもので、1は電源端、2は非電源
端で、その両端子1,2間を送電線3により夫々
の端子側のしや断器4A,4Bを介して連系して
いる。なお、以後の説明では電源端1をA端子、
また非電源端2をB端子と夫々称する。5A,5
Bは各端子A,B側電流を検出する電流変成器、
6A,6Bは同じく電圧を検出する電圧変成器で
ある。7A,7Bは各変成器5A,6A,5B,
6Bの出力信号を入力とし、内部故障を検出する
内部故障検出リレー、また8A,8Bは同様にそ
の外部故障を検出する外部故障検出リレー、9
A,9Bは電圧変成器6A,6Bの出力信号を入
力とし、電圧低下等に基づく故障を検出する故障
検出リレーである。10A,10Bは端子SPA,
SNA1,SNA2,SPB,SNB1,SNB2を有
し、搬送波を送出する搬送装置の送信部で、その
各端子相互間の開放あるいは短絡の状態に応じ
て、前述したように送信部10Aでは常時送出方
式、送信部10Bでは故障時送出方式となるよう
に、搬送波送出、または搬送波送出停止を制御す
るものである。すなわち、各端子1,2の送信部
10A,10Bにおいて、下表に示すように送
出、停止を制御するようにしている。
The present invention relates to an improvement in a directional comparison conveyance protection relay device. Generally, as a carrier protection relay system that protects the power system from accidents, a fault detection relay, an internal fault relay, and an external fault relay are installed at each end of the protected section, and each end transmits data to the power grid. A directional comparison protection relay system is used to protect the In other words, this method uses the carrier signal as a trip prevention signal (in the following explanation, carrier wave transmission is assumed to be sending out a trip prevention signal). to block the blocking signal by opening the
Locks the tripping circuit at the other end. Additionally, when an internal fault relay operates, the transmitter circuit is shorted and transmission is stopped. After all, the tripping command circuit is established when the following conditions are met: when the internal directional relay is activated, when the external directional relay is not activated, and when no blocking signal is received. In addition, this method is based on the carrier signal transmission method, (a)
There are two main types: (b) continuous transmission method and (b) constant transmission method. The former (a) is a method in which carrier wave transmission is stopped at all times and when there is no external failure, and the carrier wave is transmitted upon detection of a failure based on, for example, voltage drop. The latter (b) is a method that transmits a carrier wave at all times and when an external failure occurs, and stops transmitting the carrier wave when an internal failure is detected. In the former (a), the tripping circuit is formed by the AND conditions of failure detection, no carrier wave reception from the other end, and no external failure detection. On the other hand, the latter (b) is formed by an AND condition of internal failure detection and no carrier wave reception from the other end. These methods include a same frequency method in which the same frequency is used as the frequency of each terminal, and a different frequency method in which different frequencies are used as the frequency of each terminal, and the following four combinations are possible. (1) Same-frequency fault transmission method (2) Always-on transmission method (3) Different-frequency fault transmission method (4) Always-on transmission method By the way, in general, in a power transmission system, one end reliably supplies fault current when a fault occurs. However, it must be taken into consideration that the other end is a non-power supply end that does not supply fault current. In this case, a non-power supply countermeasure circuit is provided at the non-power supply end according to the failure detection conditions due to system failure. This non-power supply countermeasure circuit is a countermeasure circuit that can perform external failure detection at the non-power supply end, but cannot detect a failure because no fault current flows when an internal failure occurs. Normally, this consists of the operation of a failure detection relay such as an undervoltage relay and the non-operation of an external failure relay, which is treated as equivalent to internal failure detection. In this case, in the constant transmission method, the carrier wave is always transmitted, so even if a non-power countermeasure circuit is inadvertently configured due to a failure in the voltage transformer circuit, for example, there will be no malfunction, but in the case of the failure transmission method, When a voltage transformer circuit malfunctions, it immediately leads to malfunction.
In other words, considering the above, it is better to compare directions using the constant transmission method. However, in the case of a multi-terminal system, in the same frequency constant transmission method (2), even if the carrier wave of one terminal is stopped, the carrier wave cannot be stopped due to wraparound from other terminals, so there is a problem that carrier wave stoppage inspection cannot be performed. occurs. In addition, in the case of (4), where different frequencies are constantly transmitted, inspection is possible, but the problem arises that the operation sequence becomes complicated.
Therefore, in the past, taking the above points into consideration, we took advantage of the continuous transmission method and the failure transmission method, and used the same frequency,
As a system that can be applied to any of the different frequencies, a method is used in which the power supply end is always sent out and the non-power end is sent out in the event of a failure. Next, a conventional direction comparison carrier protection relay device using such a system will be described in the case of the same frequency and different frequencies. First, Figure 1a shows the configuration in the case of the same frequency system, where 1 is the power supply terminal, 2 is the non-power supply terminal, and the power transmission line 3 connects both terminals 1 and 2 to the terminal side. It is interconnected via disconnectors 4A and 4B. In the following explanation, power supply end 1 will be referred to as A terminal,
Further, the non-power terminals 2 are respectively referred to as B terminals. 5A, 5
B is a current transformer that detects the current on each terminal A and B side,
6A and 6B are voltage transformers that similarly detect voltage. 7A, 7B are each transformer 5A, 6A, 5B,
6B is an internal failure detection relay that receives the output signal and detects an internal failure; 8A and 8B are external failure detection relays that similarly detect external failures; 9
Reference numerals A and 9B are failure detection relays that receive the output signals of the voltage transformers 6A and 6B and detect failures caused by voltage drop or the like. 10A and 10B are terminals SPA,
The transmitter 10A of the carrier device has SNA1, SNA2, SPB, SNB1, and SNB2 and sends out carrier waves, and the transmitter 10A always sends out signals depending on whether the terminals are open or short-circuited. The transmitting section 10B controls carrier wave transmission or carrier wave transmission stop so as to adopt a transmission method in the event of a failure. That is, in the transmitting sections 10A and 10B of each terminal 1 and 2, transmission and stop are controlled as shown in the table below.

【表】 11A,11Bは各端子1,2の両搬送波信号
を受信する受信リレー12A,12Bを備えた搬
送装置受信部である。また、この送信部10A、
受信部11Aを結合コンデンサ13Aを介し、ま
た送信部10B、受信部11Bを結合コンデンサ
13Bを介して、送電線3に夫々接続している。
更に、A端子1側の送信部10Aの各端子SPA,
SNA2間には内部故障検出リレー7Aの常開接
点7Aa1を設け、また各端子SPA,SNA1間には
外部故障検出リレー8Aの常閉接点8Abと故障
検出リレー9Aの常閉接点9Abとを直列に設け
ている。一方、B端子2側の送信部10Bの各端
子SPB,SNB1間には故障検出リレー9Bの常閉
接点9Bbと外部故障検出リレー8Bの常閉接点
8Bb1とを直列に設け、また各端子SPB,SNB2
間には内部故障検出リレー7Bの常開接点7Ba
を設けると共に上記接点8Bb1を介して後述する
補助リレー14Bの常開接点14Ba1を設けてい
る。 第1図bはA端子1側のトリツプ回路の構成を
示すもので、PAは制御電源母線で内部故障検出
リレー7Aの常開接点7Aa2と、受信リレー12
Aの常閉接点12Abとを直列接続してトリツプ
指令を出力するようにしている。 第1図cは同じくB端子2側のトリツプ回路の
構成を示すもので、PB,NBは制御電源母線であ
りこの両母線PB,NB間には、故障検出リレー9
Bの常開接点9Ba及び補助リレー14Bを直列
接続して設けている。また、補助リレー14Bの
常開接点14Ba2、受信リレー12Bの常閉接点
12Bb及び外部故障検出リレー8Bの常閉接点
8Bb2の直列回路を一方の制御電源母線PBに接
続して、トリツプ指令を出力するようにしてい
る。 かかる構成において、まず常時はA端子1側の
送信部10Aからのみ搬送波が送信され、これを
各端子1,2側の受信部11A,11Bが夫々受
信し、受信リレー12A,12Bが夫々動作して
その常閉接点12Ab,12Bbが開路している。
そのため、B端子2の電圧変成器6Bに2次出力
不良故障が発生し、故障検出リレー9Bが動作し
て接点14Ba2が閉路しても、トリツプ回路は形
成されずしや断することはない。一方、A端子1
の電圧変成器6Aに同様の故障が発生すると、故
障検出リレー9Aが動作するが、その条件接点は
A端子1のトリツプ条件には介在していないため
誤しや断することはない。 次に、内部故障発生時にはA端子1においては
内部故障検出リレー7Aが動作し、その常開接点
7Aa1を閉路して搬送波の送出が停止する。一
方、B端子2においては内部故障検出リレー7B
は動作しないが、故障検出リレー9Bが動作しそ
の常開接点9Baが閉路して補助リレー14Bが
付勢される。そして、この補助リレー14Bの動
作によりその常開接点14Ba1が閉路するので、
この接点14Ba1,8Bbによつて搬送波停止が
継続される。そのため、両端子1,2共搬送波送
出が停止し、A端子1側においては接点7Aa2
12Abにより、またB端子2側においては接点
14Ba2,12Bb,8Bbによつてトリツプ回路
が形成されて、トリツプ指令が送出されて保護動
作が行なわれる。また、B端子2の外部故障発生
時にはA端子1側においては内部故障検出リレー
7Aが動作して、前述同様に搬送波の送出が停止
する。しかし、他方のB端子2側においては外部
故障検出リレー8Bが動作して、その常閉接点8
b1が開路することによつて、B端子2の送信部
10Bから搬送波が送信される。この搬送波は各
端子1,2の受信部11A,11Bによつて夫々
受信され、これにより受信リレー12A,12B
はその動作を継続する為、その常閉接点12A
b,12Bbが開路する。その為、A端子1におい
ては接点7Aa2が、またB端子2においては接点
14Ba2が閉路してもトリツプ回路は形成されず
外部故障によりしや断することはない。 第2図a,b,cは異周波方式の場合の回路構
成を示すもので、第1図a,b,cと同一部分に
は同一符号を付してその説明を省略し、ここでは
異なる部分についてのみ述べる。すなわち、A端
子1、B端子2の各受信リレー12A,12Bに
代えて、互いに相手端2,1から送出される搬送
波のみを受信する受信リレー15A,15Bを設
けたものである。また、各端子1,2のトリツプ
回路の接点12Ab,12Bbに代えて、受信リレ
ー15A,15Bの常閉接点15Ab,15Bb
夫々設けたものである。更に、B端子2の搬送波
送信回路において、接点9Bbと直列に受信リレ
ー15Bの常開接点15Baを、同じく接点14
a1と直列に受信リレー15Bの常閉接点15B
b2を新たに設けたものである。 かかる構成において、まず常時はA端子1側の
送信部10Aからのみ搬送波が送信され、これを
B端子2側の受信部11Bのみが受信し、受信リ
レー15Bが動作してその常閉接点15Bb1が開
路している。そのため、B端子2の電圧変成器6
Bに2次出力不良故障が発生し、故障検出リレー
9Bが誤動作して接点14Ba2が閉路しても、ト
リツプ回路は形成されず誤しや断することはな
い。一方、A端子1の電圧変成器6Aに同様の故
障が発生すると、故障検出リレー9Aが動作する
が、その条件接点はトリツプ条件には介在してい
ない為、誤しや断することはない。 次に、内部故障発生時にはA端子1においては
内部故障検出リレー7Aが動作し、その常開接点
7Aa1を閉路して搬送路を停止する。一方、B端
子2においては内部故障検出リレー7Bは動作し
ないが、故障検出リレー9Bが動作しその常開接
点9Baが閉路して、補助リレー14Bが付勢さ
れる。そして、この補助リレー14Bの動作によ
りその常開接点14Ba1が閉路、A端子1からの
搬送波停止によつて受信リレー15Bが不動作と
なりその常閉接点15Bb2が閉路、更に外部故障
検出リレー8Bが不動作であるのでその常閉接点
8Bb1が閉路するため、B端子2側における搬送
波停止が継続される。そのため、両端子1,2共
搬送波送出が停止し、A端子1側においては接点
7Aa2,15Abにより、またB端子2側におい
ては接点14Ba2,15Bb1,8Bb2によつて、
トリツプ回路が形成されてトリツプ指令が送出さ
れ保護動作が行なわれる。 また、B端子2の外部故障発生時にはA端子1
側においては、内部故障検出リレー7Aが動作し
て前述同様に搬送波の送出が停止する。しかし、
他方のB端子2側においては外部故障検出リレー
8Bが動作して、その常閉接点8Bb1が開路する
ことによつて、B端子2の送信部10Bから搬送
波が送信される。この搬送波はA端子1の受信部
11Aによつて受信され、これにより受信リレー
15Aが動作してその常閉接点15Abが開路す
る。なお、この故障ケースの場合は、内部故障検
出リレー7Aよりも外部故障リレー8Bの方が早
い時点で動作する。つまり接点7Aa2が閉路する
時点では接点15Abは既に開路しているので、
トリツプ回路は形成されず外部故障により誤しや
断することはない。 以上、従来方式による方向比較搬送保護継電装
置について述べたが、実際にはしや断器のパレツ
トを増幅して本継電装置における方向比較は、距
離継電器の第1段しや断との組合せにより行なつ
ているので、第3図a,b及びcに示すように、
各端子1,2側の送信回路(以下、第2図の異周
波方式を例にとつて述べる)に対して並列に、各
しや断器4A,4Bのパレツト接点増幅回路が接
続構成されているものである。つまり、第3図c
においてP,Nは制御電源母線、4Ba,4Aa
各端子2,1のしや断器4B,4Aのパレツト接
点で、補助リレー16B,16Aを直列に介して
制御電源母線P,N間に接続している。第3図b
〔a〕は各端子2,1における実際の送信回路の
構成を示すもので、第2図aの接点7Ba,7Aa
と並列に、補助リレー16B,16Aの常閉接
点16Bb,16Abが夫々接続されている。また
第4図a,b及びcは第2図aの送電系統を説明
の都合上等価的に表わしたものである。図におい
て、17は変圧器、18はしや断器である。 かかる構成において、常時は第4図aのように
各しや断器4A,4Bは共に投入状態にあり、系
統の運転が行なわれている。このような状態にあ
る時、例えば今B端子2側に構内事故が発生する
と、B端子2において外部故障検出リレー8Bが
動作して、その常閉接点8b1が開路することによ
つてB端子2の送信部10Bから搬送波が送信さ
れる。この搬送波はA端子1の受信部11Aによ
つて受信され、これにより受信リレー15Aが動
作してその常閉接点15Abが開路する。一方、
A端子1においては内部故障検出リレー7Aが動
作して、その常開接点7Aa2が閉路する。しか
し、この時点では接点15Abが既に開路してい
るので、トリツプ回路は形成されず誤しや断する
ことはない。また、一方においてはB端子2の構
内事故発生により図示しない母線保護継電装置の
動作によつて、B端子2のしや断器4Bのトリツ
プ指令が出力される。これにより、そのパレツト
接点4Baが開路して補助リレー16Bが消勢さ
れ、その常閉接点16Bbが閉路することによつ
てB端子2からの搬送波送信が停止する。また、
その主接点が開路することによりしや断器4Bが
トリツプされて事故が解除され、これによりA端
子1の内部故障検出リレー7Aが復帰する。この
場合、B端子2の搬送波停止が、A端子1の内部
故障検出リレー7Aの復帰よりも早い時点で行な
われると、接点7Aa2が開路する前に接点15A
bが閉路することになり、A端子1が誤しや断し
てしまう。この様子を示すと、第5図のようにな
る。第5図において、t1はしや断器(CB)パレ
ツト接点(SW)が開いてからしや断器(CB)主
接点が開くまでに要する時間、t2はしや断器
(CB)パレツト接点(SW)が開いてから補助リ
レー16Bが復帰するまでに要する時間、t3はし
や断器(CB)主接点が開いてから内部故障検出
リレー44SIが復帰するまでに要する時間を夫々
示すものである。この場合、このような誤しや断
を防ぐにはB端子2の搬送波停止を、A端子1の
内部故障検出リレー7Aの復帰よりも遅らせるよ
うにする、つまり第5図でt2>t1+t3なる関係と
なるように、接点16Bbの時間協調を図るよう
にすればよい。 次に、事故修理後第4図bのような状態におい
て、同図cのように図示しない投入回路によりし
や断器4Bに投入指令を与えてしや断器4Bを投
入すると、変圧器17による励磁突入電流(以
下、インラツシユ電流Iohと称する)が流れる。
これにより、A端子1においては内部故障リレー
7Aが誤動作して、その常開接点7Aa2が閉路す
る。一方、B端子2においては外部故障検出リレ
ー8Bが動作して、その常閉接点8Bb1が開路す
るが、この時点では補助リレー16Bはまた動作
途中であるので、その常閉接点16Bbはまだ閉
路している。従つて、送信部10Bの端子SPB,
SNB2間が接点16Bbによつて短絡されるの
で、B端子2からは搬送波が送出されない。その
ため、A端子1の受信リレー15Aは動作せず、
その常閉接点15Abは閉路しているので、接点
7Aa2及び15Abによつてトリツプ回路が形成
されてA端子1が誤しや断してしまう。この様子
を示すと、第6図のようになる。第5図におい
て、t4はしや断器(CB)パレツト接点(SW)が
閉じてから補助リレー16Aが復帰するまでに要
する時間、t5はしや断器(CB)パレツト接点
(SW)が閉じてから内部故障検出リレー44SI
が動作するまでに要する時間を夫々示すものであ
る。そして、この場合このような誤しや断を防ぐ
には、B端子2の搬送波送信をA端子1の内部故
障検出リレー7Aの動作よりも早くするようにす
る、つまり第6図でt4<t5となるようにしや断器
4Bのパレツト増幅回路を構成して、接点16B
bの時間協調を図るようにすればよい。しかしな
がら、一般にしや断器によつてそのパレツトの動
作時間或いは復帰時間が様様である為に、増幅用
の補助リレーによつて前述したような時間協調を
とることが困難であり、その時間協調がとれてい
ない時には前述したように誤しや断してしまうと
いう欠点がある。なお、同一周波方式についても
全く同様である。 本発明は上記のような事情に鑑みてなされたも
ので、一方が電源端、他方が可変電源端で構成さ
れる電力系統の各端に方向判別継電器及び故障検
出継電器を設け、各端相互に搬送波信号を伝送し
合い電力系統を保護するようにした方向比較搬送
保護継電装置において、上記可変電源端における
搬送波送出停止を電源端側からの搬送波信号を受
信したことを条件に自端の搬送波停止を解除し、
且つ電源端からの搬送波受信無しを検出したこと
を条件に所定時間後に自端の搬送波送出を停止す
ることにより、可変電源端の構内事故に基づくし
や断器開放、またその端のしや断器投入時の背後
変圧器の励磁突入電流による電源端側の誤しや断
を防止して電力系統を確実に保護することができ
る信頼性の高い方向比較搬送保護継電装置を提供
することを目的とする。 以下、本発明の一実施例を図面を参照して説明
する。第7図a,b,cは異周波方式の方向比較
搬送保護継電装置の構成を示すもので、第2図
a,bと同一部分には同一符号を付してその説明
を省略し、ここでは異なる部分についてのみ述べ
る。すなわち、本実施例では第2図aの各端子
1,2側の送信回路の接点7Ba,7Aa1と並列
に設けられた前述した補助リレー16B,16A
の常閉接点16Bb,16Abに、新たに詳細を後
述する限時復帰リレー19B,19Aの常閉接点
19Bb,19Abを、直列接続して設けたもので
ある。 第8図は搬送波送信条件回路の構成を示すもの
で、P1,N1は制御電源母線、19B,19Aは
限時復帰リレーであり、受信リレー15B,15
Aの常開接点15Ba1,15Aaを直列に介し
て、制御電源母線P1,N1間に接続する。ここ
で、限時復帰リレー19B,19Aの限時時間
t2,tは、前述した第5図におけるt2>t1+t3を満
足する時間を有するものである。すなわち、少な
くとも内部故障検出リレー7Aの動作時から復帰
時までに要する時間に対応した時間t2を有する。 次に、かかる構成の異周波方式の方向比較搬送
保護継電装置の作用を、第9図a,b,cを参照
して述べる。まず、常時は第9図aのように各端
1,2のしや断器4A,4Bは共に閉路している
ので、各端子1,2の送信回路の接点16Ab
16Bbは開路している。また、A端子1の送信
部10Aからのみ搬送波が送信され、これをB端
子2側の受信部11Bのみが受信し、受信リレー
15Bが動作してその常閉接点15Bb1が開路、
また常開接点15Ba1,15Baが夫々閉路して
いる。そのため、例えばB端子2の電圧変成器6
Bに2次出力不良故障が発生し、故障検出リレー
9Bが誤動作して接点14Ba2が閉路しても、ト
リツプ回路は形成されず誤しや断することはな
い。一方、A端子1の電圧変成器6Aに同様の故
障が発生すると、故障検出リレー9Aが動作する
が、その条件接点はトリツプ条件には介在してい
ない為、誤しや断することはない。 次に、内部故障発生時にはA端子1においては
内部故障検出リレー7Aが動作し、その常開接点
7Aa1を閉路して搬送波を停止する。一方、B端
子2においては内部故障検出リレー7Bは動作し
ないが、故障検出リレー9Bが動作しその常開接
点9Baが閉路して、補助リレー14Bが付勢さ
れる。そして、この補助リレー14Bの動作によ
りその常開接点14Ba1が閉路、A端子1からの
搬送波停止によつて受信リレー15Bが不動作と
なりその常閉接点15Bb2が閉路、更に外部故障
検出リレー8Bが不動作であるのでその常閉接点
8Bb1が閉路するため、B端子2側における搬送
波停止が継続される。そのため、両端子1,2共
搬送波送出が停止し、A端子1側においては接点
7Aa2,15Abにより、またB端子2側におい
ては接点14Ba2,15Bb,8Bb2によつて、ト
リツプ回路が形成されてトリツプ指令が送出され
保護動作が行なわれる。 また、B端子2の外部故障発生時にはA端子1
側においては、内部故障検出リレー7Aが動作し
て前述同様に搬送波の送出が停止する。しかし、
他方のB端子2側においては外部故障検出リレー
8Bが動作して、その常閉接点8Bb1が開路する
ことによつて、B端子2の送信部10Bから搬送
波が送信される。この搬送波はA端子1の受信部
11Aによつて受信され、これにより受信リレー
15Aが動作してその常閉接点15Abが開路す
る。なお、この故障ケースの場合は、内部故障検
出リレー7Aよりも外部故障リレー8Bの方が早
い時点で動作する、つまり接点7Aa2が閉路する
時点では接点15Abは既に開路しているので、
トリツプ回路は形成されず外部故障により誤しや
断することはない。 次に、B端子2に構内事故が生じた場合につい
て述べる。通常運転状態にある時、例えば今B端
子2側に構内事故が発生すると、B端子2におい
て外部故障検出リレー8Bが動作して、その常閉
接点8Bb1が開路することによつてB端子2の送
信部10Bから搬送波が送信される。この搬送波
はA端子1の受信部11Aによつて受信され、こ
れにより受信リレー15Aが動作してその常閉接
点15Abが開路する。一方、A端子1において
は内部故障検出リレー7Aが動作してその常開接
点7Aa2が閉路する。しかし、この時点では接点
15Abが既に開路しているので、トリツプ回路
は形成されず誤しや断することはない。また、一
方においてはB端子2の構内事故発生により、図
示しない母線保護継電装置の動作によつて、B端
子2のしや断器4Bのトリツプ指令が出力され
る。これにより、そのパレツト接点4Baが開路
して補助リレー16Bが消勢され、その常閉接点
16Bbが閉路また、その主接点が開路してしや
断器4Bがトリツプされて事故が解除され、A端
子1の内部故障リレー7Aが復帰を開始する。こ
の場合、本来であればA端子1の内部故障検出リ
レー7Aの復帰途中で、接点16Bbが閉路する
とB端子2からの搬送波送出が停止して接点15
bが閉路して誤しや断するが、上述の内部故障
検出リレー7Aの動作により受信リレー15Bが
不動作となり、その接点15Ba1が開路して限時
復帰リレー19Bが消勢しても、その常閉接点1
9Bbはt2時間継過するまでは開路している。そ
のため、この時点ではB端子2からA端子1へ搬
送波が継続して送信され、受信リレー15Aはこ
れを受信して動作しており、その常閉接点15A
bは相変らず開路している。そして、やがて内部
故障検出リレー7Aが復帰してその常開接点7A
a2は開路するため、限時復帰リレー19Bが消勢
しその後t2時間経過してその常開接点19Bb
閉路し、更にこれにより接点15Abが閉路して
もこの時点では、既に接点7Aa2は上述したよう
に開路しているので、トリツプ回路は形成されず
しや断器4Aがしや断されることはない。 次に、事故補修後第9図bのような状態におい
て、同図cのように図示しない投入回路によりし
や断器4Bを投入する場合について述べる。この
場合には、まずA端子1の送信部10Aから搬送
波が送出されており、それをB端子2の受信リレ
ー15Bが受信して動作し、更にその常開接点1
5Ba1の閉路により限時復帰リレー19Bを動作
させて接点19Bbは開路している。このような
状態にある時、今しや断器4Bを投入すると変圧
器17によるインラツシユ電流Iohが流れる。こ
れにより、まずB端子2においては外部故障検出
リレー8Bが動作して、その常閉接点8Bb1が開
路し次第、送信部10Bの端子SPB,SNB1間が
開放して搬送波がこれよりA端子1に送出され
る。この搬送波が、A端子1の受信部11Aが受
信することにより、受信リレー15Aが動作して
その常閉接点15Abが開路する。やがて、上記
インラツシユ電流IohによつてA端子1の内部故
障検出リレー7Aが誤動作してその常開接点7A
a2が閉路するが、この時点では上述の動作によつ
て接点15Abは既に開路しているので、トリツ
プ回路は形成されずしや断器4Aがしや断される
ことはない。 このように、電源端1と非電源端2とから構成
される2端子電力系統の各端に、内部故障検出リ
レー7A,7B、外部故障検出リレー8A,8B
及び故障検出リレー9A,9Bを設け、各端子
1,2相互にトリツプ阻止信号としての搬送波信
号を送信し合い、電源端1側においては内部故障
検出リレー7Aの動作と非電源端2側からの搬送
波信号受信無とによりしや断器をトリツプして電
力系統を保護するようにした異周波方式の方向比
較搬送保護継電装置において、非電源端2側にお
いては電源端1からの搬送波信号を受信したこと
を条件に自端の搬送波停止を解除し、且つ電源端
1からの搬送波信号の受信無を検出したことを条
件に限時復帰リレー19Bにより少なくとも電源
端1の内部故障検出リレー7Aの動作から復帰ま
でに要する時間t2経過した後に自端の搬送波送信
を停止するようにしたものである。 従つて、従来のように電源端1への搬送波の送
信または停止を、自端(非電源端2)のしや断器
4Bのパレツト接点増幅回路の動作・復帰条件に
よつてのみ行なつていたものを上述のように電源
端1からの搬送波信号の受信有・無の条件との組
合せによつて行なうことができるので、しや断器
4Bのパレツトの動作時間または復帰時間がまち
まちであるための時間不協調に基づく、非電源端
2の構内事故等、或いは非電源端2側の背後変圧
器17の投入時におけるインラツシユ電流による
電源端1側の誤しや断を防止して、電力系統を事
故から確実に保護することができる。 尚、本発明は上記実施例に限定されるものでは
ない。 (1) 上記実施例では異周波方式の場合を述べた
が、同一周波方式の場合についても全く同様に
実施することができるものである。 (2) 上記実施例ではB端子2が非電源端の場合を
述べたが、可変電源端の場合についても全く同
様に実施することができるものである。 (3) 上記実施例では限時時間t2を有する限時復帰
リレー19Bを用いたものであるが、これに限
らずその復帰をこの限時時間t2の間保持し得る
ような補助リレーであつても同様に実施するこ
とができるものである。 その他本発明は、その要旨を変更しない範囲
で種々変形して実施することができるものであ
る。 以上説明したように本発明によれば、一方が電
源端、他方が可変電源端にて構成される電力系統
の各端に方向判別継電器及び故障検出継電器を設
けて各端相互に搬送波信号を伝送し合い電力系統
を保護するようにした方向比較搬送保護継電装置
において、上記可変電源端において電源端からの
搬送波信号を受信したことを条件に自端の搬送波
停止を解除し、且つ電源端からの搬送波受信無し
を検出したことを条件に少なくとも電源端の方向
判別継電器としての内部故障継電器の動作から復
帰までに要する時間経過の間自端の搬送波送信を
継続させるようにしたので、可変電源端の構内事
故に基づくしや断器開放、またその端のしや断器
投入時の背後変圧器の励磁突入電流による電源端
側の誤しや断を防止して電力系統を確実に保護す
ることができる信頼性の高い方向比較搬送保護継
電装置が提供できる。
[Table] Reference numerals 11A and 11B are carrier device receiving sections that include receiving relays 12A and 12B that receive both carrier signals of terminals 1 and 2, respectively. Moreover, this transmitter 10A,
The receiving section 11A is connected to the power transmission line 3 via a coupling capacitor 13A, and the transmitting section 10B and the receiving section 11B are connected to the power transmission line 3 via a coupling capacitor 13B.
Furthermore, each terminal SPA of the transmitter 10A on the A terminal 1 side,
A normally open contact 7A a1 of an internal failure detection relay 7A is provided between SNA2, and a normally closed contact 8A b of an external failure detection relay 8A and a normally closed contact 9A b of an external failure detection relay 9A are provided between each terminal SPA and SNA1. are installed in series. On the other hand, the normally closed contact 9B b of the failure detection relay 9B and the normally closed contact 8B b1 of the external failure detection relay 8B are provided in series between each terminal SPB and SNB1 of the transmitter 10B on the B terminal 2 side, and each terminal SPB, SNB2
Between them is the normally open contact 7B a of the internal failure detection relay 7B .
In addition, a normally open contact 14B a1 of an auxiliary relay 14B, which will be described later, is provided via the contact 8B b1 . Fig. 1b shows the configuration of the trip circuit on the A terminal 1 side, where P A is the control power supply bus and normally open contact 7A a2 of internal failure detection relay 7A,
The normally closed contact 12Ab of A is connected in series to output a trip command. Figure 1c also shows the configuration of the trip circuit on the B terminal 2 side, where P B and N B are control power supply buses, and between these two buses P B and N B there is a failure detection relay 9.
A normally open contact 9B a of B and an auxiliary relay 14B are connected in series. In addition, a series circuit of the normally open contact 14B a2 of the auxiliary relay 14B, the normally closed contact 12B b of the receiving relay 12B, and the normally closed contact 8B b2 of the external failure detection relay 8B is connected to one control power supply bus P B to trip I am trying to output commands. In such a configuration, a carrier wave is normally transmitted only from the transmitter 10A on the A terminal 1 side, which is received by the receivers 11A and 11B on the terminals 1 and 2, respectively, and the receiving relays 12A and 12B operate, respectively. The normally closed contacts 12A b and 12B b are open.
Therefore, even if a secondary output failure occurs in the voltage transformer 6B of the B terminal 2 and the failure detection relay 9B is activated and the contact 14B a2 is closed, a trip circuit will not be formed and will not be disconnected immediately. . On the other hand, A terminal 1
When a similar failure occurs in the voltage transformer 6A, the failure detection relay 9A operates, but since its conditional contact is not involved in the trip condition of the A terminal 1, it will not be erroneously disconnected. Next, when an internal failure occurs, the internal failure detection relay 7A operates at the A terminal 1, closes its normally open contact 7A a1 , and stops transmitting the carrier wave. On the other hand, at B terminal 2, internal failure detection relay 7B
does not operate, but failure detection relay 9B operates, its normally open contact 9B a closes, and auxiliary relay 14B is energized. Then, due to the operation of this auxiliary relay 14B, its normally open contact 14B a1 is closed, so
The carrier wave stop is continued by these contacts 14B a1 and 8B b . Therefore, carrier wave transmission from both terminals 1 and 2 is stopped, and on the A terminal 1 side, contacts 7A a2 ,
A trip circuit is formed by 12A b and contacts 14B a2 , 12B b , and 8B b on the B terminal 2 side, and a trip command is sent out to perform a protective operation. Further, when an external failure occurs at the B terminal 2, the internal failure detection relay 7A operates on the A terminal 1 side, and the carrier wave transmission is stopped as described above. However, on the other B terminal 2 side, the external failure detection relay 8B operates and its normally closed contact 8
When B b1 is opened, a carrier wave is transmitted from the transmitter 10B of the B terminal 2. This carrier wave is received by receiving sections 11A and 11B of each terminal 1 and 2, respectively, and thereby reception relays 12A and 12B
In order to continue its operation, its normally closed contact 12A
b , 12B b is opened. Therefore, even if the contact 7A a2 at the A terminal 1 and the contact 14B a2 at the B terminal 2 are closed, a trip circuit is not formed and will not be broken due to an external failure. Figure 2 a, b, and c show the circuit configuration in the case of different frequency system. I will only describe the parts. That is, in place of the receiving relays 12A and 12B of the A terminal 1 and the B terminal 2, receiving relays 15A and 15B are provided which receive only carrier waves transmitted from the opposite ends 2 and 1, respectively. Further, in place of the contacts 12A b and 12B b of the trip circuit of each terminal 1 and 2, normally closed contacts 15A b and 15B b of the receiving relays 15A and 15B are provided, respectively. Furthermore, in the carrier wave transmitting circuit of the B terminal 2, the normally open contact 15B a of the receiving relay 15B is connected in series with the contact 9B b , and the contact 14
Normally closed contact 15B of receiving relay 15B in series with B a1
This is a new version of b2 . In this configuration, a carrier wave is normally transmitted only from the transmitter 10A on the A terminal 1 side, and is received only by the receiver 11B on the B terminal 2 side, and the reception relay 15B operates to transmit its normally closed contact 15B b1. is open. Therefore, voltage transformer 6 of B terminal 2
Even if a secondary output failure occurs in B, the failure detection relay 9B malfunctions and the contact 14B a2 closes, a trip circuit is not formed and no error or disconnection occurs. On the other hand, if a similar failure occurs in the voltage transformer 6A of the A terminal 1, the failure detection relay 9A will operate, but since its conditional contact is not involved in the trip condition, there will be no error or disconnection. Next, when an internal failure occurs, the internal failure detection relay 7A operates at the A terminal 1, closes its normally open contact 7A a1 , and stops the conveyance path. On the other hand, at B terminal 2, internal failure detection relay 7B does not operate, but failure detection relay 9B operates, its normally open contact 9B a closes, and auxiliary relay 14B is energized. Then, due to the operation of this auxiliary relay 14B, its normally open contact 14B a1 is closed, and due to the stop of the carrier wave from the A terminal 1, the reception relay 15B becomes inoperable, and its normally closed contact 15B b2 is closed, and further external failure detection relay 8B Since it is inoperative, its normally closed contact 8B b1 is closed, so that the carrier wave on the B terminal 2 side continues to be stopped. Therefore, the carrier wave transmission from both terminals 1 and 2 is stopped, and on the A terminal 1 side, the contacts 7A a2 and 15A b , and on the B terminal 2 side, the contacts 14B a2 , 15B b1 , and 8B b2
A trip circuit is formed, a trip command is sent out, and a protective operation is performed. In addition, when an external failure occurs at B terminal 2, A terminal 1
On the other hand, the internal failure detection relay 7A operates and stops transmitting the carrier wave in the same manner as described above. but,
On the other B terminal 2 side, the external failure detection relay 8B is operated and its normally closed contact 8B b1 is opened, thereby transmitting a carrier wave from the transmitter 10B of the B terminal 2. This carrier wave is received by the receiving section 11A of the A terminal 1, thereby operating the receiving relay 15A and opening its normally closed contact 15A b . Note that in this failure case, the external failure relay 8B operates earlier than the internal failure detection relay 7A. In other words, when contact 7A a2 closes, contact 15A b is already open, so
No trip circuits are formed and no errors or disconnections occur due to external failures. The above has described the direction comparison conveyance protection relay device using the conventional method, but in reality, the pallet of the shear break is amplified and the direction comparison in this relay device is performed by comparing it with the first stage shear break of the distance relay. Since this is done by combination, as shown in Figure 3 a, b and c,
The pallet contact amplifier circuits of the respective disconnectors 4A and 4B are connected in parallel to the transmitting circuits of the terminals 1 and 2 (hereinafter, the different frequency system shown in Fig. 2 will be described as an example). It is something that exists. In other words, Figure 3c
, P and N are the control power bus lines, 4B a and 4A a are the pallet contacts of the wire breakers 4B and 4A of each terminal 2 and 1, and the connection between the control power bus lines P and N is made through the auxiliary relays 16B and 16A in series. is connected to. Figure 3b
[a] shows the actual configuration of the transmitting circuit at each terminal 2, 1, and the contacts 7B a and 7A a in Fig. 2a
Normally closed contacts 16B b and 16A b of auxiliary relays 16B and 16A are connected in parallel with auxiliary relays 16B and 16A, respectively. Further, FIGS. 4a, b, and c are equivalent representations of the power transmission system of FIG. 2a for convenience of explanation. In the figure, 17 is a transformer, and 18 is a disconnector. In this configuration, as shown in FIG. 4a, both the sheath disconnectors 4A and 4B are normally in the closed state, and the system is in operation. In such a state, for example, if an on-site accident occurs on the B terminal 2 side, the external fault detection relay 8B operates at the B terminal 2, and its normally closed contact 8 b1 opens, thereby causing the B terminal to open. A carrier wave is transmitted from the second transmitter 10B. This carrier wave is received by the receiving section 11A of the A terminal 1, thereby operating the receiving relay 15A and opening its normally closed contact 15A b . on the other hand,
At the A terminal 1, the internal failure detection relay 7A operates, and its normally open contact 7A a2 is closed. However, at this point, the contact 15A b is already open, so no trip circuit is formed and no error or disconnection occurs. On the other hand, due to the occurrence of an on-site accident at the B terminal 2, a trip command for the breaker 4B at the B terminal 2 is outputted by the operation of a bus protection relay device (not shown). As a result, the pallet contact 4B a is opened and the auxiliary relay 16B is deenergized, and the normally closed contact 16B b is closed, thereby stopping carrier wave transmission from the B terminal 2. Also,
When the main contact is opened, the circuit breaker 4B is tripped and the accident is canceled, thereby causing the internal failure detection relay 7A of the A terminal 1 to return to its normal state. In this case, if the carrier wave of B terminal 2 is stopped earlier than the return of internal failure detection relay 7A of A terminal 1, contact 15A
b will be closed, and A terminal 1 will be mistaken or disconnected. This situation is shown in FIG. 5. In Figure 5, t 1 is the time required from the opening of the edge breaker (CB) pallet contact (SW) to the opening of the edge breaker (CB) main contact, and t 2 is the time required for the edge breaker (CB) to open. The time required for the auxiliary relay 16B to return after the pallet contact (SW) opens, and the time required for the internal fault detection relay 44SI to return after the main contact of the breaker (CB) opens. It shows. In this case, in order to prevent such errors and disconnections, the stop of the carrier wave at the B terminal 2 should be delayed from the return of the internal failure detection relay 7A at the A terminal 1, that is, t 2 > t 1 in Fig. 5. The contact points 16B b may be time-coordinated so that the relationship is +t 3 . Next, in the state shown in FIG. 4b after the accident repair, when a closing command is given to the shield breaker 4B by a closing circuit (not shown) as shown in FIG. An excitation inrush current (hereinafter referred to as inrush current Ioh ) flows.
As a result, the internal failure relay 7A malfunctions at the A terminal 1, and its normally open contact 7A a2 is closed. On the other hand, at B terminal 2, the external failure detection relay 8B operates and its normally closed contact 8B b1 opens, but at this point the auxiliary relay 16B is in the process of operating again, so its normally closed contact 16B b is still open. The circuit is closed. Therefore, the terminals SPB of the transmitter 10B,
Since the SNB 2 is short-circuited by the contact 16B b , no carrier wave is transmitted from the B terminal 2. Therefore, the reception relay 15A of A terminal 1 does not operate,
Since the normally closed contact 15Ab is closed, a trip circuit is formed by the contacts 7Aa2 and 15Ab , and the A terminal 1 is accidentally disconnected. This situation is shown in FIG. 6. In Fig. 5, t 4 is the time required from the time when the armature breaker (CB) pallet contact (SW) closes until the auxiliary relay 16A returns, and t 5 is the time required when the armature breaker (CB) pallet contact (SW) After the internal failure detection relay 44SI is closed,
This shows the time required for each to operate. In this case, in order to prevent such errors and disconnections, the carrier wave transmission at the B terminal 2 should be made faster than the operation of the internal failure detection relay 7A at the A terminal 1. In other words, in FIG. 6, t 4 < Configure the pallet amplifier circuit of Nishiya breaker 4B so that t5 , and contact 16B
What is necessary is to try to coordinate the time of b . However, since the operating time or recovery time of the pallet generally varies depending on the breaker, it is difficult to achieve the above-mentioned time coordination using an auxiliary relay for amplification. If this is not done, there is a drawback that mistakes or cuts may occur as mentioned above. Note that the same applies to the same frequency system. The present invention has been made in view of the above circumstances, and includes a direction determining relay and a fault detection relay provided at each end of a power system consisting of a power supply terminal on one side and a variable power supply terminal on the other, and mutual communication between each end. In a direction comparison carrier protection relay device that mutually transmits carrier wave signals to protect the power system, carrier wave transmission at the variable power supply end is stopped on condition that the carrier wave signal from the power supply end is received. Unpause,
In addition, by stopping carrier wave transmission at the own end after a predetermined period of time on the condition that no carrier wave is received from the power supply end, it is possible to prevent the disconnection from opening due to an accident on the premises of the variable power supply end, or to prevent the end of the power supply from being disconnected. It is an object of the present invention to provide a highly reliable directional comparison transfer protection relay device that can reliably protect the power system by preventing errors or disconnections on the power supply end side due to the excitation inrush current of the rear transformer when the transformer is turned on. purpose. Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIGS. 7a, b, and c show the configuration of a different frequency type direction comparison transport protection relay device, and the same parts as in FIGS. Only the different parts will be described here. That is, in this embodiment, the above-mentioned auxiliary relays 16B and 16A are provided in parallel with the contacts 7B a and 7A a1 of the transmission circuit on the terminals 1 and 2 side of FIG. 2a.
The normally closed contacts 16B b and 16A b of the time-limited return relays 19B and 19A, which will be described in detail later, are newly connected in series to the normally closed contacts 16B b and 16A b . FIG. 8 shows the configuration of the carrier wave transmission condition circuit, where P 1 and N 1 are control power supply buses, 19B and 19A are time-limited return relays, and reception relays 15B and 15
The normally open contacts 15B a1 and 15A a of A are connected in series between the control power supply buses P 1 and N 1 . Here, the time limit of the time limit return relays 19B and 19A is
t 2 and t have a time satisfying t 2 >t 1 +t 3 in FIG. 5 described above. That is, it has a time t2 corresponding to at least the time required from the time of operation of the internal failure detection relay 7A to the time of recovery. Next, the operation of the direction comparison transport protection relay device of the different frequency type having such a structure will be described with reference to FIGS. 9a, b, and c. First, as shown in FIG. 9a, the circuit breakers 4A and 4B at each terminal 1 and 2 are normally closed, so the contact 16A b of the transmitting circuit at each terminal 1 and 2
16B b is open. Further, the carrier wave is transmitted only from the transmitting section 10A of the A terminal 1, and only the receiving section 11B of the B terminal 2 side receives the carrier wave, and the receiving relay 15B operates and its normally closed contact 15B b1 is opened.
Further, the normally open contacts 15B a1 and 15B a are each closed. Therefore, for example, the voltage transformer 6 of the B terminal 2
Even if a secondary output failure occurs in B, the failure detection relay 9B malfunctions and the contact 14B a2 closes, a trip circuit is not formed and no error or disconnection occurs. On the other hand, if a similar failure occurs in the voltage transformer 6A of the A terminal 1, the failure detection relay 9A will operate, but since its conditional contact is not involved in the trip condition, there will be no error or disconnection. Next, when an internal failure occurs, the internal failure detection relay 7A operates at the A terminal 1, and closes its normally open contact 7A a1 to stop the carrier wave. On the other hand, at B terminal 2, internal failure detection relay 7B does not operate, but failure detection relay 9B operates, its normally open contact 9B a closes, and auxiliary relay 14B is energized. The operation of this auxiliary relay 14B causes the normally open contact 14B a1 to close, and the stop of the carrier wave from the A terminal 1 causes the receiving relay 15B to become inoperable, causing the normally closed contact 15B b2 to close, and further external failure detection relay 8B Since it is inoperative, its normally closed contact 8B b1 is closed, so that the carrier wave on the B terminal 2 side continues to be stopped. Therefore, carrier wave transmission from both terminals 1 and 2 is stopped, and the trip circuit is activated by contacts 7A a2 and 15A b on the A terminal 1 side, and through contacts 14B a2 , 15B b , and 8B b2 on the B terminal 2 side. is formed, a trip command is sent out, and a protective operation is performed. In addition, when an external failure occurs at B terminal 2, A terminal 1
On the other hand, the internal failure detection relay 7A operates and stops transmitting the carrier wave in the same manner as described above. but,
On the other B terminal 2 side, the external failure detection relay 8B is operated and its normally closed contact 8B b1 is opened, thereby transmitting a carrier wave from the transmitter 10B of the B terminal 2. This carrier wave is received by the receiving section 11A of the A terminal 1, thereby operating the receiving relay 15A and opening its normally closed contact 15A b . Note that in this failure case, the external failure relay 8B operates earlier than the internal failure detection relay 7A, that is, the contact 15A b is already open when the contact 7A a2 is closed.
No trip circuits are formed and no errors or disconnections occur due to external failures. Next, a case will be described in which an on-premises accident occurs at B terminal 2. During normal operation, for example, if an on-site accident occurs on the B terminal 2 side, the external failure detection relay 8B operates at the B terminal 2, and its normally closed contact 8B b1 opens, causing the B terminal 2 A carrier wave is transmitted from the transmitter 10B. This carrier wave is received by the receiving section 11A of the A terminal 1, thereby operating the receiving relay 15A and opening its normally closed contact 15A b . On the other hand, at the A terminal 1, the internal failure detection relay 7A operates and its normally open contact 7A a2 is closed. However, at this point, the contact 15A b is already open, so no trip circuit is formed and no error or disconnection occurs. On the other hand, due to the occurrence of an on-site accident at the B terminal 2, a trip command for the breaker 4B at the B terminal 2 is outputted by the operation of a bus protection relay device (not shown). As a result, the pallet contact 4B a is opened, the auxiliary relay 16B is deenergized, the normally closed contact 16B b is closed, and the main contact is opened, the breaker 4B is tripped, and the accident is canceled. , the internal failure relay 7A of A terminal 1 starts to recover. In this case, when the contact 16B b is closed while the internal failure detection relay 7A of the A terminal 1 is returning, carrier wave transmission from the B terminal 2 is stopped and the contact 15
A b is closed and disconnected due to an error, but the reception relay 15B becomes inoperable due to the operation of the internal failure detection relay 7A described above, and even if its contact 15B a1 is opened and the time-limited return relay 19B is deenergized, Its normally closed contact 1
9B b remains open until t 2 hours have elapsed. Therefore, at this point, the carrier wave is continuously transmitted from the B terminal 2 to the A terminal 1, and the receiving relay 15A receives this and operates, and its normally closed contact 15A
b is still open circuit. Then, eventually the internal failure detection relay 7A returns and its normally open contact 7A
Since a2 is opened, the time-limited return relay 19B is deenergized, and after 2 hours , its normally open contact 19B b is closed . Since the circuit is open as described above, a trip circuit is not formed and the disconnector 4A is never disconnected. Next, a case will be described in which the sheath breaker 4B is closed by a closing circuit (not shown) as shown in FIG. 9(c) in the state shown in FIG. 9(b) after an accident has been repaired. In this case, first, a carrier wave is sent out from the transmitter 10A of the A terminal 1, and the receiving relay 15B of the B terminal 2 receives it and operates, and then the normally open contact 10A of the carrier wave is sent out.
The time-limited return relay 19B is operated by the closing of 5B a1 , and the contact 19B b is opened. In such a state, if the circuit breaker 4B is turned on now, an inrush current Ioh from the transformer 17 will flow. As a result, the external failure detection relay 8B operates at the B terminal 2, and as soon as its normally closed contact 8B b1 is opened, the terminals SPB and SNB1 of the transmitter 10B are opened, and the carrier wave is transmitted from this to the A terminal 1. sent to. When this carrier wave is received by the receiving section 11A of the A terminal 1, the receiving relay 15A is activated and its normally closed contact 15A b is opened. Eventually, the internal failure detection relay 7A of the A terminal 1 malfunctions due to the inrush current Ioh , and its normally open contact 7A malfunctions.
a2 is closed, but at this point the contact 15Ab is already open due to the above-described operation, so no trip circuit is formed and the circuit breaker 4A is never disconnected. In this way, internal failure detection relays 7A, 7B and external failure detection relays 8A, 8B are installed at each end of the two-terminal power system consisting of power supply terminal 1 and non-power supply terminal 2.
and failure detection relays 9A and 9B are provided, and carrier wave signals as trip prevention signals are transmitted between each terminal 1 and 2, and on the power supply end 1 side, the operation of the internal failure detection relay 7A and the operation of the internal failure detection relay 7A from the non-power supply end 2 side are In a different frequency type directional comparison carrier protection relay device that trips a disconnector when a carrier wave signal is not received to protect the power system, the carrier wave signal from the power source end 1 is transmitted on the non-power end 2 side. On the condition that the carrier signal is received, the stop of the carrier wave at the own end is canceled, and on the condition that no carrier wave signal is received from the power source end 1, the time-limited return relay 19B operates at least the internal failure detection relay 7A of the power source end 1. After the time t 2 required for recovery from start to finish has elapsed, carrier wave transmission at its own end is stopped. Therefore, as in the conventional case, the transmission or stopping of the carrier wave to the power supply terminal 1 is performed only according to the operation/return conditions of the pallet contact amplifier circuit of the current terminal (non-power supply terminal 2) and the disconnector 4B. This can be done in combination with the conditions of whether or not a carrier signal is received from the power supply end 1 as described above, so the operation time or recovery time of the pallet of the shield breaker 4B varies. This prevents accidents on the premises of the non-power source end 2 due to time miscoordination caused by the power source end 2, or errors or disconnections on the power end 1 side due to inrush current when the back transformer 17 on the non-power end 2 side is turned on. The system can be reliably protected from accidents. Note that the present invention is not limited to the above embodiments. (1) In the above embodiment, the case of different frequency systems has been described, but it can be implemented in exactly the same way even in the case of the same frequency system. (2) In the above embodiment, the case where the B terminal 2 is a non-power supply terminal has been described, but it can be implemented in exactly the same way even when the B terminal 2 is a variable power supply terminal. (3) In the above embodiment, the time-limited return relay 19B having a time limit t2 is used, but the present invention is not limited to this, and an auxiliary relay that can maintain the return for the time limit t2 may also be used. It can be implemented similarly. In addition, the present invention can be implemented with various modifications without changing the gist thereof. As explained above, according to the present invention, a direction discrimination relay and a failure detection relay are provided at each end of a power system consisting of a power supply end on one side and a variable power supply end on the other, and carrier wave signals are transmitted between each end. In a directional comparison carrier protection relay device designed to protect a mutual power system, on the condition that the variable power supply terminal receives a carrier wave signal from the power supply terminal, it releases the carrier wave stop at its own terminal, and Under the condition that no carrier wave reception is detected at the variable power source end, the carrier wave transmission at the variable power end is continued at least for the time required to recover from the operation of the internal faulty relay as a direction discriminating relay at the power source end. To reliably protect the power system by preventing the disconnection from opening due to an accident on the premises, or by preventing the power supply end from being erroneously or disconnected due to the excitation inrush current of the rear transformer when the disconnector at the end is closed. It is possible to provide a highly reliable directional comparison transport protection relay device that can perform

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,c及び第2図a,b,cは従来
の同一周波及び異周波方式による方向比較搬送保
護継電装置の構成を示すブロツク回路図、第3図
a,b及びcは従来の搬送波送信条件回路の構成
を示す図、第4図a,b及びcは第2図a,b及
びcにおける動作を説明するための図、第5図及
び第6図は第4図a,b及びcにおけるタイムチ
ヤート、第7図a,b及びcは本発明の方向比較
搬送保護継電装置の一実施例を示すブロツク構成
図、第8図は第7図a,b及びcにおける搬送波
送信条件回路の構成を示す図、第9図a,b及び
cは第7図a,b及びcにおける動作を説明する
ための図である。 1……電源端、2……非電源端、3……送電
線、4A,4B……しや断器、5A,5B……電
流変成器、6A,6B……電圧変成器、7A,7
B……内部故障検出リレー、8A,8B……外部
故障検出リレー、9A,9B……故障検出リレ
ー、10A,10B……送信部、11A,11B
……受信部、12A,12B,15A,15B…
…受信リレー、13A,13B……結合コンデン
サ、14A,14B……補助リレー、16A,1
6B……補助リレー、17……変圧器、18……
しや断器、19A,19B……限時復帰リレー、
7Aa1,2……7Aの接点、7Ba……7Bの接点、
8Ab……8Aの接点、8Bb1,2……8Bの接点、
9Ab……9Aの接点、9Ba,b……9Bの接点、
12Ab……12Aの接点、12Bb……12Bの
接点、14Ba1〜3……14Bの接点、15Ab
…15Aの接点、15Bb1,2……15Bの接点、
16Ab……16Aの接点、16Bb……16Bの
接点、19Bb……19Bの接点、P,N,P1
N1,PA,PB……制御電源母線。
Fig. 1 a, b, c and Fig. 2 a, b, c are block circuit diagrams showing the configuration of a conventional direction comparison transport protection relay device using the same frequency and different frequency methods, and Fig. 3 a, b, c 4 is a diagram showing the configuration of a conventional carrier wave transmission condition circuit, FIGS. 4a, b, and c are diagrams for explaining the operations in FIGS. 2a, b, and c, and FIGS. 7a, b and c are block configuration diagrams showing one embodiment of the direction comparison conveyance protection relay device of the present invention, and FIG. 8 is a time chart shown in FIGS. 7a, b and c. FIGS. 9a, b, and c are diagrams for explaining the operations in FIGS. 7a, b, and c. FIGS. 1...Power supply end, 2...Non-power supply end, 3...Power transmission line, 4A, 4B...Shipping breaker, 5A, 5B...Current transformer, 6A, 6B...Voltage transformer, 7A, 7
B...Internal failure detection relay, 8A, 8B...External failure detection relay, 9A, 9B...Failure detection relay, 10A, 10B...Transmission section, 11A, 11B
... Receiving section, 12A, 12B, 15A, 15B...
...Reception relay, 13A, 13B...Coupling capacitor, 14A, 14B...Auxiliary relay, 16A, 1
6B...Auxiliary relay, 17...Transformer, 18...
Shuya disconnector, 19A, 19B...Timed return relay,
7A a1 , 2 ...7A contact, 7B a ...7B contact,
8A b ...8A contact, 8B b1 , 2 ...8B contact,
9A b ... 9A contact, 9B a , b ... 9B contact,
12A b ...Contact of 12A, 12B b ...Contact of 12B, 14B a1~3 ...Contact of 14B, 15A b ...
...15A contact, 15B b1 , 2 ...15B contact,
16A b ... Contact of 16A, 16B b ... Contact of 16B, 19B b ... Contact of 19B, P, N, P 1 ,
N 1 , P A , P B ... Control power bus.

Claims (1)

【特許請求の範囲】[Claims] 1 一方が電源端、また他方が可変電源端から成
る電力系統において、前記電源端、可変電源端に
各別に設けられ、前記電力系統の内部方向及び外
部方向の故障を検出する内部故障継電器及び外部
故障継電器と、前記電源端、可変電源端に各別に
設けられ、前記電力系統の故障を検出する故障検
出継電器と、前記電源端に設けられ、当該電源端
の前記内部故障継電器の不動作時に引外し阻止信
号としての搬送波信号を前記可変電源端へ送出す
る第1の搬送装置と、前記可変電源端に設けら
れ、当該可変電源端のしや断器が投入されている
ことを条件に前記内部故障継電器が不動作でかつ
少なくとも当該可変電源端の前記外部故障継電器
の動作時に前記搬送波信号を前記電源端へ送出
し、また前記しや断器開放によりその搬送波信号
送出を停止する第2の搬送装置と、前記電源端に
設けられ、当該電源端の前記内部故障継電器の動
作時に前記第2の搬送装置からの搬送波信号を受
信しないことを条件に当該電源端のしや断器を引
外す第1の装置と、前記可変電源端に設けられ、
当該可変電源端の前記外部故障継電器が不動作で
かつ当該可変電源端の前記故障検出継電器の動作
時に前記第1の搬送装置からの搬送波信号を受信
しないことを条件に当該可変電源端のしや断器を
引外す第2の装置と、前記可変電源端のしや断器
開放による前記第2の搬送装置の搬送波信号送出
停止を、前記第1の搬送装置からの搬送波信号を
受信したことを条件に解除しかつ当該第1の搬送
装置からの搬送波信号を受信しないことを条件に
所定時間阻止し、また前記可変電源端のしや断器
投入時に前記第2の搬送装置の搬送波信号送出を
許容する第3の装置とを備えて構成するようにし
たことを特徴とする方向比較搬送保護継電装置。
1. In a power system consisting of a power supply terminal on one side and a variable power supply terminal on the other, an internal failure relay and an external a fault relay, a fault detection relay that is provided at each of the power supply terminal and the variable power supply terminal and detects a fault in the power system; and a fault detection relay that is provided at the power supply terminal and is activated when the internal fault relay of the power supply terminal is not operated a first carrier device that sends a carrier wave signal as a disconnection prevention signal to the variable power supply end; a second carrier for transmitting the carrier wave signal to the power supply terminal when the faulty relay is inoperable and at least the external faulty relay of the variable power supply terminal is operating, and for stopping the transmission of the carrier wave signal by opening the breaker; and a second device provided at the power source end that trips the breaker of the power source end on the condition that the carrier wave signal from the second carrier device is not received when the internal fault relay of the power source end is operated. 1, and a device provided at the variable power source end,
on the condition that the external fault relay of the variable power supply end is inoperative and the carrier wave signal from the first carrier device is not received when the fault detection relay of the variable power supply end is activated. A second device for tripping the disconnector, and a stop of the carrier wave signal transmission of the second carrier device by opening the disconnector at the variable power supply end, and a signal indicating that the carrier wave signal from the first carrier device has been received. blocking the transmission of the carrier wave signal from the second carrier device when the variable power source end is turned on and the carrier wave signal from the first carrier device is not received. A direction comparison conveyance protection relay device, characterized in that it is configured to include a third device for permitting.
JP5780379A 1979-05-11 1979-05-11 Directional comparison carrier protecting relay device Granted JPS55150725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5780379A JPS55150725A (en) 1979-05-11 1979-05-11 Directional comparison carrier protecting relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5780379A JPS55150725A (en) 1979-05-11 1979-05-11 Directional comparison carrier protecting relay device

Publications (2)

Publication Number Publication Date
JPS55150725A JPS55150725A (en) 1980-11-22
JPS6152612B2 true JPS6152612B2 (en) 1986-11-14

Family

ID=13066064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5780379A Granted JPS55150725A (en) 1979-05-11 1979-05-11 Directional comparison carrier protecting relay device

Country Status (1)

Country Link
JP (1) JPS55150725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156114U (en) * 1987-12-21 1989-10-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156114U (en) * 1987-12-21 1989-10-26

Also Published As

Publication number Publication date
JPS55150725A (en) 1980-11-22

Similar Documents

Publication Publication Date Title
US6008971A (en) Fault protection arrangement for electric power distribution systems
JPS59194623A (en) Protective relay of direction comparison blocking type
JPS6013424A (en) Protecting relaying device
JPS6152612B2 (en)
JP4020203B2 (en) Automatic monitoring circuit for protective relay device
JPH06276672A (en) Method for sensing and isolating groud fault
JP3425228B2 (en) Direction comparison transport protection relay
JPS5889027A (en) Direction comparison carrier protecting relay unit
JPS5914318A (en) Protecting repeating device
JP2986267B2 (en) Digital relay device
JPH0112510Y2 (en)
JP2898555B2 (en) Current differential protection relay
JPS61285022A (en) Breaker disablement protection circuit
JP2644987B2 (en) Direction comparison relay
JPS63220714A (en) Grounding protective relay
JPH0662742U (en) Consumer busbar protection device
JPS6338933B2 (en)
JPS6255374B2 (en)
JPS6251053B2 (en)
JP2001037072A (en) Protection relay device
JPS6149618A (en) Backup system of centralized process type loop protecting relay
JPS6038931B2 (en) Synchronization confirmation device when re-closing the power system
JPS6349450B2 (en)
JPH0139298B2 (en)
JPS60121914A (en) Current difference protecting relaying unit