JPS6152438A - Shock absorber - Google Patents

Shock absorber

Info

Publication number
JPS6152438A
JPS6152438A JP17210884A JP17210884A JPS6152438A JP S6152438 A JPS6152438 A JP S6152438A JP 17210884 A JP17210884 A JP 17210884A JP 17210884 A JP17210884 A JP 17210884A JP S6152438 A JPS6152438 A JP S6152438A
Authority
JP
Japan
Prior art keywords
synthetic resin
resin layer
piston
oil
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17210884A
Other languages
Japanese (ja)
Inventor
Makoto Shibata
誠 柴田
Shigemi Suganuma
菅沼 樹美
Hiroshi Kanayama
弘 金山
Kiyoshi Hanai
花井 清
Yuji Yokoya
横谷 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Taiho Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Toyota Motor Corp filed Critical Taiho Kogyo Co Ltd
Priority to JP17210884A priority Critical patent/JPS6152438A/en
Publication of JPS6152438A publication Critical patent/JPS6152438A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/52Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics in case of change of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/36Special sealings, including sealings or guides for piston-rods
    • F16F9/368Sealings in pistons

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To decrease sliding resistance by forming taper portions on both end portions in the sliding direction of a synthetic resin layer disposed on the outer peripheral surface of a piston, whereby even if lateral load is imposed upon the piston to elastically deform the synthetic resin layer, oil is always guided to the sliding surface. CONSTITUTION:A synthetic resin layer 13 disposed on the outer peripheral surface of a piston 3 has a thickness of about 0.4mm. and more to secure temperature compensating effect. Both end portions in the sliding direction of the synthetic resin layer 13 are formed to be tapered at an angle of about 2-25 deg. in such a manner that even if lateral load is imposed upon the piston 3 to elastically deform the synthetic resin layer 13, oil is always guided to the sliding surface favorably. The axial width of the tapered portions 13b is about 1mm. and more.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車等に用いられるショックアブソーバに
関し、より詳しくはピストンに合成樹脂層を設けたショ
ックアブソーバに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a shock absorber used in automobiles and the like, and more particularly to a shock absorber having a piston provided with a synthetic resin layer.

[従来の技術] 従来、ショックアブソーバとして、シリンダ内に嵌合し
たピストンと、このピストンの外周面に設けた合成樹脂
層とを備え、その合成樹脂層をシリンダの内周面に摺接
させるようにしたものが知られている。上記合成樹脂層
は、一般には摺動抵抗の低減を図るために用いられてい
るが、油の粘度変化によってショックアブソーバの性能
が変化するのを補償する目的にも用いられている。
[Prior Art] Conventionally, a shock absorber includes a piston fitted into a cylinder and a synthetic resin layer provided on the outer circumferential surface of the piston, and the synthetic resin layer is brought into sliding contact with the inner circumferential surface of the cylinder. It is known what has been done. The synthetic resin layer is generally used to reduce sliding resistance, but is also used to compensate for changes in shock absorber performance due to changes in oil viscosity.

すなわら、ショックアブソーバ内に封入された油は温度
が高温となるとその粘度が低下するので、シボツクアブ
ソーバの減衰力は高温となるに従って低下する。他方、
合成樹脂層の熱膨張率はかなり大きいため、この合成樹
脂層とシリンダ内周面とのクリアランスは温度が高温と
なるに従って小さくなり、その結果、油の粘度が低下す
る高温時には上記クリアランスが小さくなってその部分
の油の流通量を減少させるようになり、上記減衰力の低
下を防止するようになる。
In other words, the viscosity of the oil sealed in the shock absorber decreases as the temperature increases, so the damping force of the shock absorber decreases as the temperature increases. On the other hand,
Since the coefficient of thermal expansion of the synthetic resin layer is quite large, the clearance between this synthetic resin layer and the inner peripheral surface of the cylinder decreases as the temperature increases, and as a result, at high temperatures when the viscosity of the oil decreases, the above clearance decreases. This reduces the amount of oil flowing in that area, and prevents the damping force from decreasing.

[発明が解決しようとする問題点] しかるに、合成樹脂層で上述のような温度補償効果を得
るためにはある0度の厚さが必要であり、しかも合成樹
脂層とピストンの外周面とが接着されておらず合成樹脂
層が自由に熱膨張できることが望ましい。例えばピスト
ンの外周面に合成樹脂をコーティングしたものでは一般
にその厚さが0.001=0.21程度と薄く、シかも
ピストン外周面に接着されているので充分な熱膨張を期
待できず、上記温度補償効果を得ることが困難となる。
[Problems to be Solved by the Invention] However, in order to obtain the above-mentioned temperature compensation effect with the synthetic resin layer, a certain thickness of 0 degrees is required, and moreover, the synthetic resin layer and the outer circumferential surface of the piston need to have a thickness of 0 degrees. It is desirable that the synthetic resin layer is not bonded and can freely thermally expand. For example, in the case of a piston whose outer peripheral surface is coated with synthetic resin, its thickness is generally as thin as 0.001 = 0.21, and the material is also glued to the outer peripheral surface of the piston, so sufficient thermal expansion cannot be expected. It becomes difficult to obtain a temperature compensation effect.

このように、充分な温度補償効果を得るためには上記合
成樹脂層の厚さを約0.4m+m以上にする必要がある
が、合成樹脂層の厚さをそのような範囲とした従来のシ
ョックアブソーバでは、特にピストンに横荷重すなわち
半径方向の荷重が加わった状態においては、摺動抵抗の
低減効果が極めて少ないことが判明した。
In this way, in order to obtain a sufficient temperature compensation effect, the thickness of the synthetic resin layer needs to be approximately 0.4 m + m or more, but conventional shocks with a synthetic resin layer thickness within this range It has been found that the absorber has extremely little effect in reducing sliding resistance, especially when a lateral load, that is, a radial load is applied to the piston.

この原因について種々の実験を行なった結果、従来の合
成樹脂層には通常その摺動方向Ff幅端部円弧部を形成
してその円弧部で油を合成樹脂層とシリンダとの間の摺
動面に導入するようにしているが、上述のように合成樹
脂層の厚さを約0.41以上とすると、上記横荷重が加
わった際に合成樹脂層が弾性変形することからその合成
樹脂層の両端部が角形に変形してしまい、これが油の摺
動面への円滑な導入を阻害して摺動抵抗を増大させてい
ることが判明した。
As a result of conducting various experiments to find out the cause of this problem, we found that conventional synthetic resin layers usually have a circular arc section at the end of the width Ff in the sliding direction, and the arc section is used to transfer oil between the synthetic resin layer and the cylinder. However, as mentioned above, if the thickness of the synthetic resin layer is about 0.41 or more, the synthetic resin layer will elastically deform when the above lateral load is applied. It was found that both ends of the cylinder were deformed into a rectangular shape, which obstructed the smooth introduction of oil to the sliding surface and increased sliding resistance.

[問題点を解決するための手段と作用]本発明はそのよ
うな事情に鑑み、合成樹脂層の厚さを約0.4mm以上
として温度補償効果を得ることが可能となるようにした
ショックアブソーバにおいて、その合成樹脂層の摺動方
向両端部を約2〜25度の角度のテーバ状に形成すると
同時に、そのテーパ部の軸方向幅を1mm以上とするこ
とにより、ピストンに横荷重が加わって合成樹脂層が弾
性変形しても常に油を摺動面に案内して摺動抵抗を減少
させるようにしたショックアブソーバを提供するもので
ある。
[Means and effects for solving the problems] In view of the above circumstances, the present invention provides a shock absorber in which the thickness of the synthetic resin layer is set to approximately 0.4 mm or more, thereby making it possible to obtain a temperature compensation effect. By forming both ends of the synthetic resin layer in the sliding direction into a tapered shape with an angle of about 2 to 25 degrees, and at the same time making the axial width of the tapered part 1 mm or more, a lateral load is applied to the piston. To provide a shock absorber that constantly guides oil to a sliding surface to reduce sliding resistance even when a synthetic resin layer is elastically deformed.

[実施例] 以下図示実施例について本発明を説明すると、if図に
おいて、1はフロントサスペンション等に用いられるシ
ョックアブソーバのシリンダ、2はピストンロッドで、
このピストンロッド2に焼結金属から成るピストン3を
ナツト4により一体に連結している。上記ピストン3の
外周部に複数個の軸方向通路5を同心同上に形成してピ
ストン3の上下を連通させるとともに、その上端開口部
をピストン3の上面に弾接させたリング状の弁体6で閉
鎖できるようにしている。この弁体6はこれと支持部材
7との間に弾装したばね8によって上記ピストン3に弾
接させてあり、上記支持部材7はピストンロッド2の段
部とピストン3とで挟着している。
[Example] The present invention will be described below with reference to the illustrated example. In the IF diagram, 1 is a cylinder of a shock absorber used for a front suspension etc., 2 is a piston rod,
A piston 3 made of sintered metal is integrally connected to the piston rod 2 by a nut 4. A plurality of axial passages 5 are formed concentrically on the outer circumference of the piston 3 to communicate between the upper and lower sides of the piston 3, and a ring-shaped valve body 6 whose upper end opening is in elastic contact with the upper surface of the piston 3 It is possible to close it with The valve body 6 is brought into elastic contact with the piston 3 by a spring 8 loaded between the valve body 6 and a support member 7, and the support member 7 is sandwiched between the stepped portion of the piston rod 2 and the piston 3. There is.

また上記ピストン3の内周部にも複数個の軸方向通路9
を同心円上に形成しであり、その通路9と上記弁体6に
穿設した透孔lOとを介してピストン3の上下を連通さ
せている。そして各通路9の下端開口部をピストン3の
下面に弾接させたリング状の弁体11で閉鎖できるよう
にし、この弁体11はこれとナツト4との間にりI装し
たばね12によって上方に付勢するようにしている。
Also, a plurality of axial passages 9 are provided in the inner circumference of the piston 3.
are formed concentrically, and the upper and lower sides of the piston 3 are communicated via the passage 9 and a through hole IO formed in the valve body 6. The lower end opening of each passage 9 can be closed by a ring-shaped valve body 11 which is brought into elastic contact with the lower surface of the piston 3, and this valve body 11 is supported by a spring 12 mounted between the valve body 11 and the nut 4. It is intended to be biased upward.

さらに、上記ピストン3の外周面に合成樹脂層13を設
けてあり、この合成樹脂層13は断面を概略コ字形とし
てその両端部13aをピストン3の外周面上下位置に設
けた段部3aに嵌合させて合成樹脂層13がピストン3
から脱落するのを防止している。そして上記合成樹脂層
13の厚さtを約Q 、 41001以上として前述し
た温度補償効果を確保できるようにするとともに、合成
樹脂層13の摺動方向両端部を約2〜25度の角度のテ
ーパ状に形成し、かつそのテーパ部13bの軸方向幅を
約lam以上とすることにより、ピストン3に横荷重が
加わって合成樹脂層13が弾性変形しても常に良好に油
を摺動面に案内できるようにしている。
Further, a synthetic resin layer 13 is provided on the outer circumferential surface of the piston 3, and this synthetic resin layer 13 has a roughly U-shaped cross section, and its both ends 13a are fitted into stepped portions 3a provided at upper and lower positions on the outer circumferential surface of the piston 3. In addition, the synthetic resin layer 13 forms the piston 3.
This prevents it from falling off. The thickness t of the synthetic resin layer 13 is set to about Q, 41001 or more to ensure the above-mentioned temperature compensation effect, and both ends of the synthetic resin layer 13 in the sliding direction are tapered at an angle of about 2 to 25 degrees. By forming the tapered portion 13b into a shape and making the axial width of the tapered portion 13b approximately lam or more, even if a lateral load is applied to the piston 3 and the synthetic resin layer 13 is elastically deformed, oil can always be well applied to the sliding surface. I will be able to guide you.

上記テーパ部13bの角度は、小さすぎても大きすぎて
も油の良好な案内効果を期待することができず、合成樹
脂層13の硬さの影響を受けるが、一般的に油の良好な
案内効果を期待するには上述の範囲とすることが必要で
ある。また、上記テーパ部13bの角度と他方向幅とを
設定するに当っては、角度を小さくする程軸方向幅を大
きくすることが望ましい、より好ましい範囲としてテー
パ部13bの角度は3〜20度、合成樹脂層の厚さは 
0.8llll11〜3mff1である。
If the angle of the tapered portion 13b is too small or too large, a good oil guiding effect cannot be expected, and it is affected by the hardness of the synthetic resin layer 13, but in general, a good oil guiding effect cannot be expected. In order to expect a guidance effect, it is necessary to set it within the above-mentioned range. Furthermore, when setting the angle and width in the other direction of the tapered portion 13b, it is desirable that the smaller the angle, the larger the width in the axial direction.As a more preferable range, the angle of the tapered portion 13b is 3 to 20 degrees. , the thickness of the synthetic resin layer is
It is 0.8llll11-3mff1.

以上の構成において、ピストン3の降下時にはピストン
下方の油がばね8に抗して弁体6を押開き、通路5を介
してピストン上方に流動し、またピストン3の上昇時に
は上方の油がばね12に抗して弁体11を押開き、透孔
lOおよび通路9を介して下方に流動するようになり、
それら通路5.9のオリフィス効果によってショックア
ブソーバに減衰力を発生させる。
In the above configuration, when the piston 3 descends, oil below the piston pushes open the valve body 6 against the spring 8 and flows upward through the piston 5, and when the piston 3 ascends, the oil above the piston pushes open the valve body 6 against the spring 8. 12, the valve body 11 is pushed open, and the liquid begins to flow downward through the through hole IO and the passage 9.
The orifice effect of these passages 5.9 generates a damping force in the shock absorber.

そして、上記合成樹脂層13は充分に厚い厚さを有し、
しかもその両端部13aにより接着することなくピスト
ン3に嵌装支持させているので自由に熱膨張することが
でき、これにより油の粘度の高い常温時には合成樹脂層
13とシリンダlとの間に大きなりリアランスを確保し
て油の大きな流路面積を確保することができ、また高温
時にはそのクリアランスが小さくなるので、油の粘度低
下に伴なう減衰力の低下を補償することができるように
なる。
The synthetic resin layer 13 has a sufficiently thick thickness,
Furthermore, since it is fitted and supported by the piston 3 without adhesion by its both ends 13a, it can freely expand thermally, and as a result, there is a large gap between the synthetic resin layer 13 and the cylinder l at room temperature when the viscosity of the oil is high. It is possible to secure a large flow path area for oil by ensuring clearance, and since the clearance becomes smaller at high temperatures, it is possible to compensate for the decrease in damping force due to the decrease in oil viscosity. .

さらに、ピストン3に横荷重が加わった際には、上記合
成樹脂層13の一部がシリンダlに圧接されてりi性交
形されるが、その両端部に約2〜25度の角度で約1m
m以上のテーパ部13bを形成しているので、合成樹脂
層I3が弾性変形されてもそのテーパ部13bの両端部
はほぼその形状を維持するようになり、油を円滑に合成
樹脂層13とシリンダ1との間に導入して摺動抵抗の増
大を防止することができる。
Further, when a lateral load is applied to the piston 3, a part of the synthetic resin layer 13 is pressed against the cylinder l and is shaped by the cylinder l. 1m
Since the tapered portion 13b is formed with a diameter of m or more, even if the synthetic resin layer I3 is elastically deformed, both ends of the tapered portion 13b will maintain their shape, allowing the oil to smoothly flow into the synthetic resin layer 13. It can be introduced between the cylinder 1 and the cylinder 1 to prevent an increase in sliding resistance.

次に、本発明の効果を第2図に示す実験結果に基づいて
説明する。この実験は実際のショックアブソーバのピス
トン3に上述の構成を有する厚さ0゜8+amの合成樹
脂層13を設け、そのピストン3に50Kgの横荷重を
付加した状態でピストン3の摺動抵抗を測定したもので
ある。
Next, the effects of the present invention will be explained based on the experimental results shown in FIG. In this experiment, a synthetic resin layer 13 with a thickness of 0°8+am having the above-mentioned structure was provided on the piston 3 of an actual shock absorber, and the sliding resistance of the piston 3 was measured with a lateral load of 50 kg applied to the piston 3. This is what I did.

第2図において、Aは合成樹脂層13の両端部にテーパ
部13bを設けた本発明品を、Bは両端部を円弧部とし
た従来品を、Cは両端部を角部とした従来品をそれぞれ
示し、本実験では上記テーパ部13bの角度を10度、
軸方向幅を2II11とし、また上記円弧部の半径は0
.5+++mとしている。さらに、第2図の白地の棒グ
ラフはピストンスピードを最大で0.003m/sac
とし、斜線地の棒グラフはピストンスピードを最大で0
.3m/Secとしたものである。
In Fig. 2, A is a product of the present invention in which tapered portions 13b are provided at both ends of the synthetic resin layer 13, B is a conventional product in which both ends are arcuate, and C is a conventional product in which both ends are corner portions. In this experiment, the angle of the tapered portion 13b is 10 degrees,
The axial width is 2II11, and the radius of the arc portion is 0.
.. It is set as 5+++m. Furthermore, the white bar graph in Figure 2 shows the maximum piston speed of 0.003 m/sac.
The shaded bar graph indicates piston speed up to 0.
.. 3m/Sec.

第2図の実験結果に示されるように、本発明品Aは横荷
重を受けた状態でも従来品B、Cに比較して良好な結果
が得られており、テーパ部13bを設けた効果が認めら
れる。そして、両端部を円弧部とした従来品Bと、両端
部を角部とした従来品Cとは同一の結果となっており、
このことから上記円弧部は横荷重を受けると弾性変形し
て実質的に角部となってしまうことが理解される。
As shown in the experimental results in Fig. 2, product A of the present invention obtained better results than conventional products B and C even when subjected to lateral loads, and the effect of providing the tapered portion 13b was Is recognized. Conventional product B, which has arcuate ends at both ends, and conventional product C, which has corner ends at both ends, have the same results.
From this, it is understood that when the arcuate portion receives a lateral load, it elastically deforms and essentially becomes a corner portion.

なお、本発明品Aにおけるピストンスピードと摺動抵抗
との関係は第3図に示すとおりであり、ピストンスピー
ドが高速となる方が摺動抵抗が小さくなっている。これ
はピストンスピードが高速となるほど上記テーパ部!3
bによる油の案内効果が大きくなるからであると考えら
れる。
The relationship between piston speed and sliding resistance in product A of the present invention is as shown in FIG. 3, and the higher the piston speed, the smaller the sliding resistance. This taper part increases as the piston speed increases! 3
This is thought to be because the oil guiding effect by b increases.

また、上記従来品Bにおいて、円弧部の半径を小さくす
ると上記り1性変形により角部となることは明らかであ
り、他方円弧部の半径を大きくすると弾性変形しても円
弧部が残存するようになるが、シリンダ1に対する円弧
部の角度が大きくなりすぎてしまい、結局、円弧部では
油の良好な案内効果を得ることはできない。
In addition, in the above conventional product B, it is clear that when the radius of the circular arc portion is made small, it becomes a corner portion due to the above-mentioned unilateral deformation, and on the other hand, when the radius of the circular arc portion is made large, the circular arc portion remains even if it is elastically deformed. However, the angle of the arcuate portion with respect to the cylinder 1 becomes too large, and in the end, the arcuate portion cannot provide a good oil guiding effect.

次に、第4図は本発明の他の実施例を示したもので、本
実施例ではピストン20の外周面に2木の環状溝21を
形成し、合成樹脂層22の内周面にその環状溝21内に
嵌合される環状リブ23を形成したもので、その環状リ
ブ23により合成樹脂層22を接着することなくピスト
ン20に取付けるようにしたものである。なお、上記合
成樹脂層22の両端部に上述のテーパ部13bに相当す
るテーパ部22aを設けていることは勿論である。
Next, FIG. 4 shows another embodiment of the present invention. In this embodiment, two annular grooves 21 are formed on the outer peripheral surface of the piston 20, and two annular grooves 21 are formed on the inner peripheral surface of the synthetic resin layer 22. An annular rib 23 is formed to fit into the annular groove 21, and the synthetic resin layer 22 can be attached to the piston 20 without adhesive. It goes without saying that the synthetic resin layer 22 is provided at both ends with tapered portions 22a corresponding to the tapered portions 13b described above.

このような構成においても上述の実施例と同等の作用効
果が得られることは明らかである。
It is clear that even in such a configuration, the same effects as those of the above embodiment can be obtained.

[発明の効果] 以上のように、本発明は、シリンダ内に嵌合したピスト
ンと、このピストンの外周面に設けた約0.4■以上の
厚さを有する合成樹脂層とを備え、上記合成樹脂層をシ
リンダの内周面に摺接させたショックアブソーバにおい
て、上記合成樹脂層の摺動方向両端部を約2〜25度の
角度のテーバ状に形成し、かつそのテーパ部の軸方向幅
を約1mm以上としたものであるから、温度補償効果を
確保できると同時に、ピストンに横荷重が加わって合成
樹脂層が弾性変形した際であっても常に油を摺動面に案
内して摺動抵抗を減少させることができるという効果が
得られる。
[Effects of the Invention] As described above, the present invention includes a piston fitted in a cylinder and a synthetic resin layer having a thickness of about 0.4 mm or more provided on the outer circumferential surface of the piston. In a shock absorber in which a synthetic resin layer is in sliding contact with the inner peripheral surface of a cylinder, both ends of the synthetic resin layer in the sliding direction are formed into a tapered shape with an angle of approximately 2 to 25 degrees, and the tapered portion is tapered in the axial direction. Since the width is approximately 1 mm or more, it is possible to ensure a temperature compensation effect, and at the same time, even when a lateral load is applied to the piston and the synthetic resin layer is elastically deformed, oil is always guided to the sliding surface. The effect is that sliding resistance can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図は本
発明品と従来品とについて摺動抵抗の大きさを測定した
実験結果を示す図、第3図は本発明品においてピストン
スピードと摺動抵抗との関係を示す図、第4図は本発明
の他の実施例を示す要部の断面図である。 1・・・シリンダ     2・・・ピストンロッド3
.20・・・ピストン   13.22・・・合成樹脂
層13b、22a・・・テーパ部 第1図 第  4  図
Figure 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, Figure 2 is a diagram showing the experimental results of measuring the magnitude of sliding resistance for a product of the present invention and a conventional product, and Figure 3 is a diagram of the product of the present invention. FIG. 4 is a diagram showing the relationship between piston speed and sliding resistance, and FIG. 4 is a sectional view of a main part showing another embodiment of the present invention. 1...Cylinder 2...Piston rod 3
.. 20...Piston 13.22...Synthetic resin layer 13b, 22a...Tapered portion Fig. 1 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] シリンダ内に嵌合したピストンと、このピストンの外周
面に設けた約0.4mm以上の厚さを有する合成樹脂層
とを備え、上記合成樹脂層をシリンダの内周面に摺接さ
せたショックアブソーバにおいて、上記合成樹脂層の摺
動方向両端部を約2〜25度の角度のテーパ状に形成し
、かつそのテーパ部の軸方向幅を約1mm以上としたこ
とを特徴とするショックアブソーバ。
A shock comprising a piston fitted into a cylinder and a synthetic resin layer with a thickness of approximately 0.4 mm or more provided on the outer circumferential surface of the piston, the synthetic resin layer being in sliding contact with the inner circumferential surface of the cylinder. A shock absorber characterized in that both ends of the synthetic resin layer in the sliding direction are tapered at an angle of about 2 to 25 degrees, and the width of the tapered part in the axial direction is about 1 mm or more.
JP17210884A 1984-08-18 1984-08-18 Shock absorber Pending JPS6152438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17210884A JPS6152438A (en) 1984-08-18 1984-08-18 Shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17210884A JPS6152438A (en) 1984-08-18 1984-08-18 Shock absorber

Publications (1)

Publication Number Publication Date
JPS6152438A true JPS6152438A (en) 1986-03-15

Family

ID=15935697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17210884A Pending JPS6152438A (en) 1984-08-18 1984-08-18 Shock absorber

Country Status (1)

Country Link
JP (1) JPS6152438A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043137U (en) * 1990-04-24 1992-01-13
JP2021131141A (en) * 2020-02-21 2021-09-09 株式会社豊田自動織機 Wet brake device of cargo handling vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043137U (en) * 1990-04-24 1992-01-13
JP2021131141A (en) * 2020-02-21 2021-09-09 株式会社豊田自動織機 Wet brake device of cargo handling vehicle

Similar Documents

Publication Publication Date Title
US4241815A (en) Variable-throttle valve
US9309948B2 (en) Shock absorber
US4114735A (en) Hydraulic damper and valve structure
US20030051954A1 (en) Temperature compensating shock absorber
JPH0423140B2 (en)
US6655512B2 (en) Variable area low speed orifice in a vehicle damper
US6247563B1 (en) Piston with floating valve for hydraulic damper tube, especially one of the monotube type
US8079598B2 (en) Check seal structure for hydraulic shock absorber
US20110056781A1 (en) Fluid pressure shock absorber
ITTO20090681A1 (en) PASSIVE FLOW CONTROL VALVE AND SHOCK ABSORBER WITH ADJUSTABLE DAMPING INCLUDING SUCH VALVE
US11988265B2 (en) Shock absorber
GB2302720A (en) Vibration damper
JPH0231615Y2 (en)
JPS6152438A (en) Shock absorber
US20200256417A1 (en) Valve and shock absorber
US4946143A (en) Gas spring
JPH04347027A (en) Cylinder
US10837514B2 (en) Valve structure of shock absorber
US4560041A (en) Shock absorber unit with temperature compensation
ITRM980524A1 (en) SEALING SYSTEM FOR THE STEM OF A PISTON
GB2314602A (en) A damper having a piston valve with blow-off characteristic
JPH0642114Y2 (en) Shock absorber valve structure
KR102658271B1 (en) buffer
JPH0637912B2 (en) Piston for hydraulic shock absorber
KR102074439B1 (en) Temperature compensating valve for gas spring