JPS6152379A - Method and device for corrosion prevention of wetting metallic material - Google Patents

Method and device for corrosion prevention of wetting metallic material

Info

Publication number
JPS6152379A
JPS6152379A JP59173714A JP17371484A JPS6152379A JP S6152379 A JPS6152379 A JP S6152379A JP 59173714 A JP59173714 A JP 59173714A JP 17371484 A JP17371484 A JP 17371484A JP S6152379 A JPS6152379 A JP S6152379A
Authority
JP
Japan
Prior art keywords
water
dissolved oxygen
corrosion
oxygen concentration
specific conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59173714A
Other languages
Japanese (ja)
Other versions
JPH0438836B2 (en
Inventor
Taku Honda
卓 本田
Eiji Kashimura
樫村 栄二
Akira Minato
湊 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59173714A priority Critical patent/JPS6152379A/en
Publication of JPS6152379A publication Critical patent/JPS6152379A/en
Publication of JPH0438836B2 publication Critical patent/JPH0438836B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To prevent the corrosion of the wetting metallic material of a boiling water reactor (BWR) during the shutdown of the BWR by measuring the specific conductivity of the water to be used and controlling the concn. of the dissolved oxygen in the water or the pH thereof from the measured value. CONSTITUTION:The conductivity of the water is measured by a detector 16 and the concn. of the dissolved oxygen in the water is measured by a dissolved oxygen meter 17 in order to prevent the corrosion of condensate and feed water pipings by the water in the shutdown stage of the BWR plant for the purpose of making a periodic inspection of the BWR10. The oxygen conc. is adjusted by an oxygen feeder 18 so as to attain 40ppb-40ppm when the specific conductivity is <=0.1muS/cm to decrease considerably the corrosion rate of the piping of the wetting metallic material. An inert gas is fed from the feeder 18 to deaerate the water until the concn. of the dissolved oxygen is brought to <=40ppb or ammonia or the like is fed to the water to maintain the pH at 7.5-10 passive region to prevent the corrosion of the metallic pipings if the specific conductivity exceeds 0.1muS/cm.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、酸素を溶存する水と金属i料とが接する系に
おいて、接水金属材料の腐食を防止する方法及び装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for preventing corrosion of a metal material in contact with water in a system where water containing dissolved oxygen and a metal material come into contact.

〔発明の背景〕[Background of the invention]

酸素を溶存する水と金属材料とが接する系においては接
水金属材料が腐食される。腐食の程度は溶存酸素濃度が
高くなるほど著しく、特に水が酸素を濃度約40ppb
〜40P溶存する場合に、接水金属材料に腐食が起り、
その防食対策が必要となる。
In a system where water containing dissolved oxygen contacts a metal material, the metal material in contact with the water is corroded. The degree of corrosion increases as the dissolved oxygen concentration increases, especially when water contains oxygen at a concentration of approximately 40 ppb.
~40P is dissolved, corrosion occurs on metal materials in contact with water,
Corrosion prevention measures are required.

特に、BWR(沸騰水型原子炉)プラントでは、定期検
査等の運転停止時においては、復水、給水系配管が大気
開放状態で5〜8Pもの高い溶存酸素濃度の水にさらさ
れ、配管の金属材料、とシわけ炭素鋼が著しく腐食され
る。腐食に伴い生じた腐食生成物(鉄酸化物を主体とし
たものでクラッドと呼ばれる)は、プラント起動時に原
子炉内に持込まれて燃料棒に付着し、熱効率を低下させ
あるいは燃料棒を破損させるおそれがある。さらに、燃
料棒に付着したクラッドは放射化された後剥離し、炉再
循環系配管等に再付着して配管等の表面線量率を増大さ
せ、定期検査等の従事者に対し放射能被曝量の増大を招
く危険もある。これらの理由から、BWRプラントの運
転停止時においては、復水、給水系配管の防食対策が重
要な課題となっている。
In particular, in BWR (boiling water reactor) plants, during operational shutdowns such as periodic inspections, condensate and water supply system piping is exposed to water with a dissolved oxygen concentration as high as 5 to 8 P when exposed to the atmosphere. Metal materials, especially carbon steel, are severely corroded. Corrosion products (mainly iron oxides and called cladding) generated by corrosion are brought into the reactor at plant start-up and adhere to the fuel rods, reducing thermal efficiency or damaging the fuel rods. There is a risk. Furthermore, the crud attached to the fuel rods is activated and then peeled off and reattached to the reactor recirculation system piping, etc., increasing the surface dose rate of the piping, etc. There is also the risk of causing an increase in For these reasons, when a BWR plant is shut down, corrosion prevention measures for condensate and water supply system piping have become an important issue.

従来、酸素を溶存する水と金属材料とが接する系、特に
BWRプラントの運転停止時の防食には、ホントドレン
オフと呼ばれる水抜き乾燥法が、一部のプラントにおい
て採用されてきた。この方法は、プラント運転停止後に
給水が冷却しきらないうちに水抜きし、余熱で配管表面
を乾燥させるものである。しかし、プラント構造には糧
々のものがあり、すべてのプラントに適用できる方法で
はなく、水抜きに伴い生ずる多量の放射性廃液の処理に
も問題がある。さらに、この水抜き乾燥法は操作も煩雑
で、運転停止が短期の場合には適当でない。
Conventionally, a water draining drying method called ``Honto Drain Off'' has been adopted in some plants for corrosion protection during shutdown of systems where water containing dissolved oxygen and metal materials come into contact, especially BWR plants. This method involves draining the water supply before it has completely cooled down after plant operation is stopped, and drying the piping surface using residual heat. However, there are variations in plant structures, and this method cannot be applied to all plants, and there are also problems in processing the large amount of radioactive waste fluid that is generated when water is drained. Furthermore, this draining and drying method is complicated to operate and is not suitable for short-term shutdowns.

他の防食方法としては、火力プラントにおいて、−運転
停止が短期間の場合にヒドラジン添加による満水保管法
が採用されている。BWRプラントにこの方法を適用す
ると、添加したヒドラジンは後の起動時まで除去しなけ
ればならず、窒素ガスも脱気しなければならない等、後
処理に問題がある。
As another corrosion prevention method, in thermal power plants, when the operation is stopped for a short period of time, a full water storage method by adding hydrazine is adopted. When this method is applied to a BWR plant, there are problems in post-processing, such as the added hydrazine having to be removed until later startup and nitrogen gas also having to be degassed.

これらの方法をBWFLプラントの防食に適用すること
は困難である。
It is difficult to apply these methods to corrosion protection in BWFL plants.

この問題に対して本発明者らは、水の比電導度と流速と
に注目した防食方法を先に提案した(特開昭55−16
4081号)。この発明の要点は、水の比電導度を0.
5μS/cm以下に保ち、水を流動させることであった
In response to this problem, the present inventors previously proposed a corrosion prevention method that focuses on the specific conductivity and flow velocity of water (Japanese Patent Laid-Open No. 55-16
No. 4081). The key point of this invention is to reduce the specific conductivity of water to 0.
The purpose was to keep the temperature below 5 μS/cm and allow the water to flow.

上記方法はそれなりに効果をあげたが、その後の更に詳
しい検討の結果、水の比電導度のある値を境界として腐
食挙動に差があることが見出された。
Although the above method was somewhat effective, further detailed study revealed that there are differences in corrosion behavior around a certain value of the specific conductivity of water.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、接水金属材料9%にBW几プラントの
停止時における接水金属材料の簡易な防食方法及び装置
を提供することである。
It is an object of the present invention to provide a simple method and apparatus for preventing corrosion of metal materials in contact with water when a BW furnace plant is stopped at a rate of 9%.

〔発明の概要〕[Summary of the invention]

本発明の接水金属材料の防食方法は、酸素を溶存する水
と金属材料とが接する系において、水の比電導度を検出
し、その値により溶存酸素濃度あるいはpHを制御する
ことを特徴とする特に比電導度が0.1μS/lYnを
境界として腐食挙動に差があることを発見したので、そ
れを利用して防食するものである。
The corrosion prevention method for metal materials in contact with water of the present invention is characterized by detecting the specific conductivity of water in a system where water containing dissolved oxygen and metal materials are in contact with each other, and controlling the dissolved oxygen concentration or pH based on the detected value. In particular, it has been discovered that there is a difference in corrosion behavior when the specific conductivity reaches a boundary of 0.1 μS/lYn, and this is utilized to prevent corrosion.

本発明を適用すべき系における水の溶存酸素濃度は、金
属材料が酸素溶存水に接して腐食され、防食が問題とな
る範囲である。それは金属材料の徨類によって異なる。
The concentration of dissolved oxygen in water in the system to which the present invention is applied is within a range where metal materials are corroded when in contact with oxygen-dissolved water and corrosion prevention becomes a problem. It depends on the type of metal material.

具体的には約40ppb〜約40pである。BWRプラ
ントの運転停止時における復水、給水系配管は大気開放
状態で5〜8騨の溶存酸素濃度の水に接することになる
ので、この配管の金属材料を防食するのに本発明は特に
好適である。
Specifically, it is about 40 ppb to about 40 p. When the BWR plant is shut down, the condensate and water supply system piping is exposed to the atmosphere and comes into contact with water with a dissolved oxygen concentration of 5 to 8, so the present invention is particularly suitable for preventing corrosion of the metal materials of this piping. It is.

本発明において防食の対象となる金属材料としては、酸
素が溶存する水、特に溶存酸素濃度計4.0ppb−約
40Pの水に接して防食が問題となるものならばその稲
類を問わないが、特に例えば、炭素鋼、低合金鋼、ステ
ンレス鋼tl/At及びその合金が挙げられる。BWR
プラントの復水。
In the present invention, the metal material to be subjected to corrosion protection may be any rice variety as long as it comes in contact with water containing dissolved oxygen, especially water with a dissolved oxygen concentration of 4.0 ppb - about 40 P. , in particular carbon steel, low alloy steel, stainless steel tl/At and alloys thereof. BWR
Plant condensate.

給水系配管の材料である炭素鋼は本発明により有効に防
食される。
Carbon steel, which is the material for water supply piping, is effectively protected against corrosion by the present invention.

BWRプラントの運転停止時は、復水、給水系内の水の
比電導度を低く保?と、系内の材料が防食される。比電
導度を低下させる手段は種々考えられるが、通常は、例
えば、粒状陽・隙両イオン交換樹脂を充填した脱塩器に
水を通せばよい。本発明においては水の比電導度を検出
し、0.1μs/−以下の場合には、溶存酸素濃度を約
4 opI)b〜約40Fに保ち、接水金属材料の腐食
速度を著しく低減させ、有効に防食する。これに対し、
脱塩器性能等の問題からナトリウムリークなどkよシ比
電導度が0.1μS/cmを越えた場合には、溶存酸素
は腐食を促すので、脱気して望ましくは溶存酸素濃度を
40ppb以下に保つか、あるいはアルカリ剤を注入し
、pHを望1しくは7.5〜10に保ち防食する。  
         、本発明方法を実施するには、電導
度検出器、溶存酸素濃度計、電導度検出器に連動する酸
素注入装置、及び脱気装置、あるいはアルカリ剤注入装
置とpH測定器の組み合せシステムが必要である。
When the BWR plant is stopped, is the specific conductivity of water in the condensate and water supply systems kept low? This protects the materials in the system from corrosion. Various means for lowering the specific conductivity can be considered, but usually, for example, water may be passed through a demineralizer filled with a granular positive/porous ion exchange resin. In the present invention, the specific conductivity of water is detected, and if it is 0.1 μs/- or less, the dissolved oxygen concentration is maintained at about 4 opI)b to about 40F, and the corrosion rate of metal materials in contact with water is significantly reduced. , effectively prevent corrosion. On the other hand,
If the specific conductivity exceeds 0.1 μS/cm due to sodium leaks due to problems such as demineralizer performance, dissolved oxygen promotes corrosion, so deaeration should be performed to reduce the dissolved oxygen concentration to 40 ppb or less. Corrosion is prevented by keeping the pH at 7.5 to 10, or by injecting an alkaline agent.
To carry out the method of the present invention, a combination system of a conductivity detector, a dissolved oxygen concentration meter, an oxygen injection device and a deaerator linked to the conductivity detector, or an alkaline agent injection device and a pH measuring device is required. It is.

なお、脱気は、窒素、アルゴン、水素の注入により、ま
た%  pHv4整はアンモニアの注入によ)行う。
Note that deaeration is performed by injecting nitrogen, argon, and hydrogen, and pHv4 adjustment is performed by injecting ammonia).

本発明の防食方法を実施する温度は通常20〜40Cで
あシ、時間は実施の態様に応じて適宜決められる。
The temperature at which the anticorrosion method of the present invention is carried out is usually 20 to 40C, and the time is determined as appropriate depending on the mode of implementation.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例1 試験片浸漬による腐食減量の測定を行った。Example 1 Corrosion loss was measured by immersing the test piece.

実験に供した炭素鋼−は第1表の化学組成をもつ884
1で、5X50X0.5mの板状に加工したものを用い
た。試験片は表面を600番のエメリ紙で研磨したのち
トリクレンで脱脂処理し、浸漬直前までデシケータ内に
保存した。
The carbon steel used in the experiment was 884 having the chemical composition shown in Table 1.
1, processed into a plate shape of 5 x 50 x 0.5 m was used. The surface of the test piece was polished with No. 600 emery paper, degreased with Triclean, and stored in a desiccator until immediately before immersion.

第1表 (係) 浸漬した水の溶存酸素濃度は、酸素−窒素混合ガスによ
り<5ppb−8Fに調整した。また、比電導度は硫酸
ナトリウム及び塩化ナトリウムを添加し、(0,1−1
0,ca8/cmに調整した。試験片はzsh浸漬し、
腐食減量は浸漬前の重量と浸漬後に付着した腐食生成物
を除去したのちの重量の差で求めた。なお、温度は25
±2Cs流速は0、3 cm/ sであった。
Table 1 (Part 1) The dissolved oxygen concentration of the immersed water was adjusted to <5 ppb-8F using an oxygen-nitrogen mixed gas. In addition, the specific conductivity was determined by adding sodium sulfate and sodium chloride (0,1-1
It was adjusted to 0.ca8/cm. The test piece was immersed in zsh,
The corrosion weight loss was determined by the difference between the weight before immersion and the weight after removing the corrosion products attached after immersion. In addition, the temperature is 25
±2Cs flow rate was 0.3 cm/s.

第1図は、純水中に不純物として硫酸す) IJウムが
存在し、水の比電導度が異なる場合に、溶存酸素濃度が
腐食減量に及はす影響を調べた結果を示す図である。比
電導度が0.1μS/cm以下では溶存酸素濃度が40
ppb−40Fで腐食が抑制された。一方、0.1μS
/cmを越えた場合には、溶存酸素濃度を大気飽和状態
の8−より減少させると、腐食減量が減少し、特に40
ppb以下にすると、効果が顕著でおった。なお、脱気
は、窒素、アルゴン等の不活性ガスあるいは水素ガスの
系内への吹き込み、あるいは真空脱気により達成される
Figure 1 is a diagram showing the results of investigating the effect of dissolved oxygen concentration on corrosion loss when IJium is present as an impurity in pure water and the specific conductivity of water is different. . When the specific conductivity is 0.1 μS/cm or less, the dissolved oxygen concentration is 40
Corrosion was suppressed with ppb-40F. On the other hand, 0.1μS
/cm, reducing the dissolved oxygen concentration from the atmospheric saturated state of 8-cm will reduce the corrosion loss, especially at 40-cm.
When the amount was lower than ppb, the effect was remarkable. Note that degassing is achieved by blowing an inert gas such as nitrogen or argon or hydrogen gas into the system, or by vacuum degassing.

また、比電導度の調整を塩化ナトリウムで行った場合に
も同様の結果が得られた。    。
Similar results were also obtained when the specific conductivity was adjusted using sodium chloride. .

実施例2 第2表は溶存酸素濃度8F、比電導度1.0μS/ a
nの水のPHを変化させた場合の炭素鋼の腐食減量変化
である。pHはアンモニアにより調整した。他の試験条
件は実施例1と同じである。
Example 2 Table 2 shows dissolved oxygen concentration 8F, specific conductivity 1.0μS/a
This is a change in corrosion weight loss of carbon steel when the pH of water of n is changed. pH was adjusted with ammonia. Other test conditions are the same as in Example 1.

第2表 (mg/ぜ) p H7,0の中性条件では浸漬時間に比例して腐食減
量が増し、75h後には試験片表面はr−Fe203 
 HzO(外層)とpeso4  (内層)よシなる厚
い皮膜で覆われていた。一方、pH7,5及び8.4の
アルカリ性条件下では、腐食は著しく抑制され、腐食速
度は時間とともに低下する傾向を示した。
Table 2 (mg/ze) Under neutral conditions of pH 7.0, the corrosion loss increases in proportion to the immersion time, and after 75 hours, the surface of the test piece becomes r-Fe203.
It was covered with a thick film of HzO (outer layer) and peso4 (inner layer). On the other hand, under alkaline conditions of pH 7, 5, and 8.4, corrosion was significantly suppressed, and the corrosion rate showed a tendency to decrease with time.

第2図は腐食電位の経時変化を示す図である。FIG. 2 is a diagram showing changes in corrosion potential over time.

なお、電位は飽和せ末電極(SCE)基準で示した。p
H7,0の場合には75h後に−210mVと卑な値を
とり、炭素鋼は腐食域にあったが、p H7,5では一
80mV、pH8,4では10mVと責な値をとり、ア
ルカリ性条件下では炭素鋼は安定な不働態域にあり、防
食された。
Note that the potential is shown on a saturated end electrode (SCE) basis. p
In the case of pH 7.0, it took a low value of -210 mV after 75 hours, which was in the corrosion range for carbon steel, but at pH 7.5, it took a negative value of -80 mV, and at pH 8.4, it took a negative value of 10 mV, and under alkaline conditions. Below, the carbon steel was in a stable passive region and protected against corrosion.

実施例3 第3図は、本発明による接水金属材料の防食装置を備え
たBWRプラントの系統概略図でおる。
Embodiment 3 FIG. 3 is a schematic diagram of a BWR plant equipped with a corrosion protection device for metal materials in contact with water according to the present invention.

図において、10は原子炉、11はタービン、12は復
水器、13は復水脱塩器、14は復水低圧ポンプ、15
は給水再循環ライン、16は電導度検出器、17は溶存
酸素濃度計、18は酸素あるいは不活性ガスあるいはア
ルカリ剤の注入装置、19はpH測定器、20は給水加
熱器、21は炉水浄化系である。16〜19の部分が本
発明による接水金属材料の防食装置である。
In the figure, 10 is a nuclear reactor, 11 is a turbine, 12 is a condenser, 13 is a condensate demineralizer, 14 is a condensate low pressure pump, 15
is a feed water recirculation line, 16 is a conductivity detector, 17 is a dissolved oxygen concentration meter, 18 is an oxygen, inert gas, or alkaline agent injection device, 19 is a pH meter, 20 is a feed water heater, and 21 is a reactor water It is a purification system. Parts 16 to 19 are the corrosion protection device for metal materials in contact with water according to the present invention.

このような系統の構成にお込て、例えば定期点検のため
にプラントを停止させたときに、電導度検出器16で比
電導度を計測1−1溶存酸素濃度計17で測る。比電導
度が0.1μS/cm以下の場合は、溶存酸素濃度を約
40I)pb〜約40Fに保ち、接水金属材料の腐食速
度を著しく低減させ、有効に防食できる。酸素の調節は
酸素注入装置18により行う。比電導度が0.1μS/
Crnを越えた場合は、溶存酸素が腐食を促すので、不
活性ガス注入装置等により脱気し、溶存酸素濃度を望ま
しくは40ppb以下に保つか、アルカリ剤注入装置に
よりアンモニア等を注入し、pHを望ましくは7.5〜
10に保ち、防食する。I)Hのこの範囲が不働態域で
ある。
In such a system configuration, for example, when the plant is stopped for periodic inspection, the specific conductivity is measured by the conductivity detector 16 and the dissolved oxygen concentration meter 17 is measured by the conductivity detector 16. When the specific conductivity is 0.1 μS/cm or less, the dissolved oxygen concentration is maintained at about 40 I) pb to about 40 F, and the corrosion rate of the metal material in contact with water is significantly reduced, making it possible to effectively prevent corrosion. Oxygen is controlled by an oxygen injection device 18. Specific conductivity is 0.1μS/
If Crn is exceeded, dissolved oxygen promotes corrosion, so either deaerate with an inert gas injection device and keep the dissolved oxygen concentration preferably below 40 ppb, or inject ammonia etc. with an alkaline agent injection device to adjust the pH. preferably 7.5~
10 to prevent corrosion. I) This range of H is the passive region.

ここでは、BWRプラントを例に述べたが、溶存酸素が
金属材料の腐食に影響する他のすべてのプラント等に適
用できることは明らかである。
Although a BWR plant has been described here as an example, it is clear that the present invention can be applied to all other plants where dissolved oxygen affects corrosion of metal materials.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、接水金属材料、特KBWRプラントの
停止時における接水金属材料の簡易な防食方法及び装置
が得られる。
According to the present invention, it is possible to obtain a simple method and apparatus for preventing corrosion of metal materials in contact with water, especially metal materials in contact with water when a KBWR plant is stopped.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素鋼の腐食減量と溶存酸素濃度との関係を示
す図、第2図は炭素鋼の腐食電位の経時変化を示す図、
第3図は本発明による接水金属材料の防食装置を備えた
BWRプラントの系統概略図である。 l・・・比電導度0.1ttS/cm以下の曲線、2・
・・同0.15ttS/crsの曲線、3・・・同0.
30pS/cmの曲線、4−・・同0.50 a 8/
cmの曲線、5・・・同1.00μS/anの曲線’−
6−・・同101iS/mの曲線、7・・・p H7,
0の曲線、8・・・pH7,5の曲線、9・・・p H
8,4の曲線、10・・・原子炉、11・・・タービン
、12・・・復水器、13・・・復水脱塩器、14・・
・復水低圧ポンプ、1ト・・給水再循環ライン、16・
・・電導度検出器、17・・・溶存酸素濃度計、18・
・・注入装置、19・・・pH測定器。
Figure 1 is a diagram showing the relationship between corrosion loss and dissolved oxygen concentration in carbon steel, Figure 2 is a diagram showing changes over time in the corrosion potential of carbon steel,
FIG. 3 is a schematic diagram of a BWR plant equipped with a corrosion protection device for metal materials in contact with water according to the present invention. l...Curve with specific conductivity of 0.1ttS/cm or less, 2.
...Curve of 0.15ttS/crs, 3...0.
30 pS/cm curve, 4-... 0.50 a 8/
cm curve, 5... same 1.00 μS/an curve'-
6-...Curve of 101iS/m, 7...pH7,
0 curve, 8... pH 7, 5 curve, 9... pH
8, 4 curves, 10... Nuclear reactor, 11... Turbine, 12... Condenser, 13... Condensate demineralizer, 14...
・Condensate low pressure pump, 1t・・Feed water recirculation line, 16・
... Conductivity detector, 17... Dissolved oxygen concentration meter, 18.
... Injection device, 19... pH measuring device.

Claims (1)

【特許請求の範囲】 1、BWR発電プラントの復、給水系炭素鋼配管に接す
る冷却水の比電導度を計測し、比電導度が0.1μS/
cm以下の場合は溶存酸素濃度を40ppb〜40pp
mに保つ一方、0.1μS/cmを越える場合は脱気に
より溶存酸素濃度を40ppb以下に減少させ、発電プ
ラント停止期間中の配管を防食することを特徴とする接
水金属材料の防食方法。 2、特許請求の範囲第1項において、窒素、アルゴン、
水素のうち少なくとも一種を冷却水中に注入して脱気す
ることを特徴とする接水金属材料の防食方法。 3、BWR発電プラントの復、給水系炭素鋼配管に接す
る冷却水の比電導度を計測し、比電導度が0.1μS/
cm以下の場合は溶存酸素濃度を40ppb〜40pp
mに保つ一方、0.1μS/cmを越える場合はアルカ
リ剤の注入によりpHを7.5〜10に調節して、発電
プラント停止期間中の配管を防食することを特徴とする
接水金属材料の防食方法。 4、特許請求の範囲第3項において、注入するアルカリ
剤がアンモニアであることを特徴とする接水金属材料の
防食方法。 5、原子炉とタービンと復水器と復水脱塩器とこれらを
結ぶ配管とを含む発電プラントにおいて、復水脱塩器下
流の配管に、冷却水の比電導度を計測する電導度検出器
と、冷却水中の溶存酸素濃度を測る溶存酸素濃度計と、
それらの各パラメータ測定値に応じて酸素あるいは溶存
酸素脱気用ガスを注入する装置とを配置してなり、比電
導度が0.1μS/cm以下の場合は溶存酸素濃度を4
0ppb〜40ppmに保つ一方、0.1μS/cmを
越える場合は脱気用ガスの注入により溶存酸素濃度を4
0ppb以下に減少させ、発電プラント停止期間中の配
管を防食することを特徴とする接水金属材料の防食装置
。 6、原子炉とタービンと復水器と復水脱塩器とこれらを
結ぶ配管とを含む発電プラントにおいて、復水脱塩器下
流の配管に、冷却水の比電導度を計測する電導度検出器
と、冷却水中の溶存酸素濃度を測る溶存酸素濃度計と、
冷却水のpHを測るpH測定器と、それらの各パラメー
タ測定値に応じて酸素あるいはアルカリ剤を注入する装
置とを配置してなり、比電導度が0.1μS/cm以下
の場合は溶存酸素濃度を40ppb〜40ppmに保つ
一方、0.1μS/cmを越える場合はアルカリ剤の注
入によりpHを7.5〜10に調節して、発電プラント
停止期間中の配管を防食することを特徴とする接水金属
材料の防食装置。
[Claims] 1. The specific conductivity of the cooling water in contact with the carbon steel piping of the water supply system of the BWR power plant was measured, and the specific conductivity was found to be 0.1 μS/
cm or less, reduce the dissolved oxygen concentration to 40 ppb to 40 ppb
A method for preventing corrosion of metal materials in contact with water, characterized in that the dissolved oxygen concentration is maintained at 0.1 μS/cm, while reducing the dissolved oxygen concentration to 40 ppb or less by degassing if it exceeds 0.1 μS/cm, thereby preventing corrosion of piping during a power plant shutdown period. 2. In claim 1, nitrogen, argon,
A method for preventing corrosion of metal materials in contact with water, characterized by injecting at least one type of hydrogen into cooling water and degassing it. 3. Measure the specific conductivity of the cooling water in contact with the carbon steel piping of the BWR power plant, and find that the specific conductivity is 0.1μS/
cm or less, reduce the dissolved oxygen concentration to 40 ppb to 40 ppb
A water-contact metal material characterized by maintaining the pH at 7.5 to 10 by injecting an alkaline agent if the pH exceeds 0.1 μS/cm, thereby preventing corrosion of piping during power plant shutdown periods. Corrosion prevention method. 4. A method for preventing corrosion of metal materials in contact with water according to claim 3, characterized in that the alkaline agent to be injected is ammonia. 5. In a power generation plant that includes a nuclear reactor, a turbine, a condenser, a condensate demineralizer, and piping that connects these, conductivity detection is installed in the piping downstream of the condensate demineralizer to measure the specific conductivity of the cooling water. and a dissolved oxygen concentration meter that measures the dissolved oxygen concentration in the cooling water.
A device for injecting oxygen or dissolved oxygen degassing gas is arranged according to the measured values of each of these parameters, and when the specific conductivity is 0.1 μS/cm or less, the dissolved oxygen concentration is
While maintaining the dissolved oxygen concentration between 0 ppb and 40 ppm, if it exceeds 0.1 μS/cm, reduce the dissolved oxygen concentration by injecting degassing gas.
A corrosion protection device for metal materials in contact with water, characterized in that it reduces corrosion to 0 ppb or less and protects piping during a power plant shutdown period. 6. In a power generation plant that includes a nuclear reactor, a turbine, a condenser, a condensate demineralizer, and piping that connects these, conductivity detection is installed in the piping downstream of the condensate demineralizer to measure the specific conductivity of the cooling water. and a dissolved oxygen concentration meter that measures the dissolved oxygen concentration in the cooling water.
It is equipped with a pH measuring device that measures the pH of the cooling water and a device that injects oxygen or alkaline agent according to the measured values of each parameter.If the specific conductivity is 0.1μS/cm or less, dissolved oxygen is detected. It is characterized by maintaining the concentration at 40 ppb to 40 ppm, and if it exceeds 0.1 μS/cm, adjusting the pH to 7.5 to 10 by injecting an alkaline agent to prevent corrosion of the piping during the power plant shutdown period. Corrosion prevention equipment for metal materials in contact with water.
JP59173714A 1984-08-21 1984-08-21 Method and device for corrosion prevention of wetting metallic material Granted JPS6152379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59173714A JPS6152379A (en) 1984-08-21 1984-08-21 Method and device for corrosion prevention of wetting metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59173714A JPS6152379A (en) 1984-08-21 1984-08-21 Method and device for corrosion prevention of wetting metallic material

Publications (2)

Publication Number Publication Date
JPS6152379A true JPS6152379A (en) 1986-03-15
JPH0438836B2 JPH0438836B2 (en) 1992-06-25

Family

ID=15965768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59173714A Granted JPS6152379A (en) 1984-08-21 1984-08-21 Method and device for corrosion prevention of wetting metallic material

Country Status (1)

Country Link
JP (1) JPS6152379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218968A (en) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 Superheated steam processing method and device
CN106499659A (en) * 2016-11-28 2017-03-15 云南驰宏锌锗股份有限公司 The protection device of anti-corrosion and guard method under a kind of centrifugal blower stoppage in transit state

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218968A (en) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 Superheated steam processing method and device
CN106499659A (en) * 2016-11-28 2017-03-15 云南驰宏锌锗股份有限公司 The protection device of anti-corrosion and guard method under a kind of centrifugal blower stoppage in transit state
CN106499659B (en) * 2016-11-28 2019-06-21 云南驰宏锌锗股份有限公司 The protective device and guard method of anti-corrosion under a kind of centrifugal blower stoppage in transit state

Also Published As

Publication number Publication date
JPH0438836B2 (en) 1992-06-25

Similar Documents

Publication Publication Date Title
US9758880B2 (en) Method and system for controlling water chemistry in power generation plant
CA2221002A1 (en) In situ palladium doping or coating of stainless steel surfaces
JPWO2010090307A1 (en) Plant operating method and system
Hancock et al. The inhibition of the corrosion of iron in neutral and alkaline solutions. I
CA3005697A1 (en) Nuclear power plant and method for operating a nuclear power plant
JPS6152379A (en) Method and device for corrosion prevention of wetting metallic material
Hiro et al. Stagnations of increasing trends in negative pressure with repeated cavitation in water/metal Berthelot tubes as a result of mechanical sealing
JPS6230269B2 (en)
JP4340574B2 (en) Reducing nitrogen compound injection operation method for nuclear power plant
US3726642A (en) Suppression of corrosion of iron in sodium
JPS6151758B2 (en)
JPH0566999B2 (en)
JPH0694209A (en) Treatment of boiler feed water
JPH0631815B2 (en) Nuclear power plant water supply system
KR20010108013A (en) Method for nuclear power plant decontamination
JP2004020411A (en) Nuclear power plant and its operation method
JP2517723B2 (en) How to prevent hydrogen cracking of metal parts
JPH0335385B2 (en)
JPS60103172A (en) Method for preventing stress corrosion cracking in power plant
JPS58185778A (en) Prevention of corrosion of carbon steel
JPH068913B2 (en) Radioactivity reduction methods for nuclear power plants
Newman et al. Mechanism of TMI-1 steam-generator failures
JPH0636066B2 (en) Method and apparatus for producing anticorrosion coating for nuclear power plant
JPS61149501A (en) Method of preventing stress corrosion cracking of rotor disk in nuclear power plant turbine
JPH03113397A (en) Method for preventing stress corrosion cracking and hydrogen cracking of metallic member