JPS6152365B2 - - Google Patents

Info

Publication number
JPS6152365B2
JPS6152365B2 JP10264382A JP10264382A JPS6152365B2 JP S6152365 B2 JPS6152365 B2 JP S6152365B2 JP 10264382 A JP10264382 A JP 10264382A JP 10264382 A JP10264382 A JP 10264382A JP S6152365 B2 JPS6152365 B2 JP S6152365B2
Authority
JP
Japan
Prior art keywords
wastewater
incinerator
furnace
water
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10264382A
Other languages
Japanese (ja)
Other versions
JPS58219981A (en
Inventor
Masao Yagyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP10264382A priority Critical patent/JPS58219981A/en
Publication of JPS58219981A publication Critical patent/JPS58219981A/en
Publication of JPS6152365B2 publication Critical patent/JPS6152365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【発明の詳細な説明】 本発明は焼却場排水を焼却炉内に直接吹込んで
蒸発・酸化処理する方法に関し、詳細には焼却場
排水の焼却炉内への確実な吹込みを長期に亘り保
障しうる様な焼却場排水の蒸発・酸化処理方法に
関するものである。
[Detailed Description of the Invention] The present invention relates to a method for evaporating and oxidizing wastewater from an incinerator by directly blowing it into an incinerator, and more specifically, it is a method that ensures reliable injection of wastewater from an incinerator into an incinerator over a long period of time. This article concerns methods for evaporating and oxidizing wastewater from incinerators.

都市廃棄物の焼却場からは、焼却炉排水を始め
種々の排水(例えばゴミピツト排水、洗煙排水
等)が発生する。そこでこれらの排水(以下「焼
却場排水」という)は一般に(1)排水処理設備にお
いて有害成分を除去した後、放流するか、或いは
(2)焼却炉内に直接吹込んで蒸発・酸化することに
より処理される。殊に、後者の方法は前者の方法
即ち放流システムにおける様な複雑且つ高価な排
水処理設備を必要とせず、又焼却炉の内部温度を
調整する機能をも有するので、焼却場排水の処理
方法として極めて有用なものとして評価されてい
る。
Municipal waste incineration plants generate various types of wastewater, including incinerator wastewater (for example, wastewater from garbage pits, wastewater from smoke washing, etc.). Therefore, these wastewaters (hereinafter referred to as "incinerator wastewater") are generally either (1) discharged after removing harmful components in wastewater treatment equipment, or
(2) It is treated by blowing it directly into the incinerator and evaporating and oxidizing it. In particular, the latter method does not require complicated and expensive wastewater treatment equipment unlike the former method, that is, the discharge system, and also has the function of adjusting the internal temperature of the incinerator, so it is recommended as a method for treating wastewater from an incinerator. It is considered extremely useful.

第1図はこの様な焼却場排水の蒸発・酸化処理
方法を説明する概略図である。尚以下の説明では
焼却場排水を単に「排水」と称する。第1図にお
いて1は排水タンク、2は排水吹込部、3は焼却
炉を夫々表わす。又排水吹込部2は第2図(拡大
要部破断説明図)に示す様に構成され、炉壁1a
に穿設された吹込口6には炉内を臨んでノズル8
が設置されており、更に該ノズル8としては所謂
1流体型散水ノズルが採用されている。さて図に
表われない排水ピツトからポンプ等で吸上げられ
た排水L1は各種スクリーンやストレーナによる
挾雑物除去処理を経て一旦排水タンク1に導入さ
れる。次いでこの排水L1はポンプ4によつて電
磁弁5を経由して排水吹込部2のノズル8から焼
却炉3内へ吹込まれる。この様にして吹込まれた
排水L1は炉内で蒸発・酸化されるが、その際炉
内温度も低下するので炉体或いは火格子の過熱が
防止されるという効果も生じる。しかし排水の吹
込み量が余り多過ぎると炉内温度が低下し過ぎて
炉内の燃焼状態がかえつて悪化することになるの
で、こうした事態が生じない様に排水の吹込みを
炉内温度に応じて制御する必要がある。そこで従
来は第1図に示す様に焼却炉3の排ガス出口付近
に測温体7を設置し、該測定温度が一定の基準温
度(通常は750℃を基準とすることが多い)以上
の場合には排水の吹込みを行ない、該基準温度未
満の場合には吹込みを停止させる様な所謂オン・
オフ切替操作を行なつている。そしてこの様な排
水吹込みのオン・オフ制御は、測温体からの信号
によつて電磁弁5を開閉して行なわれる。
FIG. 1 is a schematic diagram illustrating a method for evaporating and oxidizing wastewater from an incinerator. In the following explanation, incineration plant wastewater will be simply referred to as "drainage". In FIG. 1, 1 represents a waste water tank, 2 represents a waste water blowing section, and 3 represents an incinerator. In addition, the drainage blowing section 2 is constructed as shown in FIG.
A nozzle 8 facing the inside of the furnace is provided in the air inlet 6 drilled in the
is installed, and the nozzle 8 is a so-called one-fluid water spray nozzle. Now, the wastewater L1 drawn up by a pump or the like from a drainage pit, which is not shown in the figure, is once introduced into the wastewater tank 1 after undergoing foreign matter removal treatment using various screens and strainers. Next, this waste water L 1 is blown into the incinerator 3 from the nozzle 8 of the waste water blowing section 2 via the solenoid valve 5 by the pump 4 . The waste water L 1 blown in in this manner is evaporated and oxidized in the furnace, but at this time the temperature inside the furnace also decreases, which also produces the effect of preventing overheating of the furnace body or grate. However, if too much waste water is blown in, the temperature inside the furnace will drop too much and the combustion condition inside the furnace will worsen, so to prevent this from happening, the amount of waste water blown in should be adjusted to the temperature inside the furnace. It is necessary to control accordingly. Therefore, conventionally, as shown in Fig. 1, a temperature measuring element 7 is installed near the exhaust gas outlet of the incinerator 3, and when the measured temperature is above a certain reference temperature (usually 750°C is the standard), This is a so-called on-off system that blows wastewater into the area and stops the injection if the temperature is below the reference temperature.
An off switching operation is being performed. Such on/off control of the drainage water blowing is performed by opening and closing the solenoid valve 5 in response to a signal from the temperature measuring element.

ところで排水の吹込みを停止した状態におい
て、ノズル8を炉内に放置すると、ノズルは炉内
の高温雰囲気に曝されて昇温し変形及び強度低下
を起こすと共に炉内の粉塵(排煙・焼却灰等)に
よつてノズル先端部が閉塞する。そこで排水吹込
み停止時にはシリンダやラツクピニオン等の進退
機構によつてノズル8を炉壁1aから退壁し、吹
込み時のみ炉内へ進出する様に構成している。し
かしながら該進退避機構は炉壁の周辺、即ち高温
で粉塵の多い場所に設置されている為、故障が
度々生じ、そのときには排水の炉内吹込みそのも
のができなくなるという問題もあつた。
By the way, if the nozzle 8 is left in the furnace while the injection of wastewater is stopped, the nozzle will be exposed to the high temperature atmosphere inside the furnace and its temperature will rise, causing deformation and a decrease in strength. (ash, etc.) that clogs the nozzle tip. Therefore, when the blowing of waste water is stopped, the nozzle 8 is moved back from the furnace wall 1a by a reciprocating mechanism such as a cylinder or a rack pinion, and is configured to advance into the furnace only during the blowing. However, since the advancing and retracting mechanism is installed around the furnace wall, that is, in a high-temperature, dusty area, failures often occur, and when this occurs, there is a problem in that the wastewater cannot be blown into the furnace itself.

一方排水吹込の連続操業に当つては、ノズル8
の閉塞だけでなく排水管路20の閉塞現象を発生
することがあつた。これは排水管路20を流れる
排水中に含まれる固形粒子分に起因するものであ
り、排水管路20に排水を長時間流通させること
によつて管路20内に所謂スケールとして蓄積
し、管路が徐々に狭隘になり、遂には閉塞してし
まう為であつた。又排水吹込停止時には、その狭
隘管路に滞溜した排水が炉からの輻射熱等で蒸発
し残渣が管路壁に固着することも上記閉塞現象を
助長する一因であつた。
On the other hand, for continuous operation of wastewater blowing, nozzle 8
In addition to the blockage of the drain pipe 20, the drain pipe line 20 may also be blocked. This is due to the solid particles contained in the waste water flowing through the drain pipe 20, and by allowing the waste water to flow through the drain pipe 20 for a long time, it accumulates in the pipe 20 as so-called scale, which causes the pipe to become clogged. This was because the road gradually became narrower and eventually became blocked. Furthermore, when the drainage water supply is stopped, the wastewater accumulated in the narrow pipe is evaporated by the radiant heat from the furnace, and the residue is stuck to the wall of the pipe, which is also one of the factors that promotes the above-mentioned clogging phenomenon.

更に焼却炉においては投入される廃棄物の種類
によつて排水量が変動するが、水量が少なくて排
水タンクに処理すべき排水が十分に貯留されない
場合には、排水の吹込みは当然に停止される。そ
の為吹込みノズルが高温にさらされて熱損を受け
たり、吹込みラインにおける流れの停滞によつて
閉塞を生じる恐れがあり、又炉内冷却効果を喪失
するという問題もあつた。従つてかかる排水量の
日量変動にも対応させて排水の蒸発・酸化処理を
行なう必要がある。
Furthermore, the amount of wastewater in an incinerator fluctuates depending on the type of waste being thrown into the incinerator, but if the amount of water is too small to store enough wastewater to be treated in the wastewater tank, the injection of wastewater will naturally be stopped. Ru. As a result, the blowing nozzle may be exposed to high temperatures and suffer heat loss, or the blowing line may become clogged due to stagnation of the flow, and there are also problems in that the cooling effect within the furnace is lost. Therefore, it is necessary to carry out evaporation and oxidation treatment of wastewater in response to such daily fluctuations in the amount of wastewater.

本発明はこうした事情に着目してなされたもの
であるが、本発明者が別途開発し実用新案登録出
願した2流体ノズルを炉壁に固定させて利用して
も不都合のない様な焼却場排水の蒸発・酸化処理
方法を提供しようとするものである。
The present invention was made with attention to these circumstances, and the present inventor has developed a two-fluid nozzle, which the inventor has separately developed and applied for utility model registration, for incineration plant wastewater that can be used by fixing it to the furnace wall. The present invention aims to provide a method for evaporation and oxidation treatment of

即ち第3図は本発明に適用しうる2流体ノズル
を例示する概略説明図、第4図は第3図における
―線矢視断面図で外筒10の炉外壁側端部1
2には空気導入管14を植設し、且つ液体導入管
15を外筒10と略同一方向に延設内装すると共
に、外筒10の炉内側端部には鋼製の筒口13を
冠着している。従つて外筒10自体が空気導入通
路に形成されている。尚2流体ノズルは締付用ボ
ルト18によつて適当な侵入位置で固定される。
That is, FIG. 3 is a schematic explanatory diagram illustrating a two-fluid nozzle that can be applied to the present invention, and FIG. 4 is a cross-sectional view taken along the line -- in FIG.
An air introduction pipe 14 is installed in 2, and a liquid introduction pipe 15 is installed inside the outer cylinder 10 by extending it in substantially the same direction as the outer cylinder 10. A steel cylinder opening 13 is attached to the inner end of the outer cylinder 10. are doing. Therefore, the outer cylinder 10 itself is formed as an air introduction passage. The two-fluid nozzle is fixed at an appropriate entry position by a tightening bolt 18.

さて液体を蒸発・酸化させるに当つては空気導
入管14からは空気を、一方液体導入管15から
は液体を同時に供給し、両者を混合して筒口13
の先端から噴霧させる。一方液体を蒸発・酸化さ
せないときには液体の供給のみを停止し空気の供
給は続行するので、いずれにしても液体ノズル内
には空気が流通し、その冷却効果によつて2流体
ノズルの焼損は防止される。これにより第2図例
ノズルの様にシリンダ機構等によつてノズルを炉
外へ抜き出す必要がない。
Now, in order to evaporate and oxidize the liquid, air is supplied from the air introduction pipe 14 and liquid is simultaneously supplied from the liquid introduction pipe 15, and the two are mixed and then transferred to the tube opening 13.
Spray from the tip. On the other hand, when the liquid is not evaporated or oxidized, only the liquid supply is stopped and the air supply is continued, so in any case, air flows through the liquid nozzle, and its cooling effect prevents burnout of the two-fluid nozzle. be done. This eliminates the need to extract the nozzle out of the furnace using a cylinder mechanism or the like as in the case of the nozzle shown in FIG.

本発明は、かかる2流体ノズルを用いると共に
排水を焼却炉に吹込んで炉内温度の調節並びに排
水の蒸発・酸化を行なうに当り、排水吹込み設備
に閉塞等の支障をきたすことなく長時間に亘り円
滑に排水を吹込むことができ、且つ焼却炉に投入
される廃棄物の日量変動等にも対応し得る様な排
水の蒸発・酸化処理方法を提供することを目的と
するものである。
The present invention uses such a two-fluid nozzle and allows wastewater to be blown into an incinerator to adjust the temperature inside the incinerator and evaporate and oxidize the wastewater for a long time without causing problems such as clogging of the wastewater injection equipment. The purpose of the present invention is to provide a method for evaporating and oxidizing wastewater that can smoothly blow wastewater across the incinerator and that can respond to daily fluctuations in the amount of waste thrown into the incinerator. .

しかして本発明の排水の蒸発・酸化処理方法と
は、焼却炉に排水を吹込んで、炉内温度の調節並
びに排水の蒸発・酸化を行なう処理方法であつ
て、炉壁には2流体ノズルを開口して臨設すると
共に、該ノズルの入側には空気導入管及び液体導
入管を接続し、且つ液体導入管は3方コツクを介
して排水タンクと新水タンクに接続しておき、空
気の吹込みは操炉全期間を通して行なうと共に炉
内温度に応じて水吸込みをオン・オフ制御し、排
水噴霧と新水噴霧の切替は排水若しくは新水の吹
込み総量或いは積算時間が一定基準に至つた段階
又は排水若しくは新水の貯留量の減少に応じて行
なう点にある。
However, the wastewater evaporation/oxidation treatment method of the present invention is a treatment method in which wastewater is blown into an incinerator to adjust the temperature inside the furnace and evaporate/oxidize the wastewater, and a two-fluid nozzle is installed on the furnace wall. In addition to opening and installing the nozzle, an air introduction pipe and a liquid introduction pipe are connected to the inlet side of the nozzle, and the liquid introduction pipe is connected to a drain tank and a new water tank via a 3-way connector. Injection is carried out throughout the entire operation period, and water suction is controlled on and off according to the temperature inside the furnace, and switching between waste water spray and fresh water spray is performed when the total amount of waste water or fresh water injected or the cumulative time reaches a certain standard. This is done in accordance with the ivy stage or a decrease in the amount of wastewater or fresh water stored.

以下本発明を実施例図面に基づき説明するが、
該実施例は本発明を制限する趣旨のものではなく
前・後記の趣旨に徴して適宜設計変更を加えるこ
と等は全て本発明の技術的範囲に含まれる。
The present invention will be explained below based on the drawings of the embodiments.
The embodiments are not intended to limit the present invention, and any design changes made as appropriate in accordance with the spirit described above and below are all included within the technical scope of the present invention.

第5図は本発明に係る排水の蒸発・酸化方法の
フロー説明図であり、1はゴミピツト排水タン
ク、19は新水タンク、3は焼却炉を示す。又焼
却炉3の排ガス出口付近には測温体7が設置され
ると共に、焼却炉3に設けられた排水吹込部2に
は前記2流体ノズル8aが設置されている。更に
該吹込部2に液体管路20及び気体管路21が接
続されている。そして液体管路20には電磁弁5
a、ポンプ4a及び3方弁22が介設され、3方
弁22のところで排水管路23と新水管路24に
分かれている。又気体管路21には電磁弁5b及
びコンプレツサ25が介設されている。尚排水タ
ンク1及び新水タンク19には水位計26及び水
位計26aが設置されている。又7は測温体であ
り、測温結果は指令部27に入力され、そのイン
プツトに応じて電磁弁5a及びポンプ4aの作動
を指令する様に構成されている。
FIG. 5 is a flow explanatory diagram of the method for evaporating and oxidizing waste water according to the present invention, in which 1 indicates a garbage pit drainage tank, 19 indicates a fresh water tank, and 3 indicates an incinerator. A temperature measuring element 7 is installed near the exhaust gas outlet of the incinerator 3, and the two-fluid nozzle 8a is installed in the waste water blowing section 2 provided in the incinerator 3. Further, a liquid pipe line 20 and a gas pipe line 21 are connected to the blowing section 2. And the liquid pipe line 20 has a solenoid valve 5.
a, a pump 4a and a three-way valve 22 are interposed, and the three-way valve 22 is divided into a drainage pipe 23 and a new water pipe 24. Further, a solenoid valve 5b and a compressor 25 are interposed in the gas pipe 21. Furthermore, a water level gauge 26 and a water level gauge 26a are installed in the drain tank 1 and the new water tank 19. Reference numeral 7 denotes a temperature measuring element, and the temperature measurement result is inputted to a command unit 27, and the temperature measuring element 7 is configured to command the operation of the electromagnetic valve 5a and the pump 4a in accordance with the input.

上記フローにより排水の蒸発・酸化処理を行な
うに際しては、まずコンプレツサ25を稼動させ
て空気を気体管路21から2流体ノズル8aに送
る。他方液体管路20にある3方弁22の流路を
排水タンク1側にし、ポンプ4aを起動させて、
排水を電磁弁5a経由で2流体ノズル8aに送給
する。かくして2流体ノズル8aの筒口で排水と
空気が合流し炉内へ霧状に吹込・散布される。次
に排水吹込みを所定時間継続すると、液体管路2
0及び2流体ノズル8aにスケール等が蓄積して
くるので、一旦ポンプ4aを停止すると共に電磁
弁5aを閉止し、且つ3方弁22を新水側へ切替
える。その後電磁弁5aを開放すると共にポンプ
4aを起動して新水を液体管路20及び2流体ノ
ズル8aに送給し管路内を洗浄する。尚洗浄を所
定時間継続すると管内は十分に清浄化されるの
で、ポンプ4aを停止すると共に電磁弁5aを閉
鎖した後、3方弁22の流路を排水タンク1側に
戻す操作を行ない、再び電磁弁5aを開放すると
共にポンプ4aを起動して排水吹込処理を再開す
る。以後上記の操作を繰り返す。尚上記操作は特
有の制御回路からの電気的指令によつてなされる
ものであり、以下この制御方法につき説明する。
When performing evaporation and oxidation treatment of waste water using the above flow, first the compressor 25 is operated to send air from the gas pipe 21 to the two-fluid nozzle 8a. On the other hand, the flow path of the three-way valve 22 in the liquid pipe line 20 is set to the drain tank 1 side, and the pump 4a is started.
The waste water is fed to the two-fluid nozzle 8a via the solenoid valve 5a. In this way, the waste water and air are combined at the mouth of the two-fluid nozzle 8a and are blown and dispersed into the furnace in the form of mist. Next, when the drainage water blowing is continued for a predetermined period of time, the liquid pipe 2
Since scale and the like accumulate in the 0 and 2 fluid nozzles 8a, the pump 4a is temporarily stopped, the solenoid valve 5a is closed, and the 3-way valve 22 is switched to the fresh water side. Thereafter, the electromagnetic valve 5a is opened and the pump 4a is started to supply fresh water to the liquid pipe line 20 and the two-fluid nozzle 8a to clean the inside of the pipe line. If the cleaning is continued for a predetermined period of time, the inside of the pipe will be sufficiently cleaned, so after stopping the pump 4a and closing the solenoid valve 5a, the flow path of the three-way valve 22 is returned to the drain tank 1 side, and then the inside of the pipe is cleaned again. The solenoid valve 5a is opened and the pump 4a is started to restart the wastewater blowing process. After that, repeat the above operation. The above operations are performed by electrical commands from a specific control circuit, and this control method will be explained below.

第6図は、制御回路のタイムチヤートである。
該タイムチヤートは横軸に経過時間をとるもの
で、S時点で制御回路を自動運転モードとした
後、t1時点で3方弁22の流路を排水タンク1側
に切替えると共にポンプ4aを起動し排水吹込処
理を開始するが、これと同時に排水量積算タイマ
(以下「排水タイマ」という)M1を起動する。次
いで排水タイマM1の積算時間がt2時点〔今だ設定
時間(T1)に達していないと仮定する〕で、後述
する吹込停止要因(炉内温度の低下、排水タンク
1の水位減少等)が検知されるとポンプ4aが停
止し、それと共に排水タイマM1の積算も中断す
る。そして上記吹込停止要因の解消が検知される
とポンプ4aは再起動し、又排水タイマM1は積
算を再開する。この様な制御の繰り返しにより排
水の吸込が継続的に行なわれ、排水タイマM1
積算時間が設定時間T1に達すると(即ちt4時点に
達すると)ポンプ4a及び排水タイマM1は停止
する。次いで瞬時に或いは図示の如く(所定時間
経過してt5時点に至つたとき3方弁22の流路を
新水タンク19側に切替えてポンプ4aを起動す
る。この時には排水タイマM1に代わつて新水量
積算タイマ(以下単に「新水タイマ」という)
M2が起動する。以下排水吹込運転の場合と同様
に、吹込停止要因の発生時には吹込を中断しなが
ら新水吹込運転が行なわれ(即ち管路20及びノ
ズル8aの洗浄が実施され)新水タイマM2の積
算時間が洗浄に必要な設定時間T2に達するとポ
ンプ4a及び新水タイマM2は停止する。そして
所定時間経過してt9時点に至つたとき再び排水吹
込みを再開する。以下同様の制御サイクルを繰り
返しながら排水の吹込と新水の吹込が交互に行な
われる。
FIG. 6 is a time chart of the control circuit.
The time chart shows elapsed time on the horizontal axis, and after setting the control circuit to automatic operation mode at time S, at time t1 , the flow path of the three-way valve 22 is switched to the drain tank 1 side, and the pump 4a is started. Then, the wastewater injection process is started, and at the same time, a wastewater amount integration timer (hereinafter referred to as "drainage timer") M1 is activated. Next, at time t 2 (assuming that the accumulated time of the drain timer M 1 has not reached the set time (T 1 ) yet), the blowing stop factors (lower temperature inside the furnace, decrease in water level in the drain tank 1, etc.), which will be described later, are detected. ) is detected, the pump 4a stops, and at the same time, the integration of the drain timer M1 is also interrupted. When it is detected that the cause of stopping the blowing is eliminated, the pump 4a is restarted, and the drain timer M1 restarts integration. By repeating such control, drainage is continuously sucked, and when the accumulated time of the drainage timer M1 reaches the set time T1 (that is, when it reaches time t4 ), the pump 4a and the drainage timer M1 are stopped. do. Then, instantaneously or as shown in the figure (when a predetermined period of time has elapsed and the time point t5 is reached, the flow path of the three-way valve 22 is switched to the fresh water tank 19 side and the pump 4a is started. At this time, the drain timer M1 is New water amount accumulation timer (hereinafter simply referred to as "new water timer")
M2 starts. Hereinafter, as in the case of the wastewater blowing operation, when a blowing stop factor occurs, the fresh water blowing operation is performed while the blowing is interrupted (that is, the pipe line 20 and nozzle 8a are cleaned), and the cumulative time of the fresh water timer M2 is When the set time T 2 necessary for cleaning is reached, the pump 4a and the fresh water timer M 2 are stopped. Then, when a predetermined period of time has passed and the time point t9 is reached, the drainage water injection is restarted again. Thereafter, while repeating the same control cycle, the injection of waste water and the injection of fresh water are performed alternately.

制御回路には以上の様な積算タイマによる運転
切替回路に加え、測温体7による温度制御回路及
び水位計26,26aによる水位制御回路等が組
み込まれている。
In addition to the operation switching circuit using the integration timer as described above, the control circuit incorporates a temperature control circuit using the temperature measuring element 7, a water level control circuit using the water level gauges 26, 26a, and the like.

即ち温度制御回路は従来と同様、炉内温度が設
定温度以下となつた場合に排水若しくは新水の吹
込を停止し炉内を必要以上に冷却しない方式のも
ので、測温体7によつて検知された炉内温度が設
定温度以下のときには、ポンプ4a及び電磁弁5
aに停止信号を送ると共に炉内温度が基準温度以
上に復帰した場合にはポンプ4a及び電磁弁5a
に起動信号が送られる。
In other words, the temperature control circuit is similar to the conventional one, and when the temperature inside the furnace falls below the set temperature, the injection of drainage water or fresh water is stopped and the inside of the furnace is not cooled more than necessary. When the detected furnace temperature is below the set temperature, the pump 4a and the solenoid valve 5 are activated.
When a stop signal is sent to the pump 4a and the solenoid valve 5a, if the temperature inside the furnace returns to the reference temperature or higher.
A start signal is sent to

又排水タンク1及び新水タンク19には水位計
26及び26aが夫々設置され、水位が下限水位
より低下した場合には運転を停止し、所定水位よ
り上昇した場合には運転再開信号が送られる。
In addition, water level gauges 26 and 26a are installed in the drainage tank 1 and the new water tank 19, respectively, and when the water level falls below the lower limit water level, the operation is stopped, and when the water level rises above a predetermined water level, an operation restart signal is sent. .

本発明は概略以上の様に構成されるが、要は2
流体ノズル(但しその構造は限定されない)の長
所を取り入れると共に、焼却炉操業に伴う種々の
変動条件に対応しつつ炉内に排水を吹込み、且つ
蒸発・酸化を行なうようにしたもので、以下要約
する様な諸効果を得ることができる。
The present invention is structured as described above, but the main points are two.
Incorporating the advantages of a fluid nozzle (however, its structure is not limited), this system blows wastewater into the furnace and performs evaporation and oxidation while responding to various fluctuating conditions associated with incinerator operation. Various effects can be obtained as summarized below.

(1) 吹込ノズルや排水送給管路に閉塞を生ずるこ
となく排水の炉内吹込みを長期に亘つて確実且
つ安定して行なうことができる。
(1) Wastewater can be reliably and stably blown into the furnace over a long period of time without causing blockages in the blowing nozzle or the wastewater supply pipe.

(2) 焼却場から生成される排水量の変動に対応し
て、排水の炉内吹込を確実に行なうことができ
る。
(2) The wastewater can be reliably blown into the furnace in response to fluctuations in the amount of wastewater generated from the incinerator.

(3) 2流体ノズル使用により排水吹込部での構造
的障害がなくなり、排水の炉内吹込の長期保障
に大きく寄与することができる。
(3) By using a two-fluid nozzle, there will be no structural failure at the wastewater injection section, which will greatly contribute to long-term security of wastewater injection into the furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排水の蒸発・酸化処理方法を示
す概略系統説明図、第2図は第1図における破線
円部の拡大説明図、第3図は本発明に係る2流体
ノズルの概略断面図、第4図は第3図の―線
断面図、第5図は本発明の排水の蒸発・酸化処理
方法を例示する概略系統説明図、第6図は第5図
の実施例方法を自動制御運転するときの制御回路
のタイムスケジユール説明図である。 1……排水タンク、2……排水吹込部、3……
焼却炉、4a……ポンプ、5a,5b……電磁
弁、7……測温体、8……1流体ノズル、8a…
…2流体ノズル、10……外筒、13……筒口、
14……空気導入管、15……液体導入管、19
……新水タンク、22……3方弁、26,26a
……水位計、27……指令部。
Fig. 1 is a schematic system explanatory diagram showing a conventional method for evaporating and oxidizing wastewater, Fig. 2 is an enlarged explanatory diagram of the broken line circle in Fig. 1, and Fig. 3 is a schematic cross-section of a two-fluid nozzle according to the present invention. Figure 4 is a sectional view taken along the line - - in Figure 3, Figure 5 is a schematic system explanatory diagram illustrating the wastewater evaporation and oxidation treatment method of the present invention, and Figure 6 is an automatic method of the embodiment shown in Figure 5. FIG. 2 is an explanatory diagram of a time schedule of a control circuit during controlled operation. 1...Drainage tank, 2...Drainage blowing part, 3...
Incinerator, 4a...Pump, 5a, 5b...Solenoid valve, 7...Temperature sensor, 8...1 fluid nozzle, 8a...
...Two-fluid nozzle, 10... Outer cylinder, 13... Cylinder mouth,
14...Air introduction pipe, 15...Liquid introduction pipe, 19
...New water tank, 22...3-way valve, 26, 26a
...Water level gauge, 27...Command department.

Claims (1)

【特許請求の範囲】[Claims] 1 焼却炉に焼却場排水を吹込んで、炉内温度の
調節並びに排水の蒸発・酸化を行なう処理方法で
あつて、炉壁には2流体ノズルを開口して臨設す
ると共に該ノズルの入側には空気導入管及び液体
導入管を接続し、且つ液体導入管は3方コツクを
介して焼却場排水タンクと新水タンクに接続して
おき、空気の吹込みは操炉全期間を通して行なう
と共に炉内温度に応じて水吹込みをオン・オフ制
御し、排水噴霧と新水噴霧の切替は排水若しくは
新水の吹込み総量或いは積算時間が一定基準に至
つた段階又は排水若しくは新水の貯留量の減少に
応じて行なうことを特徴とする焼却場排水の蒸
発・酸化処理方法。
1 A treatment method in which wastewater from an incinerator is blown into an incinerator to adjust the temperature inside the furnace and evaporate and oxidize the wastewater, in which a two-fluid nozzle is opened and installed on the furnace wall, and a two-fluid nozzle is installed on the inlet side of the nozzle. Connect the air inlet pipe and the liquid inlet pipe, and connect the liquid inlet pipe to the incinerator wastewater tank and new water tank via a three-way joint. Air is blown throughout the entire operation period, and the incinerator The water injection is controlled on and off according to the internal temperature, and the switching between waste water spray and fresh water spray is performed when the total amount of waste water or fresh water injected or the cumulative time reaches a certain standard, or when the amount of waste water or fresh water is stored. A method for evaporating and oxidizing wastewater from an incinerator, characterized in that the treatment is carried out in response to a decrease in wastewater from an incinerator.
JP10264382A 1982-06-14 1982-06-14 Evaporation and oxidation treatment of waste water of incinerating plant Granted JPS58219981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10264382A JPS58219981A (en) 1982-06-14 1982-06-14 Evaporation and oxidation treatment of waste water of incinerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10264382A JPS58219981A (en) 1982-06-14 1982-06-14 Evaporation and oxidation treatment of waste water of incinerating plant

Publications (2)

Publication Number Publication Date
JPS58219981A JPS58219981A (en) 1983-12-21
JPS6152365B2 true JPS6152365B2 (en) 1986-11-13

Family

ID=14332914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10264382A Granted JPS58219981A (en) 1982-06-14 1982-06-14 Evaporation and oxidation treatment of waste water of incinerating plant

Country Status (1)

Country Link
JP (1) JPS58219981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045852A (en) * 2005-08-05 2007-02-22 Nippon Steel Corp Method and apparatus for purifying gasified gas and method for using gasified gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045852A (en) * 2005-08-05 2007-02-22 Nippon Steel Corp Method and apparatus for purifying gasified gas and method for using gasified gas

Also Published As

Publication number Publication date
JPS58219981A (en) 1983-12-21

Similar Documents

Publication Publication Date Title
JP4676486B2 (en) Probes and systems for extracting gases from a processing environment
JP3117458B2 (en) Equipment for injecting sludge into incinerator
JPS6152365B2 (en)
JP5517675B2 (en) Drug spraying apparatus and drug spraying method
JP2004138475A (en) Exhaust gas sampling device
JP2925498B2 (en) Boiler economizer cleaning equipment
JP3136610U (en) Bug filter
JP3416511B2 (en) Dust removal device
AT400624B (en) METHOD FOR CONTROLLING A CONTINUOUSLY ADJUSTABLE BURNER OF A CONDENSING UNIT
JP2787048B2 (en) Exhaust heat boiler soot blowing method
JP2000171002A (en) Concentration blow control method for boiler
JPS59157415A (en) Treatment of refuse incineration waste water
JPH0749208Y2 (en) Boiler concentrating blow device
JPH0299112A (en) Method for regenerating filter for use in exhaust gas of diesel engine
JPH09192430A (en) Waste gas dust collector for refuse incinerator and its operation
CN219177443U (en) Device for adjusting water quantity of drainage facility and preventing blockage
CN211189558U (en) Flue gas filtering device of pulp shooting machine
JPH022042B2 (en)
JPH02187115A (en) Waste gas treatment apparatus of incinerator and method thereof
JP2553089B2 (en) Boiler soot blow control device
JP5288750B2 (en) Dust removal control method and control device for high temperature dust collector
JPH11270829A (en) Combustion control of refuse in refuse incinerator
JP2594903Y2 (en) Humidifier forced siphon drainage system
JPH11256676A (en) Foreign matter accumulation prevention device
JPH01134101A (en) Intermittent blow device for boiler