JPS6152313A - Heating furnace for sending in multiple rows - Google Patents

Heating furnace for sending in multiple rows

Info

Publication number
JPS6152313A
JPS6152313A JP17129884A JP17129884A JPS6152313A JP S6152313 A JPS6152313 A JP S6152313A JP 17129884 A JP17129884 A JP 17129884A JP 17129884 A JP17129884 A JP 17129884A JP S6152313 A JPS6152313 A JP S6152313A
Authority
JP
Japan
Prior art keywords
furnace
steel
billets
heating furnace
pass line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17129884A
Other languages
Japanese (ja)
Other versions
JPS63487B2 (en
Inventor
Shinichiro Muto
武藤 振一郎
Masanori Ebihara
海老原 正則
Rikio Takeshima
竹嶋 力男
Kyoichi Yoshikiyo
吉清 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17129884A priority Critical patent/JPS6152313A/en
Publication of JPS6152313A publication Critical patent/JPS6152313A/en
Publication of JPS63487B2 publication Critical patent/JPS63487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices

Abstract

PURPOSE:To heat uniformly steel billets sent into a heating furnace in multiple rows by bringing the ceiling and the floor of the furnace close to the surfaces of the billets at positions corresponding to the edges of the billets in the lateral direction of each pass line. CONSTITUTION:When steel billets 2 are sent into a heating furnace 10 in multiple rows and heated, at least one between the ceiling 12 and the floor 14 of the furnace 10 are brought close to the surfaces of the billets 2 at positions corresponding to the edges 2B of the billets 2 in the lateral direction of each pass line. The flow of combustion gas to the edges 2B of the billets 2 is inhibited, gas layers are made thin, and radiating power is reduced. Accordingly, the overheating of the edges 2B is inhibited, and the billets 2 sent into the furnace 10 in multiple rows along the pass lines are uniformly heated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 この発明はスラブ、ビレット等の鋼片をパスラインに沿
って並列で多列装入し、これらをバーナ火炎で加熱する
多列装入加熱炉の改良に関する。 【従来の技術】 鋼片加熱炉において、鋼片を均一に加熱覆ることは最も
基本的に要求される機能である。 又、近年、制御圧延、圧延後の制御冷却等の加工熱処理
のために、鋼片の均一な加熱がますます要求されるよう
になっている。 これに対し・で、−従来の鋼片加熱炉1は、第2図に示
されるように、鋼片2の搬送方向に対して直角に設けら
れたバーナーブリッジ3に複数のバーナ4を設けたもの
であって、軸流バーナ式と称され、広く用いられている
。このような軸流バーナ式の鋼片加熱炉1において、バ
ーナ4は、第3図に示されるように、炉幅方向に複数個
設置され、各バーナ4に均一に燃料を投入することによ
って、炉幅方向の炉内温度分布は、第4図に示されるよ
うに略均−となっている。 このような鋼片加熱炉1において、鋼片2が、バーナ4
からの火炎によって加熱された時の、鋼片長手方向くパ
スライン幅方向)の温度分布は、第5図に示されるよう
になる。 即ち、鋼片長手方向の渇r!i偏差は、鋼片中央部2A
の温度Tcを基準として、スキッドマーク偏差Ts及び
端部過熱Teからなっている。 スキッドマーク温度偏差Tsは鋼片2を支持プる水冷ス
キッド5と接触する部分の鋼片温度が、他の位置例えば
中央部2Aの温度に比べて低いことによって生じる。 父、端部過熱Teは、鋼片中央部2Aが上面と下面から
の2面加熱であるのに対して、鋼片2の端部2Bが上面
と下向及び端面からの3面加熱であることによって生じ
る。 前記鋼片2における中央部2Aと端部2Bの温度偏差を
解消するための手段としては、例えば第6図に示される
ように、多列装入型の鋼片加熱炉1において、鋼片2.
2の炉中心側対向端部付近のバーナ4A及び炉側壁6付
近のバーナ4Bを消火したり絞る方法がある。 又、炉温を低めに設定して鋼片2の在炉時間を長くし、
咳鋼片2を均熱する方法がある。 後者の在炉時間を延長でる方法は、鋼片2の温度i差は
小ぎくなるが、生産性が低下すると共に、長時間加熱の
ために燃料原単位が悪化する等の問題点がある。 又、前者の、バーナの消火あるいはこれを絞る方法は、
点火されているバーナ4の燃焼ガスが消火あるいは絞ら
れたバーナ4A、4B部分にも流れ、炉内の幅方向温度
分布に大きな偏差をつけることができず、又、バーナ4
A、4B以外からも鋼片2の端部2Bに輻射伝熱がある
ことから、鋼片2のパスライン幅方向温度i!差を小さ
くする効果が少ないという問題点がある。 かかる鋼片湯度偏差を小さくするための手段としては、
例えば、特開昭58−221228号公報に記載される
ように、加熱炉の上部又は下部に、炉長方向に延長され
た複数の仕切壁を垂設して、炉内をP@力方向慶数の1
メ間に分割し、鋼片端部の位置する区間にあるバ〜すを
消火したり絞ったりして、炉内のパスライン幅方向温度
分布に偏差をつけて鋼片端部の過熱を抑制するようにし
たものがある。 上記のような手段によれば、高温の区間から鋼片端部へ
の輻射伝熱は、仕切壁によってさえぎられるが、該高温
区間におけるバーナの燃焼ガスは、バーナが消火あるい
は絞られている区間に流入し、結果として、鋼片のパス
ライン幅方向の濃度偏差を小さくづる効果が充分でない
という問題点がある。 又、バーナが消火あるいは絞られている区間と点火され
ている区間とのガス層厚が等しいので、ガス幅例能が略
等しく、鋼片端部の過熱抑制効果が小さいという問題点
がある。
[Industrial Application Field 1] This invention relates to an improvement in a multi-row charging heating furnace in which steel pieces such as slabs and billets are charged in multiple rows in parallel along pass lines and heated by burner flames. BACKGROUND OF THE INVENTION In a steel billet heating furnace, uniformly heating and covering the steel billet is the most fundamentally required function. Furthermore, in recent years, uniform heating of steel slabs has been increasingly required for processing heat treatments such as controlled rolling and controlled cooling after rolling. On the other hand, in the conventional billet heating furnace 1, as shown in FIG. This is called an axial burner type and is widely used. In such an axial burner type billet heating furnace 1, a plurality of burners 4 are installed in the width direction of the furnace, as shown in FIG. 3, and by uniformly supplying fuel to each burner 4, The temperature distribution inside the furnace in the width direction of the furnace is approximately uniform as shown in FIG. In such a steel billet heating furnace 1, the steel billet 2 is heated to the burner 4.
The temperature distribution in the longitudinal direction of the steel piece (in the width direction of the pass line) when heated by the flame from the steel plate is as shown in FIG. That is, the longitudinal direction of the steel strip r! i deviation is the central part of the steel billet 2A
It consists of a skid mark deviation Ts and an end portion overheating Te, with the temperature Tc as a reference. The skid mark temperature deviation Ts is caused by the fact that the temperature of the steel piece 2 at the portion that contacts the water-cooled skid 5 that supports the steel piece 2 is lower than the temperature at other locations, such as the central portion 2A. In terms of end overheating Te, the central part 2A of the steel billet is heated on two sides from the top and bottom, while the end 2B of the steel billet 2 is heated on three sides from the top, bottom and end faces. caused by As a means for eliminating the temperature deviation between the center portion 2A and the end portions 2B of the steel billet 2, for example, as shown in FIG. ..
There is a method of extinguishing or throttling the burner 4A near the opposing end on the furnace center side and the burner 4B near the furnace side wall 6 of No. 2. In addition, the furnace temperature is set lower to lengthen the furnace time of the steel billet 2,
There is a method of soaking the cough steel piece 2. The latter method of extending the furnace time reduces the difference in temperature i of the steel slabs 2, but there are problems such as a decrease in productivity and a worsening of fuel consumption due to long heating times. Also, the former method of extinguishing the burner or restricting it is as follows:
Combustion gas from burner 4 that is lit also flows to burners 4A and 4B that are extinguished or throttled, making it impossible to create a large deviation in the temperature distribution in the width direction within the furnace.
Since there is radiant heat transfer to the end 2B of the steel slab 2 from sources other than A and 4B, the temperature in the pass line width direction of the steel slab 2 i! There is a problem that the effect of reducing the difference is small. As a means to reduce such steel billet temperature deviation,
For example, as described in Japanese Unexamined Patent Publication No. 58-221228, a plurality of partition walls extending in the furnace length direction are vertically installed in the upper or lower part of the heating furnace, so that the interior of the furnace can be controlled in the P@force direction. number 1
By dividing the furnace into sections where the ends of the steel billets are located and extinguishing or squeezing the baths in the section where the ends of the steel billets are located, the temperature distribution in the width direction of the pass line inside the furnace is varied to suppress overheating of the ends of the billets. There is something I did. According to the above-mentioned means, the radiant heat transfer from the high-temperature section to the end of the steel piece is blocked by the partition wall, but the combustion gas of the burner in the high-temperature section is transferred to the section where the burner is extinguished or throttled. As a result, there is a problem that the effect of reducing the concentration deviation of the steel billet in the width direction of the pass line is not sufficient. Furthermore, since the gas layer thickness is the same in the section where the burner is extinguished or throttled and the section where it is ignited, the gas width capacity is approximately the same, and there is a problem in that the effect of suppressing overheating at the end of the steel piece is small.

【発明が解決しようとづる問題点】[Problems that the invention attempts to solve]

この発明は上記従来の問題点に鑑みてなされたものであ
って、バーナを消火したり絞ったりすることなく、且つ
生産性を低下させることなく、多列装入された鋼片をパ
スライン幅方向に均一に加熱できるようにした多列装入
加熱炉を提供することを目的とづる。 (問題点を解決A−るための手段) この発明は、鋼片をパスラインに沿って並列して多列装
入して加熱する多列装入加熱炉において、前記鋼片のパ
スライン幅方向端部位置の炉天井及び炉床の少なくとも
一方を、該鋼片の表面に近接して、炉内に突出形成づる
ことにより上記目的を達成刃るもである。
This invention was made in view of the above-mentioned conventional problems, and it is possible to reduce the width of the pass line by moving steel billets charged in multiple rows without extinguishing or throttling the burner and without reducing productivity. The object of the present invention is to provide a multi-row charging heating furnace that can heat the furnace uniformly in all directions. (Means for Solving the Problems A-) The present invention provides a multi-row charging heating furnace in which steel billets are charged and heated in multiple rows in parallel along pass lines. The above object is achieved by forming at least one of the furnace ceiling and the hearth at the directional end positions protruding into the furnace in close proximity to the surface of the steel piece.

【作用】[Effect]

この発明においては、鋼片のパスライン幅方向端部位置
の炉天井及び炉床の少なくとも一方が該鋼片表面に近接
して突出形成されているので、鋼片の端部位置への燃焼
ガス流入が抑制されると共に、該端部位置でのガス層厚
さが薄くなることにより、ガス輻射能が低減されて、鋼
片端部の過熱が抑制され、従って、鋼片がパスライン幅
方向に均一に加熱される。 【実施例] 以下本発明の実施例を図面を参照して説明づる。 この実施例は、第1図に示されるように、鋼片2をパス
ラインに沿って並列して多列装入して加熱する多列装入
加熱炉10において、炉天井12及び炉床14の前記鋼
片2のパスライン幅方向端部2B位置に対応する部分1
2A、14Aを、該鋼片20表面に近接して、炉内に突
出形成したものである。 他の構成は前記第3図に示される従来の鋼片加熱炉と同
一であるので、第3図におけると同一の符号を附するこ
とにより説明を省略づるものとする。 この実施例においては、炉天井12及び炉床14の一部
12A、14Aが、鋼片2のパスライン幅方向の端部2
Bの上下の表面に近接して、炉内に突出形成されている
ので、バニナ4からの燃焼ガスの、該端部2Bへの接触
が抑制されることになる。 又、鋼片2の端部2Bと炉天井12及び炉床14の一部
12A、14Aが接近して、この部分での加熱空間16
Bが、他の部分でd加熱9開16Aよりも大幅に狭くさ
れ、従って、ガス層厚が薄くなり、ガス輻射能が抑制さ
れて、端部−2Bの過熱が抑制されることになる。 従って、この炉天井12及び炉床14の一部12A、1
4Aの炉内への突出階部ち、これらと鋼片2の端部2B
との距離を適当に選択すれば、鋼片2をそのパスライン
幅方向に均一に加熱することができる。 本発明者の実験(よれば、有効炉長45−1炉幅F3m
、生産能力100T、、’l−1の2列装入の厚板加熱
炉において、従来と同様に、炉天井及び炉床の高さを均
一にし、上下の加熱空間の高さをパスラインから2,5
−とした場合は、−片におけるパスライン幅方向の温度
分布が、鋼片中央部が1100℃であるのに対して、端
部の湿度が1150℃であって、端部過熱Teが50”
Cであった。 これに対して、本発明による多列装入加熱炉10の場合
は、まず、鋼片2の中央部2Aの上下における加熱空間
16Aの高さを従来と同様に上下にパスラインから2.
5mとし、且つ、端部2Bからの炉天井12及び炉床1
4の一部12A、14Aへの距麹即ち加熱中IF116
Bの高さを上部においては鋼片上表面から0.21.下
部においてはパスライン即ち鋼片下表面から0.2g+
とじ、且つ、炉天井12及び炉床14が突出される幅方
向の範囲を、2列装入の鋼片2が最両端水冷スキッド5
Aからオーバーハングしている部分とした場合、鋼片2
のパスライン幅方向の温度偏差は、鋼片中央部2Aが1
100℃であるのに対して、鋼片端部2Bが1120℃
であって、端部過熱Teは従来の50℃に対して20℃
と大きく低減された。 なお、上記と同一条件で、前述の特開昭58−2212
28号公報に記載される厚板スラブの加熱方法によった
場合は、端部加熱Teは30℃であった。 一般的に、厚板加熱炉においては、鋼片の成分系及び制
御圧延、制御冷却上の要請から、端部過熱Teが20℃
以内であることが要求されており、これは本発明によっ
て始めて達成できた。 かかる要求に対して、従来は、炉温を低く設定して在炉
時開を長くし、鋼片を均熱せざるを得す、従って、生産
性は、本発明が1007/)lであるのに対して70T
/Hにせざるを得なかった。 なお上記実施例は、炉天井及び炉床の両者の部を炉内に
突出させて鋼片のパスライン幅方向端部に接近させたも
のであるが、本発明はこれに限定されるものでなく、炉
天井と炉床の少なくとも一方の一部が鋼片の端部に接近
させるものであればよい。 この場合は、一般的に、鋼片の下部は水冷スキッドによ
って温度が低くなるので、炉天井のみを炉内に突出して
端部に接近させるのがよい。 【発明の効□果1 本発明は上記のように構成したので、簡単な構造でバー
ナを消火あるいは絞ったりすることなく、且つ、生産性
を低下させることなく、多列装入された鋼片を、パスラ
イン幅方向に均一に加熱することができるという優れた
効果を有づる。
In this invention, at least one of the furnace ceiling and the hearth at the end position in the pass line width direction of the steel billet is formed protruding close to the surface of the steel billet, so that combustion gas is directed to the end position of the steel billet. As the inflow is suppressed and the gas layer thickness at the end position becomes thinner, gas radiation is reduced and overheating of the end of the steel piece is suppressed, so that the steel piece moves in the width direction of the pass line. Heats evenly. [Examples] Examples of the present invention will be described below with reference to the drawings. As shown in FIG. 1, this embodiment is a multi-row charging heating furnace 10 in which steel billets 2 are charged and heated in multiple rows in parallel along a pass line. A portion 1 corresponding to the pass line width direction end 2B position of the steel piece 2
2A and 14A are formed protruding into the furnace close to the surface of the steel piece 20. Since the other configurations are the same as the conventional billet heating furnace shown in FIG. 3, the same reference numerals as in FIG. 3 will be given and the explanation will be omitted. In this embodiment, parts 12A and 14A of the furnace ceiling 12 and the hearth 14 are connected to the ends of the steel billet 2 in the pass line width direction.
Since they are formed protruding into the furnace in close proximity to the upper and lower surfaces of the vanina 4, contact of the combustion gas from the vanina 4 to the end portion 2B is suppressed. Also, the end 2B of the steel slab 2 and parts 12A and 14A of the furnace ceiling 12 and hearth 14 are close to each other, and the heating space 16 in this part is closed.
B is made much narrower than d-heating 9-opening 16A in other parts, so the gas layer thickness becomes thinner, the gas radiation ability is suppressed, and overheating of the end part -2B is suppressed. Therefore, parts 12A, 1 of this furnace ceiling 12 and hearth 14
4A protruding into the furnace, these and the end 2B of the steel slab 2
By appropriately selecting the distance between the steel billet 2 and the pass line width direction, the steel billet 2 can be heated uniformly in the width direction of the pass line. According to the inventor's experiments, the effective furnace length was 45-1 and the furnace width was F3m.
In a double-row charging plate heating furnace with a production capacity of 100T, 1-1, the heights of the furnace ceiling and hearth are made uniform, and the height of the upper and lower heating spaces is adjusted from the pass line, as in the past. 2,5
-, the temperature distribution in the width direction of the pass line in the - piece is 1100°C at the center of the steel piece, while the humidity at the end is 1150°C, and the end superheat Te is 50"
It was C. On the other hand, in the case of the multi-row charging heating furnace 10 according to the present invention, first, the height of the heating space 16A above and below the central portion 2A of the steel billet 2 is set 2.
5 m, and the furnace ceiling 12 and hearth 1 from the end 2B.
Part 4 of 12A, 14A during heating IF116
The height of B at the top is 0.21. At the bottom, 0.2g+ from the pass line, i.e. the bottom surface of the steel piece.
The widthwise range from which the furnace ceiling 12 and the hearth 14 are protruded is covered by two rows of charged steel slabs 2 which are connected to water-cooled skids 5 at both ends.
If the part overhangs from A, steel piece 2
The temperature deviation in the width direction of the pass line is 1 at the center part 2A of the steel billet.
100℃, while the steel piece end 2B is 1120℃
The end superheat Te is 20°C compared to the conventional 50°C.
was significantly reduced. In addition, under the same conditions as above, the above-mentioned Japanese Patent Application Laid-Open No. 58-2212
When the thick slab heating method described in Publication No. 28 was used, the end heating Te was 30°C. Generally, in a thick plate heating furnace, the end superheat Te is 20°C due to the composition of the steel billet, controlled rolling, and controlled cooling requirements.
The present invention has been able to achieve this for the first time. In order to meet such demands, conventionally the furnace temperature had to be set low and the furnace was opened for a long time to soak the steel slabs. Therefore, the productivity of the present invention was 1007/)l 70T for
/H. In the above embodiment, both the furnace ceiling and the hearth protrude into the furnace and approach the end of the pass line width of the steel billet, but the present invention is not limited to this. It is sufficient that at least a part of the furnace ceiling and the hearth is brought close to the end of the steel billet. In this case, since the temperature of the lower part of the steel billet is generally lowered by the water cooling skid, it is preferable that only the furnace ceiling protrudes into the furnace and approaches the end. [Effect of the invention □ Effect 1] Since the present invention is configured as described above, it is possible to easily process steel billets charged in multiple rows without extinguishing or throttling the burner, and without reducing productivity. It has an excellent effect of being able to uniformly heat the pass line in the width direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多列装入加熱炉の実施例を示す略
示断面図、第2図は従来の鋼片加熱炉を示プ略示側断面
図、第3図は!’!2図のlll−1線に沿う略示拡大
断面図、第4図は同従来の鋼片加熱炉における炉内凋度
の幅方向分布を示IIs図、第5図は同従来の鋼片加熱
炉における一片の温度分布を示す縮図、第6図は他の従
来の鋼片加熱炉の構造を示す第3図と同様の略示llJ
irM図である。 2・・・鋼片、        2A・・・中央部、2
B・・・端部、       10・・・多ケ1装入1
30熱炉、代理人   松  山  圭  缶 高  矢   論 第1図 1′) 第3図 第4図 メア  巾 第5図 第6図
Fig. 1 is a schematic sectional view showing an embodiment of a multi-row charging furnace according to the present invention, Fig. 2 is a schematic side sectional view showing a conventional billet heating furnace, and Fig. 3 is a schematic sectional view showing a conventional billet heating furnace. '! Fig. 2 is a schematic enlarged cross-sectional view taken along line Ill-1 in Fig. 2, Fig. 4 is a IIs diagram showing the width direction distribution of in-furnace hardness in the conventional billet heating furnace, and Fig. 5 is a schematic enlarged cross-sectional view taken along line Ill-1 in the same conventional billet heating furnace. A miniature diagram showing the temperature distribution of a piece in a furnace, Fig. 6 is a schematic diagram similar to Fig. 3 showing the structure of another conventional steel billet heating furnace.
It is an irM diagram. 2...Steel piece, 2A...Central part, 2
B...End part, 10...Multi pieces 1 charge 1
30 Thermal Furnace, Agent Kei Matsuyama Ya Kantaka Theory 1 Figure 1') Figure 3 Figure 4 Mere Width Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)鋼片をパスラインに沿つて並列して多列装入して
加熱する多列装入加熱炉において、前記鋼片のパスライ
ン幅方向端部位置の炉天井及び炉床の少なくとも一方を
、該鋼片の表面に近接して、炉内に突出形成したことを
特徴とする多列装入加熱炉。
(1) In a multi-row charging heating furnace in which steel billets are charged in multiple rows in parallel along a pass line and heated, at least one of the furnace ceiling and the hearth at the end position of the steel billet in the width direction of the pass line. A multi-row charging heating furnace, characterized in that: is formed protruding into the furnace in close proximity to the surface of the steel billet.
JP17129884A 1984-08-17 1984-08-17 Heating furnace for sending in multiple rows Granted JPS6152313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17129884A JPS6152313A (en) 1984-08-17 1984-08-17 Heating furnace for sending in multiple rows

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17129884A JPS6152313A (en) 1984-08-17 1984-08-17 Heating furnace for sending in multiple rows

Publications (2)

Publication Number Publication Date
JPS6152313A true JPS6152313A (en) 1986-03-15
JPS63487B2 JPS63487B2 (en) 1988-01-07

Family

ID=15920696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17129884A Granted JPS6152313A (en) 1984-08-17 1984-08-17 Heating furnace for sending in multiple rows

Country Status (1)

Country Link
JP (1) JPS6152313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111438218A (en) * 2020-03-23 2020-07-24 晟通科技集团有限公司 Extrusion line and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172399U (en) * 1981-04-22 1982-10-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172399U (en) * 1981-04-22 1982-10-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111438218A (en) * 2020-03-23 2020-07-24 晟通科技集团有限公司 Extrusion line and control method thereof

Also Published As

Publication number Publication date
JPS63487B2 (en) 1988-01-07

Similar Documents

Publication Publication Date Title
JPS6152313A (en) Heating furnace for sending in multiple rows
JPS6321730B2 (en)
JP3419917B2 (en) Continuous heating device
JP2000212645A (en) Continuous heating of steel material
JP3875927B2 (en) Slab heating method and heating furnace
KR101472851B1 (en) method for manufacturing steel plate
JPS6034014Y2 (en) Furnace zone partition wall
JPH09272919A (en) Continuous heating method and apparatus therefor
CN213021028U (en) Gas-solid heat conversion radiator
JP2693689B2 (en) Furnace body partitioning device for vertical open flame heating furnace
JPS6215232Y2 (en)
JPS592103Y2 (en) heating furnace
JPH0711157Y2 (en) Walking beam type heating furnace
JPH01275716A (en) Continuous heating furnace for billet
JPS6319313Y2 (en)
JPS58176013A (en) Device for heating end part of ingot
JPS5919720Y2 (en) Extraction port structure of walking beam heating furnace
JPS5837947Y2 (en) Continuous slab heating furnace
JPS6199620A (en) Structure of partition wall in roof burner type heating furnace
JPH017706Y2 (en)
JP2001317875A (en) Continuous heating device for steel stock and heating method
JPS6335332B2 (en)
JP2776110B2 (en) Combustion control method for vertical open flame heating furnace
JPH01136927A (en) Heat treatment furnace
KR20010057958A (en) Furnace for heating slab