JPS6152249B2 - - Google Patents

Info

Publication number
JPS6152249B2
JPS6152249B2 JP7362780A JP7362780A JPS6152249B2 JP S6152249 B2 JPS6152249 B2 JP S6152249B2 JP 7362780 A JP7362780 A JP 7362780A JP 7362780 A JP7362780 A JP 7362780A JP S6152249 B2 JPS6152249 B2 JP S6152249B2
Authority
JP
Japan
Prior art keywords
yarn
tension
under
thick
appearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7362780A
Other languages
Japanese (ja)
Other versions
JPS56169833A (en
Inventor
Mitsuo Kitajima
Yoshinobu Furukawa
Hideya Hamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP7362780A priority Critical patent/JPS56169833A/en
Publication of JPS56169833A publication Critical patent/JPS56169833A/en
Publication of JPS6152249B2 publication Critical patent/JPS6152249B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑性合成繊維マルチフイラメント
の嵩高捲縮加工糸に関するものであり、更に詳し
くは糸条の長手方向における実質的な太さ斑がな
く、捲縮形タ即ち外観においてのみ太さ斑を有す
る特殊捲縮加工糸に関するものであり、その特徴
とするところは長手方向に均斉な熱可塑性合成繊
維マルチフイラメント糸条から得られた加工糸で
あつても、その糸条から成る布帛製品の表面(外
観)において天然繊維に似た独特な斑を付与し得
るものである。 従来、一般に通常の熱可塑性合成繊維マルチフ
イラメント糸条(例えばポリエステル原糸等)は
長手方向の斑において天然繊維(例えば綿糸等)
に比較して著しく均斉であり、これが大きな利点
の一つでもあるが、反面均斉すぎるがためその原
糸または加工糸の布帛製品の表面が単調となり表
面変化のない金属的外観となる欠点がある。 熱可塑性合成繊維マルチフイラメント糸条の捲
縮加工糸の外観において、長手方向に太細斑のあ
る糸条を大別すると、 (1) 特殊な原糸製造条件例えばシツクアンドシン
ヤーン等原糸の製造段階においてその糸条の長手
方向に斑を与えた糸条の加工糸、 (2) 原糸の段階においてはその糸条の長手方向に
均斉であるにも拘らず嵩高加工時点において太細
を与えた糸条、 (3) 原糸段階、嵩高加工段階においては長手方向
に均斉な糸条であるにも拘らず爾後の再熱処理時
点においてその加工糸の外観に太細斑を与えた糸
条とに大別される。 ここで(1)〜(3)についてその特徴を比較してみる
と次のとおりである。(1)は例えば特公昭41−6615
号公報に記載の原糸を嵩高加工すればよいが、そ
の場合未延伸部分のフイラメントが太いので糸条
の長手方向に太細を有する嵩高加工糸が得られ
る。しかしその嵩高加工糸の形態を詳細に観察す
ると、例えば流体処理加工等熱を利用しない方法
では未延伸部分のフイラメントのループまたはカ
ールは他の通常部分よりも粗くなる。また例えば
仮撚加工等加熱、加熱を施した場合、未延伸部分
が融着したりまたは適加撚現象に起因するクビレ
等が発生し、その捲縮形態は著しく不安定であ
り、布帛製品の段や縞等の欠点となりやすい。更
にこの方法による糸条の欠点としては熱処理を伴
わない嵩高加工糸の場合、未延伸部の経時変化が
問題となり、逆に熱及び撚歪みを伴う嵩高加工糸
の場合、未延伸部の脆化による操業性不良等が問
題となる。その上原糸製造段階で与え得る斑の程
度(斑の間隔及び周期)に限度があり、かつ爾後
の嵩高加工時においてその斑の相様を大巾には変
更できない欠点を有する。 次に(2)の糸条としては、例えば特公昭45−7026
号公報では仮撚捲縮加工に先立ち特殊な処理を行
い、仮撚捲縮加工時の処理効果を変化させてい
る。しかし、この糸条では水を付着させた部分の
糸条が他の部分に比較して加熱、加撚ゾーンにお
ける撚歪みに差異を生じ強度低下の原因となつた
り、糸条を構成する単糸フイラメントの捲縮ピツ
チには長手方向に斑が生じ布帛製品の段、縞等の
欠点となりやすい。 (3)の糸条としては、例えだ特公昭39−26161号
公報に記載されているように、嵩高加工糸に伸長
した状態下で間歇的に膨潤剤、溶解剤等を付着さ
せ、あるいは更に加熱等を施して付着箇所に膨潤
状態を惹起させて嵩高状を喪失させると同時に伸
長されて直線状に再固定されるようにした得られ
るものであつた、嵩高加工糸本来の嵩高状部分と
直線状部分が断続的に繰返している糸条がある。
この場合、処理された部分の糸条は膨潤剤等によ
つて膨潤状態となつている上伸長処理を受けるた
め、糸条を構成する単糸フイラメントの捲縮によ
る嵩高効果を減少するのみにはとどまらず、フイ
ラメントそのものの太さ斑または物性斑にも著し
く変化をきたし、その変化の程度を制御しつつ工
業的に大量生産するには管理上の問題が多い。 本発明は上記(1)〜(3)の従来の欠点を解消したも
のである。すなわち、本発明は熱可塑性合成繊維
マルチフイラメント糸条の撚歪みによる捲縮加工
糸であつて、無緊張下もしくは微緊張下における
糸条の外観が長手方向に太細を有し、糸条を構成
する単糸フイラメントの旋回性は細糸部に対して
太糸部が大であることを特徴とする特殊捲縮加工
糸を要旨とするものである。 以下、本発明を詳細に説明する。 本発明の特殊捲縮加工糸は撚歪みによる嵩高捲
縮加工糸であつて、糸条そのものの太さ斑には何
等変化がなくても糸条を構成する単糸フイラメン
トのもつ捩れトルクが変化しており、かつ糸全体
としての旋回性には著しい差異がなくても見掛け
の外観だけが変化しており、この見掛けの外観の
変化によつて布帛製品の表面外観に変化を与える
糸条である。 本発明において、撚歪みによる捲縮加工糸と
は、糸条を一方向に加撚して熱固定して個々の単
糸フイラメントに撚による捩り変形を与え、解撚
して得られる捲縮加工糸を指し、その例としては
仮撚捲縮加工糸が挙げられる。 通常の撚縮糸では実質的に4〜5%の繊度斑の
ある糸条が混入すると布帛製品の段、縞等の原因
となり易いが、本発明の糸条は実質的な繊度斑が
なくても充分に太細効果があるので、布帛製品に
おいて糸条間、糸条内での繊度斑に起因する段、
縞等の発生の懸念が全くない点で著しい効果を有
するものである。本発明においては0.05g/d以上
の緊張下における糸条全体の長手方向の繊度斑が
4%以下であることが好ましく、また0.001g/d以
下の緊張下における糸条全体の見掛けの直径比即
ち太糸部と細糸部の直径比は1.5以上であること
が好ましい。 また、本発明の糸条は糸条を構成する各単糸フ
イラメントの長手方向の撚縮ピツチには糸条の太
細部間における実質的な差異がなくてもよく、太
糸部と細糸部のトルク(旋回性)のみの差異によ
つて外観上の嵩高差を得ることができる。太糸部
と細糸部の単糸フイラメントの旋回性の比は1.6
以上が好ましく、特に1.7以上であることが好ま
しい。このように太糸部と細糸部のトルクのみの
差異によつて外観上の嵩高差を有するので、かか
る糸条から得られる布帛製品の表面外観は均一さ
の中に穏やかな斑が得られ、従来の部分撚縮糸の
布帛の外観がややもすると故意に造られた斑であ
る印象が強いのに対し、本発明の糸条から得られ
る布帛は安定した穏やかな自然な斑が得られる利
点を有する。 以下、本発明の糸条について更に詳細に説明す
る。 第1図は本発明の糸条の外観図、第2図〜第5
図はそれぞれ糸条を構成する単糸フイラメントの
外観模式図であり、第2図は従来の部分撚縮糸の
クリンプ形状を緊張下で観察した場合の例、第3
図は無緊張もしくは微緊張下における第2図に対
応する単糸フイラメント、第4図は第1図(本発
明の糸条)のクリンプ形状を緊張下で観察した場
合、第5図は無緊張もしくは微緊張下における第
4図に対応する単糸フイラメントである。 本発明の糸条は通常の熱可塑性合成繊維フイラ
メントの仮撚嵩高撚縮加工糸において、その糸条
の長手方向に太糸部(以後Aタイプ糸と称する)
と細糸部(以後Bタイプ糸と称する)が任意の長
さ及び間隔で交互に存在していることを特徴とし
ている。ここでAタイプ及びBタイプの仮撚数は
同一であるので、糸条を構成する単糸フイラメン
トの捲縮ピツチはA,Bにおいて実質的に差がな
いものである。 Bタイプの糸条を作成しつつその糸条のある部
分のみをAタイプの糸条とする方法としては、例
えば加撚→熱固定→解撚に連続して弛緩状態で特
定の部分の糸条のみ特定の条件となるように遮熱
するのが効果的である。特定の条件となるように
遮熱する方法としてはどのような方法でもよい
が、安定、かつ確実な方法としては弛緩状態で走
行する仮撚捲縮加工糸に対し水滴を落下させ毛細
現象により各単糸フイラメントの捲縮クリンプ間
に充分に水を含ませた状態で乾熱弛緩熱処理を行
うとよい。そして乾熱弛緩熱処理域において含水
しない部分の糸条を構成する単糸フイラメントの
撚歪みによる捩れトルクが緩和され、その捲縮ク
リンプが3次元的から2次元的になり、糸条が伸
縮性よりも嵩高性を主体とした糸条となるのに対
し、含水した部分の糸条を構成する単糸フイラメ
ントは弛緩熱処理域の乾熱処理温度が水の沸点以
上であつても水が乾燥するまでは蒸発熱を必要と
するため常圧下における沸点までに保たれ、その
ため含水した単糸フイラメントの捩れトルクは熱
緩和することなくクリンプ自体がスナール状に捩
れることによつて見掛け上緩和し、糸条全体とし
ての見掛けのトルクが減少するとともに捲縮によ
る嵩高性が著しく高くなり伸縮性も増す。このよ
うにして得た糸条は緊張状態下での繊度斑が殆ん
ど無いにも拘らず無緊張に近い微緊張下では糸条
の長手方向の外観において太細部を有する糸条と
なる。また、処理部分の熱的履歴は水の沸点以下
であるため糸条の長手方向における強度低下斑に
対する懸念がないものである。更に糸条全体の旋
回性を通常の再熱処理加工糸並とすることがで
き、爾後の製編織時における操業性も良好なもの
である。 以下、本発明を実施例にて具体的に説明する。 実施例 1 通常のポリエステルフイラメント原糸150デニ
ール/48フイラメントを日本スピンドル(株)製HN
−82型仮撚機で表1に示す条件にて仮撚加工し、
爾後に引続く加工条件を表2に示す条件にて試作
糸を作成した。 表2における処理方法としては、仮撚機の第1
デリベリローラー出口と第2ヒーター入口との間
において内径2mmφであつて頭部にU字溝を設け
たパイプに送水し、そのパイプの先端のU字部か
ら流出する水面に対して走行糸条を間歇的に接触
させた捲縮加工糸を得た。走行糸条を前記水面に
間歇的に接触させるには試作のマイクロコンピユ
ーターによりオン−オフの周期及び時間の組合せ
を適宜変更し、これをDCソレノイドの可動板に
ヤーンガイドを取付け、走行糸条の糸道を変位さ
せて通常は無作為に変えるが、実験としては規則
的周期とし、含水処理時間(秒):通常加工時間
(秒)を0.01:5(テスト1−1)、0.025:5
(テスト1−2)、0.25:0.25(テスト1−3)の
組合せで実施した。 次に本発明の糸条に比較すべきものとしてテス
ト2ではテスト1−1の再熱処理条件を処理温度
を230℃→160℃、弛緩率10%→15%に変更し、糸
条の太細部の直径比を減じその布帛製品の外観に
ついて調査した。また、テスト3ではテスト1の
含水処理をせずに通常の弛緩熱処理糸を、テスト
4ではテスト1において連続的に含水処理した糸
条を得た。
The present invention relates to a bulky crimped yarn made of thermoplastic synthetic fiber multifilament, and more specifically, there is no substantial thickness unevenness in the longitudinal direction of the yarn, and there is no thickness unevenness only in the crimped shape, that is, in the appearance. This article relates to a special crimped yarn that has a characteristic that even if it is a processed yarn obtained from a thermoplastic synthetic fiber multifilament yarn that is uniform in the longitudinal direction, the surface of the fabric product made of the yarn is It is capable of imparting unique spots that resemble natural fibers (in appearance). Conventionally, ordinary thermoplastic synthetic fiber multifilament yarns (e.g., polyester fibers, etc.) have been mixed with natural fibers (e.g., cotton yarns, etc.) in irregularities in the longitudinal direction.
It is extremely uniform compared to other yarns, which is one of its major advantages, but on the other hand, because it is too uniform, the surface of fabric products made from raw or processed yarns is monotonous, resulting in a metallic appearance with no surface changes. . In terms of the appearance of crimped thermoplastic synthetic fiber multifilament yarn, yarns with thick and fine irregularities in the longitudinal direction can be broadly classified into: (1) Special yarn manufacturing conditions such as thick and thin yarn, etc. (2) Processed yarn with unevenness in the longitudinal direction of the yarn at the manufacturing stage. (3) Although the yarn was uniform in the longitudinal direction at the raw yarn stage and bulk processing stage, the processed yarn had thick and fine irregularities in its appearance at the time of subsequent reheat treatment. It is broadly divided into. Here, we compare the characteristics of (1) to (3) as follows. (1) is, for example, the special public service of 1975-6615.
The raw yarn described in the above publication may be bulk-processed, but in that case, since the undrawn portion of the filament is thick, a bulk-processed yarn having thick and thin threads in the longitudinal direction can be obtained. However, when the form of the bulky textured yarn is observed in detail, for example, in a method that does not utilize heat, such as fluid processing, the loops or curls of the filament in the undrawn portion become rougher than in other normal portions. Furthermore, when heating is applied, for example during false twisting, unstretched portions may fuse or cracks may occur due to the phenomenon of appropriate twisting, and the crimp form is extremely unstable, resulting in fabric products being It is prone to defects such as steps and stripes. Furthermore, as a disadvantage of the yarn produced by this method, in the case of bulky processed yarn that does not involve heat treatment, there is a problem of deterioration over time in the undrawn part, and conversely, in the case of bulky processed yarn that is subjected to heat and twist distortion, embrittlement of the undrawn part becomes a problem. This causes problems such as poor operability. Moreover, there is a limit to the degree of mottling (interval and periodicity of mottling) that can be imparted at the yarn manufacturing stage, and the appearance of the mottling cannot be changed to a large extent during subsequent bulk processing. Next, as the yarn in (2), for example,
In the publication, a special treatment is performed prior to the false twist crimp process to change the processing effect during the false twist crimp process. However, with this type of yarn, the part of the yarn where water is attached is heated compared to other parts, causing a difference in twist strain in the twisting zone, causing a decrease in strength, or the single fibers that make up the yarn. The crimp pitches of the filament tend to have unevenness in the longitudinal direction, which tends to cause defects such as steps and stripes in the fabric product. For example, as described in Eda Tokuko No. 39-26161, the yarn in (3) can be prepared by applying a swelling agent, a dissolving agent, etc. intermittently to bulky processed yarn while it is stretched, or The bulky portion of the bulky textured yarn was obtained by applying heat or the like to induce a swelling state at the attachment point to lose its bulky shape and at the same time to elongate and re-fix it in a straight line. There is a thread in which straight sections are repeated intermittently.
In this case, since the yarn in the treated portion undergoes an elongation treatment in which it is in a swollen state with a swelling agent, etc., it is difficult to reduce the bulking effect caused by crimp of the single filaments that make up the yarn. Not only that, but the thickness or physical properties of the filament itself changes significantly, and there are many management problems in industrially mass-producing the filament while controlling the extent of the change. The present invention eliminates the conventional drawbacks (1) to (3) above. That is, the present invention is a crimped yarn created by twisting and straining a thermoplastic synthetic fiber multifilament yarn, in which the appearance of the yarn under no tension or under slight tension is thick and thin in the longitudinal direction. The turning property of the constituent single filament is based on a special crimped yarn characterized by a thick yarn portion being larger than a thin yarn portion. The present invention will be explained in detail below. The special crimped yarn of the present invention is a bulky crimped yarn due to twisting distortion, and even though there is no change in the thickness unevenness of the yarn itself, the twisting torque of the single filament that makes up the yarn changes. Even if there is no significant difference in the swirlability of the yarn as a whole, only the apparent appearance changes, and this change in the apparent appearance causes a change in the surface appearance of the fabric product. be. In the present invention, a crimped yarn by twisting refers to a crimped yarn obtained by twisting a yarn in one direction, heat-setting it, giving twisting deformation to each single filament, and then untwisting it. Refers to yarn, examples of which include false twisted crimped yarn. In ordinary twisted yarn, if 4 to 5% of yarn with uneven fineness is mixed in, it tends to cause steps, stripes, etc. in the fabric product, but the yarn of the present invention has no substantial uneven fineness. Because it has a sufficient thickening effect, it can eliminate steps caused by irregularities in fineness between and within yarns in fabric products.
This has a remarkable effect in that there is no concern about the occurrence of stripes or the like. In the present invention, it is preferable that the fineness unevenness of the entire yarn in the longitudinal direction under a tension of 0.05 g/d or more is 4% or less, and the apparent diameter ratio of the entire yarn under a tension of 0.001 g/d or less is preferable. That is, it is preferable that the diameter ratio of the thick thread part and the thin thread part is 1.5 or more. Further, in the yarn of the present invention, the twist pitch in the longitudinal direction of each single filament constituting the yarn does not need to have a substantial difference between the thick portions of the yarn, and the thick yarn portion and the thin yarn portion It is possible to obtain a difference in bulkiness in appearance based only on the difference in torque (turning ability). The ratio of the swirlability of the single filament in the thick yarn part and the thin yarn part is 1.6.
It is preferably at least 1.7, particularly preferably at least 1.7. In this way, there is a difference in bulk in appearance due only to the difference in torque between the thick yarn portion and the thin yarn portion, so the surface appearance of fabric products obtained from such yarns is uniform with mild unevenness. Whereas the appearance of conventional partially twisted yarn fabrics gives the impression of intentionally created unevenness, the fabric obtained from the yarn of the present invention has stable and gentle natural unevenness. has advantages. Hereinafter, the yarn of the present invention will be explained in more detail. Figure 1 is an external view of the yarn of the present invention, Figures 2 to 5
Each figure is a schematic diagram of the appearance of a single filament that constitutes a yarn, and Figure 2 is an example of the crimp shape of a conventional partially twisted yarn observed under tension.
The figure shows a single filament corresponding to Fig. 2 under no tension or slight tension, Fig. 4 shows the crimp shape of Fig. 1 (the yarn of the present invention) observed under tension, and Fig. 5 shows no tension. Alternatively, it is a single filament corresponding to FIG. 4 under slight tension. The yarn of the present invention is a thick yarn portion (hereinafter referred to as A type yarn) in the longitudinal direction of a normal false twisted bulky twisted yarn of a thermoplastic synthetic fiber filament.
and thin thread portions (hereinafter referred to as B-type threads) are alternately present at arbitrary lengths and intervals. Here, since the number of false twists of type A and type B is the same, the crimp pitch of the single filament constituting the yarn is substantially the same between A and B. A method of creating a B-type yarn and making only a certain part of the yarn into an A-type yarn is, for example, by sequentially twisting → heat setting → untwisting, and then twisting a specific part of the yarn in a relaxed state. It is effective to provide heat shielding only under specific conditions. Any method can be used to insulate the heat to meet specific conditions, but a stable and reliable method is to drop water droplets on the false twisted crimped yarn running in a relaxed state, and each It is preferable to carry out the dry heat relaxation treatment in a state where water is sufficiently soaked between the crimp crimps of the single filament. In the dry heat relaxation heat treatment area, the twisting torque due to the twisting strain of the single filament that makes up the yarn in the non-water-containing portion is relaxed, the crimp changes from three-dimensional to two-dimensional, and the yarn becomes less elastic. In contrast, the single filament that makes up the yarn in the water-containing portion remains bulky until the water dries even if the dry heat treatment temperature in the relaxation heat treatment area is above the boiling point of water. Since the heat of vaporization is required, it is maintained at the boiling point under normal pressure. Therefore, the twisting torque of the water-containing single filament is apparently relaxed by twisting the crimp itself in a snarl shape without being thermally relaxed, and the yarn The overall apparent torque decreases, the bulkiness due to crimp increases significantly, and the elasticity also increases. Although the yarn obtained in this way has almost no unevenness in fineness under tension, under slight tension close to zero tension, the yarn has a thick part in its appearance in the longitudinal direction. Furthermore, since the thermal history of the treated portion is below the boiling point of water, there is no concern about uneven strength reduction in the longitudinal direction of the yarn. Furthermore, the swirlability of the entire yarn can be made comparable to ordinary reheat-treated processed yarn, and the workability during subsequent weaving and weaving is also good. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 Ordinary polyester filament yarn 150 denier/48 filament was used as HN manufactured by Nippon Spindle Co., Ltd.
−8 False twisting was performed using a Type 2 false twisting machine under the conditions shown in Table 1.
A trial yarn was produced under the subsequent processing conditions shown in Table 2. The processing method in Table 2 is as follows:
Water is sent to a pipe with an inner diameter of 2 mmφ and a U-shaped groove in the head between the delivery roller outlet and the second heater inlet, and the running yarn is applied to the water surface flowing out from the U-shaped part at the tip of the pipe. A crimped yarn was obtained in which the fibers were intermittently brought into contact with each other. In order to bring the traveling yarn into intermittent contact with the water surface, a prototype microcomputer is used to change the on-off cycle and time combination as appropriate, and a yarn guide is attached to the movable plate of the DC solenoid. Normally, the thread path is displaced and changed at random, but for experiments, it is set at regular intervals, and the water treatment time (seconds): normal processing time (seconds) is 0.01:5 (Test 1-1), 0.025:5.
(Test 1-2) and 0.25:0.25 (Test 1-3). Next, as a comparison with the yarn of the present invention, in Test 2, the reheat treatment conditions of Test 1-1 were changed from 230℃ to 160℃, and the relaxation rate was changed from 10% to 15%. The appearance of the fabric products was investigated by reducing the diameter ratio. Further, in Test 3, a normal relaxed heat-treated yarn was obtained without the hydrous treatment of Test 1, and in Test 4, a yarn subjected to the continuous hydrous treatment of Test 1 was obtained.

【表】【table】

【表】【table】

【表】 各実験によつて得た糸条についてその状況を調
査した結果、次の通りであつた。 まず、テスト1〜テスト2の糸条について瞬間
的に約300g(0.2g/d)の緊張を与えた後、0.15g
(0.001g/d)の荷重下におけるA部(太糸部)及
びB部(細糸部)についてその長さを通常の物差
しにて直接測定し、各5回ずつ平均長さを求めた
ところ表2の如くなつた。この結果より含水時間
とA部の長さとは比例し、捲縮による縮み率の範
囲内で糸長の絶対値も含水時間とよく一致した結
果が得られた。 次にテスト1〜テスト4の各糸条についてA部
及びB部の長さを測定した場合と同様な条件下
(一旦強緊張後0.001g/dの微緊張下)における糸
条の外径を日本光学(株)製万能投影器にて10倍に拡
大し測定した結果は表2の如くになつた。A部は
1.35〜1.63cmφ、B部は0.38〜1.15cmφと明らか
に見掛けの太さの違いは認められたが、テスト2
のA/Bは1.2と他の糸条に比較して低かつた。 尚、糸条の見掛けの外観測定値は測定する糸条
部分と存在する撚数の程度によつて変化し、特に
無撚もしくは甘撚(20T/M以下)では糸条を構
成するフイラメントが拡散した状態となり、最外
直径部の測定(または判別)が困難な場合が多
い。そこで、一般に100〜150T/M程度の施撚状
態で測定すると、糸条全体に適当な集束効果が上
り、太細部の外径測定に再現性が出てくる。
300T/M以上の施撚を行うと施撚方向、施撚数
等により糸条の集束効果に異なつた現象が生じる
ので、施撚数は150T/M以下で行うことが好ま
しい。 次に糸条全体の旋回性について測定すべく、水
平に張つた試料長2mの中央に10g(1/30g/d)の
荷重をつるし、両糸端を合わせたときその荷重が
回転して静止したときの回転数Tt(T/M)を
測定したところ、Tt(T/M)〔糸条全体の旋回
性〕はいずれの試料も97〜122の範囲で試料内変
動率cv(σ/X×100%)(σ:標準変差値、:平 均値)が10%以下であるのに対し、各糸条を構成
する単糸フイラメントのトルク(Ti(T/M))
を比較したところ、本発明の糸条テスト1では、
A/Bは1.6〜1.7(60%〜70%増加)であり、こ
れに対しテスト2の糸条のA/Bは1.3と低い値
であつた。単糸フイラメントのトルクの測定は
0.3g(0.1g/d)の緊張下で5cmの試料について通
常の検撚器でS方向(仮撚と同方向)に解撚し無
緊張時(実質的には試料間距離を約2.5cmに減じ
た場合)のクリンプ捩れが発生しなくなるまでの
解撚数Ti(T/M)を求めた。 次にテスト1〜テスト4の各糸条の実質的な繊
度斑について調査すべくツエルベーガー社製ウー
スターで表3に示す測定条件で施撚、緊張下での
繊度斑について調査した結果、いずれも2%以下
であり、使用した原糸の値(1.75)と同レベルで
あつた。
[Table] The results of investigating the conditions of the yarns obtained in each experiment were as follows. First, about 300 g (0.2 g/d) of tension was applied momentarily to the yarns of Tests 1 and 2, and then 0.15 g
The lengths of part A (thick thread part) and part B (thin thread part) were measured directly with a regular ruler under a load of (0.001g/d), and the average length was calculated five times each. The results are as shown in Table 2. The results show that the moisture retention time is proportional to the length of part A, and that the absolute value of the yarn length also closely matches the moisture retention time within the range of the shrinkage rate due to crimping. Next, we measured the outer diameter of the yarn under the same conditions as when measuring the lengths of parts A and B for each yarn in Tests 1 to 4 (under slight tension of 0.001 g/d after strong tension). Table 2 shows the results of measurements made with 10x magnification using a universal projector manufactured by Nippon Kogaku Co., Ltd. Part A is
Although there was a clear difference in apparent thickness between 1.35 and 1.63 cmφ and 0.38 and 1.15 cm for section B, test 2
The A/B was 1.2, which was low compared to other yarns. Note that the measured value of the apparent appearance of the yarn varies depending on the portion of the yarn being measured and the degree of the number of twists present. In particular, when the yarn is untwisted or lightly twisted (20T/M or less), the filaments that make up the yarn are diffused. It is often difficult to measure (or distinguish) the outermost diameter part. Therefore, in general, when measuring at a twist state of about 100 to 150 T/M, an appropriate focusing effect is achieved over the entire yarn, and reproducibility is achieved in measuring the outer diameter of thick parts.
If twisting is performed at 300 T/M or more, different phenomena occur in the yarn focusing effect depending on the direction of twisting, the number of twists, etc., so it is preferable that the number of twists is 150 T/M or less. Next, in order to measure the turning ability of the entire yarn, a load of 10 g (1/30 g/d) was suspended at the center of a 2 m long sample stretched horizontally, and when both ends of the yarn were brought together, the load rotated and stopped. When measuring the rotational speed Tt (T/M) when ×100%) ( σ : standard deviation value,
When compared, in yarn test 1 of the present invention,
A/B was 1.6 to 1.7 (60% to 70% increase), whereas A/B of the yarn of Test 2 was as low as 1.3. Measuring the torque of single filament
A 5 cm sample was untwisted in the S direction (same direction as false twisting) under a tension of 0.3 g (0.1 g/d) using an ordinary twister, and the distance between the samples was approximately 2.5 cm when there was no tension. The untwisting number Ti (T/M) until crimp twist no longer occurs was determined. Next, in order to investigate the substantial fineness unevenness of each yarn in Tests 1 to 4, we investigated the fineness unevenness under twisting and tension using a Zellweger Worcester under the measurement conditions shown in Table 3. % or less, and was at the same level as the value of the yarn used (1.75).

【表】 次に各糸条の捲縮ピツチについて、単糸に0.3g
(0.1g/d)の緊張下における5cmの試料について
前記万能投影器にて0.001g/d程度の微緊張下にお
けるクリンプの数を測定し、1m当りに換算した
結果、いずれの試料もA部、B部に関係なくバラ
ツキの範囲内におさまり実質的な差はなかつた。 次いでテスト1〜テスト4の各糸条について豊
田(株)製KJ−36型編機でモツクミラノリブ組織に
て編地布帛を作成し、常法にて染色(モスグリー
ン色)にて染色仕上げしたところ、テスト1の布
帛の表面にはテスト3、テスト4の布帛には見ら
れない独特な斑が見られ、その斑は穏やかな太状
斑部が淡色傾向に見え、通常の部分捲縮斑加工糸
の斑部は細部が濃色傾向に見えるのとは異なつた
傾向を示した。また、これに対してテスト2の糸
条の布帛は透過光による観察ではテスト1と同様
な兆候は認められるものの、通常の反射光におけ
る外観判定においてはあまりその効果が認められ
ず、糸条を構成する単糸フイラメントのトルク差
に基づく糸条の外観の太細比(A/B)がある程
度大である方が良好な結果となつた。 尚、テスト1〜テスト2は含水時間に周期性を
もたせたため製品外観にも斑の目立つ部分と目立
たない部分が認められたが、テスト1において含
水時間と通常加工時間を連続的に0.94,5.90,
0.18,9.00.0.68,8.6,0.95,0.1,0.31,4.3,
0.55,6.5,0.93,6.0,0.77,4.9,0.62,3.4,
0.13,8.3,0.62,3.8,0.55,8.2,0.27,2.7,
0.82,5.5,0.38,6.2,0.83,1.3,0.34,6.2,
0.49,7.7,0.60,9.3,0.65,5.5,0.43,3.1,
0.01,9.5,0.86,6.8,0.90,1.8,0.59,9.4の繰
返しにて実施した結果、周期性の全く見られない
自然な斑であつた。
[Table] Next, regarding the crimp pitch of each yarn, 0.3g per single yarn.
We measured the number of crimps under a slight tension of about 0.001 g/d using the universal projector on a 5 cm sample under a tension of (0.1 g/d), and converted it to 1 m. , regardless of part B, the variation was within the range and there was no substantial difference. Next, a knitted fabric was prepared using a Motsuku Milano rib structure using a KJ-36 model knitting machine manufactured by Toyota Motor Corporation for each yarn of Tests 1 to 4, and finished by dyeing (moss green color) using a conventional method. However, on the surface of the fabric of Test 1, there were unique spots that were not seen on the fabrics of Tests 3 and 4, and the spots appeared to have a gentle thick spot that tended to be lighter in color, which was different from normal partial crimp spots. The mottled areas of the processed yarn showed a different tendency from the details which appeared to have a tendency to darken. On the other hand, when observing the yarn fabric in Test 2, the same signs as in Test 1 are observed when observed using transmitted light, but the effect is not so noticeable when judging the appearance using normal reflected light. Good results were obtained when the thick/fine ratio (A/B) of the yarn appearance based on the torque difference between the constituent single filaments was large to some extent. In addition, in Tests 1 and 2, the moisture retention time was periodic, so that the appearance of the product had noticeable and inconspicuous spots, but in Test 1, the moisture retention time and normal processing time were continuously set to 0.94, 5.90 ,
0.18, 9.00.0.68, 8.6, 0.95, 0.1, 0.31, 4.3,
0.55, 6.5, 0.93, 6.0, 0.77, 4.9, 0.62, 3.4,
0.13, 8.3, 0.62, 3.8, 0.55, 8.2, 0.27, 2.7,
0.82, 5.5, 0.38, 6.2, 0.83, 1.3, 0.34, 6.2,
0.49,7.7,0.60,9.3,0.65,5.5,0.43,3.1,
As a result of repeating the test at 0.01, 9.5, 0.86, 6.8, 0.90, 1.8, 0.59, and 9.4, the result was a natural patch with no periodicity at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の糸条の一例の外観図、第2図
は従来の部分捲縮糸のクリンプ形状を緊張下で観
察した模式図、第3図は第2図の糸条を微緊張下
で観察した模式図、第4図は第1図(本発明の糸
条)のクリンプ形状を緊張下で観察した模式図、
第5図は第4図のクリンプ形状を微緊張下で観察
した模式図である。
Figure 1 is an external view of an example of the yarn of the present invention, Figure 2 is a schematic diagram of the crimp shape of a conventional partially crimped yarn observed under tension, and Figure 3 is the yarn of Figure 2 under slight tension. The schematic diagram observed below, Figure 4 is a schematic diagram of the crimp shape of Figure 1 (the yarn of the present invention) observed under tension,
FIG. 5 is a schematic diagram of the crimp shape of FIG. 4 observed under slight tension.

Claims (1)

【特許請求の範囲】 1 熱可塑性合成繊維マルチフイラメント糸条の
撚歪みによる捲縮加工糸であつて、無緊張下もし
くは微緊張下における糸条の外観が長手方向に太
細を有し、糸条を構成する単糸フイラメントの旋
回性は細糸部に対して太糸部が大であることを特
徴とする特殊捲縮加工糸。 2 0.05g/d以上の緊張下における糸条全体の長
手方向の繊度斑が4%以下であり、0.001g/d以下
の緊張下における糸条全体の見掛の直径比(太糸
部/細糸部)が1.5以上であることを特徴とする
特許請求の範囲第1項記載の特殊捲縮加工糸。 3 糸条を構成する単糸フイラメントの単位長さ
当りの捲縮数は太糸部の細糸部において実質的な
差がなく、1/30g/d緊張下における旋回性の比
(太比部/細糸部)が少なくとも1.6以上であるこ
とを特徴とする特許請求の範囲第1項または第2
項記載の特殊捲縮加工糸。
[Scope of Claims] 1 A crimped yarn created by twisting strain of a thermoplastic synthetic fiber multifilament yarn, wherein the appearance of the yarn under no tension or under slight tension is thick and thin in the longitudinal direction; This is a special crimped yarn characterized by the fact that the single filament that makes up the threads has a larger turning ability in the thicker yarns than in the thinner yarns. 2 The unevenness of fineness in the longitudinal direction of the entire yarn under a tension of 0.05 g/d or more is 4% or less, and the apparent diameter ratio (thick yarn part/thin yarn part) of the entire yarn under a tension of 0.001 g/d or less The special crimped yarn according to claim 1, wherein the yarn part) is 1.5 or more. 3 There is no substantial difference in the number of crimps per unit length of the single filament that constitutes the yarn between the thick yarn section and the thin yarn section, and the ratio of swirlability under a tension of 1/30 g/d (thick section /fine thread portion) is at least 1.6 or more.
Special crimped yarn as described in section.
JP7362780A 1980-05-30 1980-05-30 Special crimped processed yarn Granted JPS56169833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7362780A JPS56169833A (en) 1980-05-30 1980-05-30 Special crimped processed yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7362780A JPS56169833A (en) 1980-05-30 1980-05-30 Special crimped processed yarn

Publications (2)

Publication Number Publication Date
JPS56169833A JPS56169833A (en) 1981-12-26
JPS6152249B2 true JPS6152249B2 (en) 1986-11-12

Family

ID=13523736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7362780A Granted JPS56169833A (en) 1980-05-30 1980-05-30 Special crimped processed yarn

Country Status (1)

Country Link
JP (1) JPS56169833A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410089U (en) * 1987-07-06 1989-01-19

Also Published As

Publication number Publication date
JPS56169833A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
KR100452675B1 (en) Polyamide-based fibers having a stiffness and a method for producing the same
US3977173A (en) Textured synthetic multifilament yarn having alternate grouped s and z twists and method manufacturing thereof
JPS6152249B2 (en)
JPS5927408B2 (en) Spunlike yarn from filament yarn and its manufacturing method
US3479710A (en) Textured textile material
JPS6011131B2 (en) Method for producing crimped yarns with different crimped forms and crimped wavelengths
JPS6214653B2 (en)
JPS633049B2 (en)
JPS6350520A (en) Production of thick and thin yarn and crimped thick and thin yarn
JP2585523B2 (en) Method for manufacturing bulky yarn
JPS6075631A (en) Production of polyester special processed yarn
JP2634074B2 (en) Method for manufacturing bulky yarn
JPH10325015A (en) False-twisted processed yarn and its production
JPS5911692B2 (en) multifilament yarn
JP3506969B2 (en) Acetate composite false twisted yarn and method for producing the same
JPS607053B2 (en) Loop yarn manufacturing method
JP2001140125A (en) Polyamide-based multifilament yarn, method for producing the same and woven fabric
JPS6323295B2 (en)
JPS58136850A (en) Hard twisted yarn-like special bulky processed yarn
JPS6112951A (en) False twisted fancy yarn and its production
JPS6360136B2 (en)
JPH01156533A (en) Polyester false twisted crimped yarn
JPH01111032A (en) Production of nylon 6 crimped processed yarn for knitted fabric
JPS6234850B2 (en)
JPH09105045A (en) Production of crimped textured yarn of multilayered structure