JPS6152227B2 - - Google Patents

Info

Publication number
JPS6152227B2
JPS6152227B2 JP55052107A JP5210780A JPS6152227B2 JP S6152227 B2 JPS6152227 B2 JP S6152227B2 JP 55052107 A JP55052107 A JP 55052107A JP 5210780 A JP5210780 A JP 5210780A JP S6152227 B2 JPS6152227 B2 JP S6152227B2
Authority
JP
Japan
Prior art keywords
filament
phase
amount
heat treatment
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55052107A
Other languages
Japanese (ja)
Other versions
JPS56150181A (en
Inventor
Osamu Izumi
Akihiko Nagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5210780A priority Critical patent/JPS56150181A/en
Publication of JPS56150181A publication Critical patent/JPS56150181A/en
Publication of JPS6152227B2 publication Critical patent/JPS6152227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 本発明は先に発明者らにより、提案せられた特
願昭55−10537に係る発明の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of the invention previously proposed by the inventors in Japanese Patent Application No. 55-10537.

さらに詳しくは、当該Nb3Sn系超電導材の製造
において、中間に予備熱処理を加えることに着目
し、それにより臨界電流値JCをさらに改善せし
めたNb3Sn系超電導材の製造方法に関する。
More specifically, the present invention focuses on adding a preliminary heat treatment in the process of manufacturing the Nb 3 Sn-based superconducting material, thereby further improving the critical current value JC .

近年、核融合装置や原子核研究用の大型加速装
置などに超電導マグネツトを応用することが行わ
れ、高磁界における使用が要請されるようになつ
たことにともない、合金系よりも一般に高い臨界
電流値を示す化合物系超電導材が注目されるよう
になつた。
In recent years, superconducting magnets have been applied to nuclear fusion devices and large accelerators for nuclear research, and as they are required to be used in high magnetic fields, they generally have higher critical current values than alloy systems. Compound-based superconducting materials that exhibit

化合物系超電導材の実用上での隘路とみられて
きたものは、第一に製造が厄介であることであり
表面拡散法、気相還元法、プラズマスプレー法、
複合加工法などいろいろの製造法が試みられては
いるが、いずれも複雑かつ面倒なものであつた。
さらに第二の隘路ともいえるものは、化合物に特
有な性質である、可撓性に劣るという点である。
One of the obstacles to the practical use of compound-based superconducting materials is firstly that they are difficult to manufacture; surface diffusion methods, vapor phase reduction methods, plasma spray methods,
Although various manufacturing methods such as composite processing methods have been tried, all of them have been complicated and troublesome.
A second bottleneck is that the compound has poor flexibility, which is a characteristic characteristic of the compound.

先に発明者らが、特願昭55−10537として提案
したNb3Sn系超電導材の製造方法は、上記実情に
かんがみて為されたものであり、製造の単純化と
可撓性の大巾の改善とを双方ともに解決し得た画
期的製造方法に関するものであつて、その内容と
するところは、 Nb15〜70重量%残部Cuならびに不可避なる不
純物よりなる合金を溶解し、鋳造に際しては晶出
Nbの平均離間距離6μ以下となるように調整し
て鋳造材となし、当該鋳造材を99.5%以上に加工
して、前記Nb相とマトリツクスとを共に延伸せ
しめることにより、延伸マトリツクス中にフイラ
メント状Nb相を形成せしめ、然るのち当該延伸
材に対して前記Nbの存在量に対応してNb3Snを
生成せしめ得るような量のSnをメツキし、その
後500〜700℃で熱処理することによりSnを内部
に拡散せしめて、前記NbフイラメントをNb3Sn
相よりなるフイラメント相とすることを特徴とす
るNb3Sn系超電導材の製造方法にある。
The method for manufacturing Nb 3 Sn-based superconducting materials that the inventors previously proposed in Japanese Patent Application No. 55-10537 was developed in view of the above-mentioned circumstances, and was designed to simplify manufacturing and greatly improve flexibility. This is an innovative manufacturing method that solves both the improvement of Out
A cast material is prepared by adjusting the average separation distance of Nb to be 6 μ or less, and the cast material is processed to a degree of 99.5% or more to stretch the Nb phase and the matrix together, thereby forming a filament in the drawn matrix. By forming an Nb phase and then plating the drawn material with Sn in an amount that can generate Nb 3 Sn corresponding to the amount of Nb present, and then heat-treating at 500 to 700°C. By diffusing Sn into the inside, the Nb filament becomes Nb 3 Sn
The present invention provides a method for producing a Nb 3 Sn-based superconducting material, characterized in that the material has a filament phase.

発明者らはその後、本製造方法について種々検
討を加えた結果、最終の拡散熱処理前に、240〜
500℃で20〜100h予備的な熱処理を加えると、こ
の予備処理をしないものに比べ、臨界電流値JC
がさらに改善されることを見出した。
Afterwards, the inventors conducted various studies on this manufacturing method, and found that 240~
If a preliminary heat treatment is applied at 500℃ for 20 to 100 hours, the critical current value JC will be lower than that without this preliminary treatment.
was found to be further improved.

以下に本発明について実施例に基づき詳細に説
明する。
The present invention will be described in detail below based on examples.

まずNbが15〜70重量%となるようなCu−Nb合
金が溶解される。Nbが15%以下では稀薄にす
ぎ、JC特性を向上させるために必要な鋳造材中
のNbデンドライトの平均離間距離を6μ以下に
維持することが困難となり、除外される。また70
%以上では融点が急激に高くなり、同じくJC特
性の向上に必要な均質微細な鋳造組織を得ること
がきわめて困難となるほか、マトリツクスとなる
銅の容積化が過少となり、いわゆる安定効果が保
障されないため、除外されるのである。
First, a Cu-Nb alloy containing 15 to 70% by weight of Nb is melted. If Nb is less than 15%, it is too dilute and it becomes difficult to maintain the average separation distance of Nb dendrites in the cast material to 6μ or less, which is necessary to improve the JC characteristics, so it is excluded. 70 again
% or more, the melting point rises rapidly, making it extremely difficult to obtain the homogeneous and fine casting structure necessary to improve JC properties, and the volume of the copper that becomes the matrix becomes too small, so the so-called stabilizing effect is not guaranteed. Therefore, it is excluded.

上記の組成範囲をもつCu−Nb合金は、一般に
アーク溶解炉やビーム溶解炉などにより、容易に
溶解されるのであるが、これの鋳造材には、きわ
めてきびしい制約が課せられる。
Cu-Nb alloys having the above composition range are generally easily melted in arc melting furnaces, beam melting furnaces, etc., but very severe restrictions are imposed on the casting materials.

すなわち、鋳造材中におけるNbデンドライト
の平均離間距離Sが6μ以下となるように鋳造す
ることが必要である。
That is, it is necessary to perform casting so that the average separation distance S of Nb dendrites in the cast material is 6 μ or less.

この場合デンドライトの平均離間距離Sはデン
ドライトの配列に対して測定線をクロスせしめて
行なうクロスカツト法を用いて測定するのが便利
であるが、それ以外の方法によつてもよい。
In this case, it is convenient to measure the average separation distance S of the dendrites using a cross-cut method in which a measurement line crosses the arrangement of dendrites, but other methods may be used.

晶出Nbの平均離間距離Sが6μ以下となるよ
うなデンドライトの微細晶出は鋳造の際の冷却速
度の調整により実現されるが、それはある種の元
素の微少添加によつても実現できる。これらの詳
細については発明者らにより別途提案がなされる
であろう。
Fine crystallization of dendrites such that the average separation distance S of crystallized Nb is 6 μ or less can be achieved by adjusting the cooling rate during casting, but it can also be achieved by adding a small amount of certain elements. These details will be proposed separately by the inventors.

上記の如く溶解鋳造された素材は全体の加工に
おいてて99.5%以上の加工度となるような加工が
なされる。この加工度が大切であつて、加工度が
99.5%以上になると前記平均離間距離が6μ以下
のところで臨界電流JCの急速な立ち上りが生じ
てくるのである。しかし、このような強加工をし
ても平均離間距離が6μ以上と粗大になるとその
立ち上りはほとんどみられないのである。このよ
うに臨界電流値と平均離間距離ならびに加工度と
の間には密接な相関関係がある。その学術的な根
拠については、目下発明者らにおいて究明中であ
る。
The material melted and cast as described above is processed to achieve a processing degree of 99.5% or more in the entire processing. This degree of processing is important, and the degree of processing is
When it becomes 99.5% or more, a rapid rise of the critical current JC occurs when the average separation distance is 6 μ or less. However, even with such strong machining, when the average separation distance becomes coarse, 6 μ or more, the rise is hardly observed. As described above, there is a close correlation between the critical current value, the average separation distance, and the degree of processing. The inventors are currently investigating the academic basis for this.

Nbデンドライトがこのように強加工されフイ
ラメント状とされたのちに、これら素材に対し、
Snメツキが施される。この場合のSnメツキ量は
内部のNbフイラメントと反応してNb3Snを生成
せしめ得る量である。現実には、Snメツキ量が
所定量に達するまでは臨界電流JCが上昇し、所
定量以上ではJCは飽和してくる。
After the Nb dendrite is strongly processed in this way and made into a filament shape, for these materials,
Sn plating is applied. In this case, the amount of Sn plating is such that it can react with the internal Nb filament to generate Nb 3 Sn. In reality, the critical current JC increases until the amount of Sn plating reaches a predetermined amount, and when the amount exceeds the predetermined amount, JC becomes saturated.

この飽和部分の近傍が必要量のNb3Snの生成さ
れるところと考えられる。
It is considered that the necessary amount of Nb 3 Sn is generated near this saturated portion.

Snメツキの施された後に、Snを内部に拡散せ
しめ内部のNbフイラメントと反応せしめて、当
該フイラメントをNb3Snのフイラメントとして生
成せしめるための熱処理が行なわれる。
After the Sn plating is applied, a heat treatment is performed to diffuse Sn into the interior and react with the Nb filament inside to produce the filament as an Nb 3 Sn filament.

しかして、本発明においては最終的な拡散処理
を行う前に、240〜500℃で20〜100hの予備的熱
処理が加えられる。
Therefore, in the present invention, a preliminary heat treatment is applied at 240 to 500° C. for 20 to 100 hours before the final diffusion treatment.

このような予備処理は、Snメツキ層とCu−Nb
合金との間にあらかじめ拡散のためのなじみを与
えておき、それにより、より高温での後続する拡
散加熱の際にSnメツキ層がだれて偏心状態とな
り、不均質な拡散の原因をつくることを防止しよ
うとするものであるとともに、この熱処理により
JC特性をさらに向上せしめようとするものであ
る。おそらくは、この比較的低い温度での熱処理
により加工材の内部に拡散を促進せしめ、均質な
Nb3Snを生成せしめるために有益な、例えば転位
の移動のようなことが起るのではなかろうかと考
えられるが、その詳細の究明は目下進行中であ
る。
Such pre-treatment is necessary for the Sn plating layer and the Cu-Nb layer.
By providing familiarity with the alloy for diffusion in advance, this prevents the Sn plating layer from sagging and becoming eccentric during subsequent diffusion heating at a higher temperature, causing non-uniform diffusion. This heat treatment is intended to prevent
This is an attempt to further improve the JC characteristics. Perhaps this relatively low temperature heat treatment promotes diffusion into the processed material, resulting in a homogeneous
It is thought that something beneficial to the formation of Nb 3 Sn, such as the movement of dislocations, may occur, but the detailed investigation is currently underway.

このような、熱処理は240℃以下では低すぎて
JC特性に及ぼす効果がみられず、500℃以上にな
ると高くなりすぎ、Snメツキ層のだれが起つた
りして、かえつて均質化を阻害する結果になるた
め除外される。またこの熱処理は、100h以上と
長すぎては効果が飽和してしまい、それ以上時間
をかけることの意味がないから除外され、20h以
下ではまだ短かすぎて、熱処理の効果が十分あら
われない。
This kind of heat treatment is too low below 240℃.
No effect on JC characteristics was observed, and temperatures above 500°C would become too high, causing sagging of the Sn plating layer, which would actually impede homogenization, so it was excluded. In addition, this heat treatment is excluded if it is too long, such as 100 hours or more, as the effect will be saturated and there is no point in spending any more time, and if it is less than 20 hours, it is still too short, and the effect of the heat treatment will not be fully manifested.

このような予備熱処理をしたのちは、500〜700
℃の温度で拡散処理を行ない、内部に十分に
Nb3Snを生成せしめる。この場合には、500℃以
下では低すぎるためにNb3Snの生成が不均質かつ
不十分であり、所望のJC値を有する材料を得る
ことができず、700℃以上になると温度が高すぎ
てメツキ層が不安定不均質となつたり、フイラメ
ントの形状が不安定となつたり、またNb3Snの結
晶成長が生じ、いわゆるピン止め効果が阻害され
るなどのためにJc値も逆に低下してしまうので除
外される。
After such preliminary heat treatment, the
Perform diffusion treatment at a temperature of ℃ to ensure sufficient internal
Generates Nb 3 Sn. In this case, temperatures below 500°C are too low and the formation of Nb 3 Sn is inhomogeneous and insufficient, making it impossible to obtain a material with the desired JC value, while temperatures above 700°C are too high. The plating layer becomes unstable and inhomogeneous, the shape of the filament becomes unstable, and crystal growth of Nb 3 Sn occurs, which inhibits the so-called pinning effect, so the Jc value also decreases. It is excluded because it does.

実施例 1 Cu−24.5%Nb合金を全量で150gとなるようア
ーク溶解し、水冷ルツボ内で冷却して、15mm角×
80mm長の鋳造材とし、これを0.24mmφに冷間伸線
した。これに7.1%となる量のSnをメツキし、予
備熱処理をしないもの200,250,300,350,
400,450,500℃の各温度で24hおよび96h予備熱
処理したものを最終的に600℃×96h拡散処理し
て、9Teslaの磁界内でそれぞれの臨界電流Jcを
測定した。
Example 1 Cu-24.5%Nb alloy was arc melted to a total amount of 150g, cooled in a water-cooled crucible, and made into a 15mm square
A cast material with a length of 80 mm was made, and this was cold drawn to a diameter of 0.24 mm. 200, 250, 300, 350, which is plated with Sn in an amount of 7.1% and without preheat treatment.
The samples were preheated for 24 hours and 96 hours at 400, 450, and 500 degrees Celsius, and then finally diffused at 600 degrees Celsius for 96 hours, and their critical currents Jc were measured in a magnetic field of 9 Tesla.

第1図はその結果をプロツトした線図である。
200℃では無処理の場合とほとんど差がないが、
250℃以上になると、Jc値が急激に改善される様
子がよくわかる。この立上りの臨界値が240℃に
なるが、これはSnの融点とも関連していると考
えられる。
FIG. 1 is a diagram plotting the results.
At 200℃, there is almost no difference from the untreated case, but
It is clearly seen that the Jc value improves rapidly when the temperature rises above 250°C. The critical value for this rise is 240°C, which is thought to be related to the melting point of Sn.

実施例 2 Cu−28.1%Nb合金を前記同様溶解鋳造して
0.24mmφに伸線後10.1%Snをメツキし、その後
400℃×24h予備熱処理したものと、予備処理な
しの試料を作製し、これを500,550,600,650,
700℃の各温度で96h拡散処理を行なつたのち、
9TeslaでJcを測定した。
Example 2 A Cu-28.1%Nb alloy was melted and cast as described above.
After drawing the wire to 0.24mmφ, plate it with 10.1% Sn, and then
We prepared samples preheated at 400°C for 24 hours and samples without pretreatment.
After 96 hours of diffusion treatment at each temperature of 700℃,
Jc was measured with 9Tesla.

第2図は、その結果をプロツトした線図であ
る。第2図から明らかな通り、400℃×24h予備
熱処理したものは処理しないものに比べて、Jc特
整のすぐれた改善がみられ、その傾向は高温側に
移行するほど顕著であることがわかる。
FIG. 2 is a diagram plotting the results. As is clear from Figure 2, the Jc properties of the specimens preheated at 400°C for 24 hours showed an excellent improvement in Jc characteristics compared to those without treatment, and this tendency becomes more pronounced as the temperature increases. .

発明者らは、さらに多くの実験を行つたが、い
ずれの場合も前記実施例同様本発明に係る予備熱
処理の効果が顕著にあらわれることが確認でき
た。
The inventors conducted many more experiments, and were able to confirm that in each case, the effect of the preheat treatment according to the present invention was remarkable, as in the previous example.

本発明は、冷間加工段階では、Cu−Nb2元系
合金であるから、その加工はきわめて容易であ
り、その後Nb3Snのフイラメントを生成せしめた
場合でも細線化に起因するすぐれた可撓性を維持
し、しかも予備熱処理によりJc特性が著しく改善
できたNb3Sn系超電導材を提供できたものであ
り、その製造の簡易性、経済性と相まつて今後合
金系超電導材に代る高可撓性材料としてより高い
磁界への応用への途を開き得た効果は、けだし甚
大といわねばならない。
Since the present invention is a Cu-Nb binary alloy, it is extremely easy to process at the cold working stage, and even when a Nb 3 Sn filament is produced afterwards, it has excellent flexibility due to thinning. We have been able to provide a Nb 3 Sn-based superconducting material that maintains the same properties and has significantly improved Jc properties through preliminary heat treatment, and together with its ease of manufacture and economic efficiency, it will become a high-performing material that will replace alloy-based superconducting materials in the future. It must be said that the effect of opening the way to the application of flexible materials to higher magnetic fields is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は予備処理温度と臨界電流値との関係を
示す線図、第2図は拡散処理後における予備熱処
理の有無の効果を示す線図である。
FIG. 1 is a diagram showing the relationship between pretreatment temperature and critical current value, and FIG. 2 is a diagram showing the effect of presence or absence of preheat treatment after diffusion treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 Nb15〜70重量%残部Cuならびに不可避なる
不純物よりなる合金を溶解し、鋳造に際しては晶
出Nbの平均離間距離が6μ以下となるように調
整して鋳造材となし、当該鋳造材を99.5%以上に
加工して前記Nb相とマトリツクスとを共に延伸
せしめることにより、延伸マトリツクス中にフイ
ラメント状Nb相を形成せしめ、然るのち当該延
伸材に対して前記Nbの存在量に対応してNb3Sn
を生成せしめ得るような量のSnをメツキし、は
じめに240〜500℃において20〜100時間予備処理
をし、その後500〜700℃で拡散熱処理することに
より、Snを内部に拡散せしめて、前記Nbフイラ
メントをNb3Sn相よりなるフイラメント相とする
ことを特徴とするNb3Sn系超電導材の製造方法。
1 An alloy consisting of 15 to 70% by weight of Nb, balance Cu, and unavoidable impurities is melted, and during casting, the average distance between the crystallized Nb is adjusted to be 6 μ or less to obtain a cast material, and the cast material is 99.5% By performing the above processing and stretching the Nb phase and the matrix together, a filamentary Nb phase is formed in the stretched matrix, and then Nb 3 is added to the stretched material in accordance with the amount of Nb present. Sn
By plating Sn in an amount that can generate the Nb A method for producing a Nb 3 Sn-based superconducting material, characterized in that the filament is a filament phase consisting of an Nb 3 Sn phase.
JP5210780A 1980-04-18 1980-04-18 Preparation of nb3sn type superconductive material Granted JPS56150181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5210780A JPS56150181A (en) 1980-04-18 1980-04-18 Preparation of nb3sn type superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5210780A JPS56150181A (en) 1980-04-18 1980-04-18 Preparation of nb3sn type superconductive material

Publications (2)

Publication Number Publication Date
JPS56150181A JPS56150181A (en) 1981-11-20
JPS6152227B2 true JPS6152227B2 (en) 1986-11-12

Family

ID=12905628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210780A Granted JPS56150181A (en) 1980-04-18 1980-04-18 Preparation of nb3sn type superconductive material

Country Status (1)

Country Link
JP (1) JPS56150181A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113373404B (en) * 2021-06-10 2022-09-27 中国科学院近代物理研究所 Copper-based thick-wall Nb 3 Sn film superconducting cavity and preparation method thereof

Also Published As

Publication number Publication date
JPS56150181A (en) 1981-11-20

Similar Documents

Publication Publication Date Title
Tachikawa et al. Composite‐processed Nb3Sn with titanium addition to the matrix
Sakai et al. Development of high‐strength, high‐conductivity Cu–Ag alloys for high‐field pulsed magnet use
Banno Low-temperature superconductors: Nb3Sn, Nb3Al, and NbTi
US6372054B1 (en) Process for producing ultrafine multifilamentary Nb3(A1,Ge) or Nb3(A1,Si) superconducting wire
US4435228A (en) Process for producing NB3 SN superconducting wires
Verhoeven et al. Casting of dendritic Cu‐Nb alloys for superconducting wire
Volkov et al. Features of the disorder→ order phase transition in non-stoichiometric Cu-56at% Au alloy
US6470564B1 (en) Method of manufacturing aluminum-stabilized superconducting wire
US5322574A (en) Method of manufacturing a high strength, high conductivity copper-silver alloy
US6508889B2 (en) Process for the production of Nb3A1 extra-fine multifilamentary superconducting wire
US4341572A (en) Method for producing Nb3 Sn superconductors
JPS6152227B2 (en)
Fihey et al. I n situ multifilamentary superconducting wires fabricated using a controlled high‐temperature gradient
US3682719A (en) Process for producing nb-ti super conducting material
Zhao et al. Effect of post-heat treatment on superconducting properties of Nb 3 Al wires prepared with RHQ process at different conditions
JPS60423B2 (en) Manufacturing method of Nb↓3Sn composite material
US3275480A (en) Method for increasing the critical current density of hard superconducting alloys and the improved products thereof
WO2006129861A1 (en) Nb3Sn SUPERCONDUCTING WIRE, PROCESS FOR PRODUCING THE SAME, AND SINGLE-CORE COMPOSITE WIRE USED IN PRODUCTION OF Nb3Sn SUPERCONDUCTING WIRE
JP4754158B2 (en) Superconducting conductors containing a low temperature stabilizer based on aluminum
JPS62267050A (en) Production of in-situ rod for fiber dispersion type superconducting wire
US3715243A (en) Superconductors
JPS6152226B2 (en)
JPS6214631B2 (en)
Koch et al. Fluxoid pinning in niobium containing small amounts of yttrium or gadolinium
Nagata et al. Effects of Zr, Hf and Ta Additions on Properties of in situ Cu-20% Nb–Sn Superconductors