JPS6151833B2 - - Google Patents

Info

Publication number
JPS6151833B2
JPS6151833B2 JP1400480A JP1400480A JPS6151833B2 JP S6151833 B2 JPS6151833 B2 JP S6151833B2 JP 1400480 A JP1400480 A JP 1400480A JP 1400480 A JP1400480 A JP 1400480A JP S6151833 B2 JPS6151833 B2 JP S6151833B2
Authority
JP
Japan
Prior art keywords
color
signal
burst signal
amplitude
amplifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1400480A
Other languages
Japanese (ja)
Other versions
JPS56111393A (en
Inventor
Kenji Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1400480A priority Critical patent/JPS56111393A/en
Publication of JPS56111393A publication Critical patent/JPS56111393A/en
Publication of JPS6151833B2 publication Critical patent/JPS6151833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/70Circuits for processing colour signals for colour killing

Description

【発明の詳細な説明】 本発明はカラーテレビジヨン受像機(以下
CTVと称す)の色信号処理を司る自動色飽和度
制御(以下ACCと称す)、色消去及び自動位相制
御(以下APCと称す)の性能改善に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color television receiver (hereinafter referred to as
This paper relates to improvements in the performance of automatic color saturation control (hereinafter referred to as ACC) and color cancellation and automatic phase control (hereinafter referred to as APC), which govern color signal processing in CTV (hereinafter referred to as CTV).

従来のCTVの色信号処理部のブロツク図を第
1図に示す。1は搬送色信号の入力端子であり、
搬送色信号は、第2図aに示すように、バースト
信号31とクロマ信号32よりなる。入力端子1
より入つた色信号は、第1色信号増幅器11と第
2色信号増幅器12によつて増幅され、バースト
信号―クロマ信号分離器13で、バースト信号3
1とクロマ信号32に分離される。クロマ信号3
2は、色飽和度制御器14により適当な振幅に制
御された後、出力段15を通つてクロマ信号出力
端子2に出力される。一方、バースト信号31
は、ACC、色消去及びAPCの動作を行なうため
に、各機能ブロツクへ導かれる。18はバースト
信号の波高値検出器であり、ここで検出されたバ
ースト信号の波高値は、増幅器17によつて増幅
された後、第1色信号増幅器11に帰還される。
この帰還ループにより、第2色信号増幅器12の
出力におけるバースト信号の振幅は一定になる。
すなわち、色信号入力が十分に小さくて検出器1
8の出力がない場合は、増幅器11は最大利得で
動作するので、増幅器12の出力は入力に比例す
る。色信号入力が大きくなつて検出器18が動作
しはじめると、その出力は増幅器17で増幅さ
れ、増幅器11に作用して、その利得を下げる。
その結果、増幅器12の出力は、検出器18が動
作しはじめたときの振幅に保たれる。この関係を
図示すると、第3図のようになる。ここで、縦軸
41は増幅器12の出力振幅を示し、横軸44は
入力端子1におけるバースト信号の振幅を示す。
入出力関係は、実線42で示されるようになる。
しかしながら、実際のCTVに使用された場合に
は、入出力関係は点線43のようになる。これ
は、バースト信号の振幅を検出するのに波高値検
出器18を用いているためである。すなわち、第
2図bに示すような雑音のないバースト信号の場
合には、検出器18はH1を振幅として検出する
が、第2図cに示すような雑音を含んだバースト
信号の場合には、H2をバースト信号の振幅とし
て検出する。実際のCTVで第2図b及びcの信
号波形は、各々、中、強電界時と弱電界時に相当
する。従つて、実際のCTVにおける弱電界時の
ACC特性は、第3図の実線42で示されずに、
点線43で示される。これは、弱電界時に画面に
濃い色雑音がでるのを防ぐ効果があり、画面が見
やすくなる。
FIG. 1 shows a block diagram of the color signal processing section of a conventional CTV. 1 is an input terminal for the carrier color signal;
The carrier color signal consists of a burst signal 31 and a chroma signal 32, as shown in FIG. 2a. Input terminal 1
The input chrominance signal is amplified by a first chrominance signal amplifier 11 and a second chrominance signal amplifier 12, and a burst signal 3 is amplified by a burst signal-chroma signal separator 13.
1 and a chroma signal 32. chroma signal 3
2 is controlled to have an appropriate amplitude by the color saturation controller 14 and then output to the chroma signal output terminal 2 through the output stage 15. On the other hand, the burst signal 31
are routed to each functional block to perform ACC, color cancellation, and APC operations. Reference numeral 18 denotes a burst signal peak value detector, and the peak value of the burst signal detected here is fed back to the first color signal amplifier 11 after being amplified by the amplifier 17 .
This feedback loop makes the amplitude of the burst signal at the output of the second color signal amplifier 12 constant.
In other words, if the color signal input is sufficiently small that detector 1
In the absence of the output of 8, the amplifier 11 operates at maximum gain, so the output of the amplifier 12 is proportional to the input. When the color signal input becomes large and the detector 18 starts operating, its output is amplified by the amplifier 17 and acts on the amplifier 11 to lower its gain.
As a result, the output of amplifier 12 remains at the amplitude it had when detector 18 began operating. This relationship is illustrated in FIG. 3. Here, the vertical axis 41 indicates the output amplitude of the amplifier 12, and the horizontal axis 44 indicates the amplitude of the burst signal at the input terminal 1.
The input/output relationship is shown by a solid line 42.
However, when used in actual CTV, the input/output relationship will be as shown by the dotted line 43. This is because the peak value detector 18 is used to detect the amplitude of the burst signal. That is, in the case of a burst signal without noise as shown in FIG. 2b, the detector 18 detects H1 as the amplitude, but in the case of a burst signal containing noise as shown in FIG. 2c, the detector 18 detects H1 as the amplitude. detects H 2 as the amplitude of the burst signal. In an actual CTV, the signal waveforms shown in FIG. 2b and c correspond to medium, strong, and weak electric fields, respectively. Therefore, when the electric field is weak in actual CTV,
The ACC characteristic is not shown by the solid line 42 in FIG.
Indicated by dotted line 43. This has the effect of preventing dark color noise from appearing on the screen when the electric field is weak, making the screen easier to see.

また、分離器13で分離されたバースト信号
は、同期検波回路19,22に入り、電圧制御発
振器(以下VCOと称す)21によつて作られて
いる色副搬送波と掛け算され、バースト信号の振
幅又は位相が検知される。同期検波回路19は、
バースト信号の振幅を検出し、その出力は増幅器
20によつて増幅され、バースト信号の振幅が非
常に小さくなつたとき、色飽和度制御器14に作
用して、そのクロマ信号の出力レベルを0にし、
色消去を行なう。これは、第3図の実線42又は
破線43の矢印で示される。同期検波回路22
は、バースト信号の位相を検出し、その出力は
VCO21に作用して、バースト信号の周波数、
位相に一致した色副搬送波を作り出す。この色副
搬送波は、前述のバースト信号の同期検波の他
に、クロマ信号の復調に使用される。16は復調
器で、3,4及び5は復調出力端子を示す。
In addition, the burst signal separated by the separator 13 enters the synchronous detection circuits 19 and 22, and is multiplied by the color subcarrier generated by the voltage controlled oscillator (hereinafter referred to as VCO) 21, thereby increasing the amplitude of the burst signal. Or the phase is detected. The synchronous detection circuit 19 is
The amplitude of the burst signal is detected, and its output is amplified by the amplifier 20. When the amplitude of the burst signal becomes very small, it acts on the color saturation controller 14 to reduce the output level of the chroma signal to 0. west,
Perform color erasing. This is indicated by the solid line 42 or dashed line 43 arrow in FIG. Synchronous detection circuit 22
detects the phase of the burst signal and its output is
Acting on VCO21, the frequency of the burst signal,
Create phase-matched color subcarriers. This color subcarrier is used for demodulating the chroma signal in addition to the above-mentioned synchronous detection of the burst signal. 16 is a demodulator, and 3, 4 and 5 are demodulation output terminals.

ここで注目されるべき点は、ACC及び色消去
は共にカラーバースト信号の振幅を検出している
にもかかわらず、その検出方法が異なる点であ
る。すなわち、ACC部分では、バースト信号の
検出は波高値を検出しているため、弱電界時とい
つた雑音の多い場合には、本来なるバースト信号
が小さくてACCが動作しない場合でも雑音を検
出して、増幅器11の利得は下げられる。従つ
て、クロマ信号出力端子2における信号振幅は、
雑音が無い場合よりも小さくなり、CTVの画面
の色はうすくなるが、色雑音も小さくなるので見
やすい画面となる。
What should be noted here is that although both ACC and color cancellation detect the amplitude of the color burst signal, their detection methods are different. In other words, in the ACC part, the burst signal is detected by detecting the peak value, so when there is a lot of noise, such as in a weak electric field, the noise is detected even if the original burst signal is small and ACC does not operate. Therefore, the gain of amplifier 11 is lowered. Therefore, the signal amplitude at the chroma signal output terminal 2 is
The noise is smaller than when there is no noise, and the colors on the CTV screen are fainter, but the color noise is also smaller, making the screen easier to see.

一方、色消去のためのバースト信号の振幅値の
検出は、雑音による誤動作が問題となるため、雑
音に強い同期検波が用いられることが多い。しか
しながら、第1図に示す構成では、雑音が多くな
るにしたがつて、同期検波器19に入る本来のバ
ースト信号の振幅も減少してしまうため、色消去
の動作が早くなつてしまうという問題点があつ
た。
On the other hand, in detecting the amplitude value of a burst signal for color erasure, malfunctions due to noise are a problem, so synchronous detection, which is resistant to noise, is often used. However, in the configuration shown in FIG. 1, as the noise increases, the amplitude of the original burst signal entering the synchronous detector 19 also decreases, resulting in a problem that the color erasing operation becomes faster. It was hot.

また、APCのバースト信号の位相検出も同期
検波が使用されているが、弱電界時には同様にバ
ースト信号の振幅が早く減少してしまうので、同
期検波器22の出力が小さくなり、APCが動作
しなくなる。また、ACC部の検波に同期検波を
用いれば、第3図の実線42に示す本来の特性が
得られるが、色雑音もそのまま増幅されるため、
色雑音の多い、非常に見にくい画面になる。
In addition, synchronous detection is used to detect the phase of the APC burst signal, but when the electric field is weak, the amplitude of the burst signal similarly decreases quickly, so the output of the synchronous detector 22 becomes small and the APC does not operate. It disappears. Furthermore, if synchronous detection is used for detection in the ACC section, the original characteristics shown by the solid line 42 in FIG. 3 can be obtained, but since color noise is also amplified as it is,
The screen becomes very difficult to view with a lot of color noise.

それゆえに、この発明の主たる目的は、色雑音
が大きくなつても画面上の映像を見やすくすると
共に、色消去の動作点を安定化し、微小入力まで
APCを十分動作させ得るCTVの色信号処理回路
を提供することである。
Therefore, the main purpose of this invention is to make it easier to see images on the screen even when color noise becomes large, to stabilize the operating point of color cancellation, and to
An object of the present invention is to provide a color signal processing circuit for CTV that can sufficiently operate APC.

この発明は要約すれば、CTVの色信号処理回
路において、色信号入力端子と、前記入力端子に
接続され、雑音成分を含むバースト信号の波高値
を検出してACCを行う手段と、前記入力端子に
接続された一定の利得をもつ増幅器と、前記増幅
器に接続され、バースト信号の振幅を検出して色
消去を行う手段と、前記増幅器に接続され、バー
スト信号の位相を検出してACCを行う手段とを
備えたものである。
To summarize, the present invention includes, in a CTV color signal processing circuit, a color signal input terminal, means connected to the input terminal to perform ACC by detecting the peak value of a burst signal containing a noise component, and a means for performing ACC at the input terminal. an amplifier with a constant gain connected to the amplifier; means connected to the amplifier to detect the amplitude of the burst signal and perform color cancellation; and a means connected to the amplifier to detect the phase of the burst signal to perform ACC. It is equipped with means.

この発明の上述の目的およびその他の目的と特
徴は、以下に図面を参照して行う詳細な説明から
一層明らかとなろう。
The above objects and other objects and features of the present invention will become more apparent from the detailed description given below with reference to the drawings.

第4図は、この発明の一実施例を示すブロツク
図である。この第4図は、以下の点を除いて前述
の第1図と同じである。すなわち、分離回路13
によつてクロマ信号とバースト信号とを分離し、
分離したバースト信号を同期検波器19,22に
与えるようにしたが、この第4図では、入力端子
1に与えられるバースト信号を増幅器23によつ
て一定利得増幅して、同期検波器19,22に与
えるようにした。前記増幅器23を設けたことに
よつて、バースト信号は常に一定の割合で増幅さ
れ、雑音に強い同期検波器19,22で振幅又は
位相検出を行うため、雑音による色消去の動作点
の変動およびAPC範囲の減少がなくなる。ま
た、ACCは従来と同一回路を用いているため、
色雑音が大きくなつても増幅器11の利得は押え
られるので、画面上の色雑音は小さくなり、非常
に見やすい画面になる。
FIG. 4 is a block diagram showing one embodiment of the present invention. This FIG. 4 is the same as the above-mentioned FIG. 1 except for the following points. That is, the separation circuit 13
Separate the chroma signal and burst signal by
The separated burst signals are applied to the synchronous detectors 19 and 22. In FIG. 4, the burst signals applied to the input terminal 1 are amplified with a constant gain by the amplifier 23, I decided to give it to By providing the amplifier 23, the burst signal is always amplified at a constant rate, and the amplitude or phase is detected by the synchronous detectors 19 and 22, which are resistant to noise. No more APC range reduction. In addition, since ACC uses the same circuit as before,
Even if the color noise becomes large, the gain of the amplifier 11 is suppressed, so the color noise on the screen becomes small and the screen becomes very easy to view.

以上のようにこの発明によれば、バースト信号
の振幅または位相を検出して色消去またはAPC
を行う場合に、一定の増幅度を有する増幅器にバ
ースト信号を与えて同期検波するようにしたの
で、従来のように雑音成分によつてバースト信号
が小さくなつて色消去の動作が早くなつたり、
APCの動作範囲が減少することがない。
As described above, according to the present invention, the amplitude or phase of a burst signal is detected to perform color cancellation or APC.
When performing synchronous detection, a burst signal is applied to an amplifier with a certain amplification degree for synchronous detection, so that unlike conventional methods, the burst signal becomes smaller due to noise components and the color erasing operation becomes faster.
APC operating range is not reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の色信号処理回路を示すブロツク
図、第2図は色信号を示す波形図、第3図は第1
図の色信号処理回路の入出力特性を示す図、第4
図はこの発明の一実施例を示すブロツク図であ
る。 図において、1は色信号入力端子、2はクロマ
信号出力端子、11は第1色信号増幅器、12は
第2色信号増幅器、13はバースト信号―クロマ
信号分離器、14は色飽和度制御器、15は出力
段、16は復調器、17は増幅器、18は波高値
検出器、19及び22は同期検波回路、20及び
23は増幅器、21は電圧制御発振器である。な
お、図中同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram showing a conventional color signal processing circuit, Fig. 2 is a waveform diagram showing a color signal, and Fig. 3 is a block diagram showing a conventional color signal processing circuit.
A diagram showing the input/output characteristics of the color signal processing circuit shown in Fig. 4.
The figure is a block diagram showing one embodiment of the present invention. In the figure, 1 is a color signal input terminal, 2 is a chroma signal output terminal, 11 is a first chroma signal amplifier, 12 is a second chroma signal amplifier, 13 is a burst signal-chroma signal separator, and 14 is a color saturation controller. , 15 is an output stage, 16 is a demodulator, 17 is an amplifier, 18 is a peak value detector, 19 and 22 are synchronous detection circuits, 20 and 23 are amplifiers, and 21 is a voltage controlled oscillator. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 入力端子に与えられるカラーバースト信号を
含む搬送色信号を増幅する第1の増幅手段と、前
記第1の増幅手段によつて増幅された搬送色信号
からカラーバースト信号を分離する分離手段と、
前記分離手段によつて分離されたカラーバースト
信号の波高値を検知して前記第1の増幅手段の増
幅度を制御する波高値検出手段とを含む自動色飽
和度制御手段、前記入力端子に与えられるカラー
バースト信号を一定の利得で増幅する第2の増幅
手段、前記第2の増幅手段によつて増幅されたカ
ラーバースト信号の振幅を検知し、振幅値が所定
値以下であれば前記自動色飽和度制御手段から導
出される前記搬送色信号の信号レベルを制限して
色消去を行う色消去手段、及び前記第2の増幅手
段によつて増幅されたカラーバースト信号の位相
を検知し、該位相に一致した色副搬送波を作る発
振器を制御する自動位相制御手段を備えたカラー
テレビジヨン受像機の色信号処理回路。 2 色消去手段及び自動位相制御手段は、カラー
バースト信号と色副搬送波とを比較して、該カラ
ーバースト信号の振幅を検知する同期検波手段を
含む特許請求の範囲第1項記載のカラーテレビジ
ヨン受像機の色信号処理回路。
[Scope of Claims] 1. A first amplifying means for amplifying a carrier color signal including a color burst signal applied to an input terminal, and a color burst signal from the carrier color signal amplified by the first amplifying means. separation means for separating;
automatic color saturation control means, comprising a peak value detection means for detecting a peak value of the color burst signal separated by the separation means and controlling the amplification degree of the first amplification means; a second amplifying means for amplifying the color burst signal with a constant gain, detecting the amplitude of the color burst signal amplified by the second amplifying means, and if the amplitude value is less than a predetermined value, the automatic color color erasing means for erasing colors by limiting the signal level of the carrier color signal derived from the saturation control means; detecting the phase of the color burst signal amplified by the second amplifying means; A color signal processing circuit for a color television receiver comprising automatic phase control means for controlling an oscillator that produces phase-matched color subcarriers. 2. The color television according to claim 1, wherein the color erasing means and the automatic phase control means include synchronous detection means for detecting the amplitude of the color burst signal by comparing the color burst signal and the color subcarrier. Color signal processing circuit of the receiver.
JP1400480A 1980-02-06 1980-02-06 Color signal processing circuit of color television receiver Granted JPS56111393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1400480A JPS56111393A (en) 1980-02-06 1980-02-06 Color signal processing circuit of color television receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1400480A JPS56111393A (en) 1980-02-06 1980-02-06 Color signal processing circuit of color television receiver

Publications (2)

Publication Number Publication Date
JPS56111393A JPS56111393A (en) 1981-09-03
JPS6151833B2 true JPS6151833B2 (en) 1986-11-11

Family

ID=11849062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1400480A Granted JPS56111393A (en) 1980-02-06 1980-02-06 Color signal processing circuit of color television receiver

Country Status (1)

Country Link
JP (1) JPS56111393A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184040U (en) * 1987-05-18 1988-11-28
JPH0298941U (en) * 1989-01-25 1990-08-07
JPH046759Y2 (en) * 1988-07-21 1992-02-24
US20190106901A1 (en) * 2017-10-06 2019-04-11 Zingerle Ag Folding tent with a flat roof and a roof depression

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184040U (en) * 1987-05-18 1988-11-28
JPH046759Y2 (en) * 1988-07-21 1992-02-24
JPH0298941U (en) * 1989-01-25 1990-08-07
US20190106901A1 (en) * 2017-10-06 2019-04-11 Zingerle Ag Folding tent with a flat roof and a roof depression

Also Published As

Publication number Publication date
JPS56111393A (en) 1981-09-03

Similar Documents

Publication Publication Date Title
JPS6139794B2 (en)
US4360929A (en) Automatic gain control circuit
JPS6151833B2 (en)
US4496978A (en) Noise detecting circuit and television receiver employing the same
US4051510A (en) Hue correction apparatus controlled by chrominance saturation
EP0241704B1 (en) Automatic color saturation controller
JPH06105967B2 (en) Automatic gain control device in video signal processing device
US3483316A (en) Hue control circuitry for color television receivers
EP0059379B1 (en) Noise detecting circuit and television receiver employing the same
US2989588A (en) Automatic gain control systems
KR100230258B1 (en) Video signal copy apparatus to improve delay time of filter and white/black trigger
JP2564445B2 (en) Color signal reproducing circuit and reproducing method for video cassette recorder
JPS5927553B2 (en) Color signal processing circuit for color television receivers
KR100195107B1 (en) Video signal dubbing recording apparatus
US4163989A (en) Detector circuit for color television receivers
JPS59156096A (en) Pal, secam system discriminating circuit
JP2506832B2 (en) Color signal processing circuit
JPH08163065A (en) Noise elimination circuit
JPS6017200B2 (en) color killer circuit
JP2855765B2 (en) Video signal processing circuit
JPS6028191B2 (en) Television receiver beam current limiting circuit
JPH0454434B2 (en)
JPH02149091A (en) Chrominance signal processing circuit for color television receiver
JPS6057272B2 (en) Burst amplitude detection circuit
JPH0320195B2 (en)